
SL2SF: Refactoring Simulink to Stateflow

Stephen Wynn-Williams1, Zinovy Diskin1, Vera Pantelic1, Mark Lawford1,
Gehan Selim1, Curtis Milo1, Moustapha Diab2, and Feisel Weslati2

1 McMaster Centre for Software Certification
McMaster University, Hamilton ON, Canada

{wynnwisj, diskinz, pantelv, lawford, selimg, milocj}@mcmaster.ca
2 FCA US LLC, Auburn Hills MI, USA

moustapha.diab@external.fcagroup.com,faz.weslati@fcagroup.com

Abstract. In the Matlab Simulink environment, systems can be mod-
elled using Simulink block diagrams and Stateflow state charts. While
stateful logic is more naturally modelled using Stateflow, in practice com-
plex block diagrams are often used instead, resulting in models that are
hard to understand and maintain. In order to improve the maintainabil-
ity and understandability of large industrial models, this paper presents
a strategy for refactoring Simulink block diagrams implementing stateful
logic into functionally equivalent Stateflow state charts that more nat-
urally represent the intended behaviour. To bridge the gap between the
syntax of block diagrams and state charts, Mealy machines represented
by tabular expressions are used as an intermediate representation. The
compositional language of block diagrams is used to combine tables mod-
elling individual blocks into a table for the entire block diagram which
describes the high level state machine encoded in the Simulink subsys-
tem. A prototype tool that performs the translation from Simulink to
Stateflow automatically is discussed.

Keywords: Simulink · Stateflow · Refactoring · Mealy Machines · Tab-
ular Expressions · Monoidal Categories

1 Introduction

The adoption of Model-Based Design in the development of embedded control
systems across industries has led to the wide use of Matlab/Simulink/Stateflow
as a supporting environment. The modelling capabilities provided by Simulink
block diagrams and Stateflow state charts complement each other by providing
languages for functional and stateful system specifications. Due to their individ-
ual strengths, one modelling formalism may be preferable for specifying certain
classes of behaviours. For example, the MathWorks Automotive Advisory Board
(MAAB) guidelines [25] advise the use of Stateflow over Simulink for modelling
stateful logic. This is because Simulink block diagrams that are used to model
mode switching logic are often cumbersome and difficult to understand. In this
case, Stateflow state charts should be used to implement the same logic resulting
in a structure which is easier to read, maintain, and verify.



2 S. Wynn-Williams et al.

For example, each model in Fig. 1 executes periodically to update its state
and outputs. When the block diagram in Fig. 1a updates, each signal line is
given a value and each block uses the values of the incoming signals to determine
the values of the outgoing signals. When the state chart in Fig. 1b updates, it
checks each condition on transitions leaving its current mode (i.e. state node).
If a condition is satisfied, the state chart transitions to the associated target
mode and executes the exit actions of the mode it is leaving, the actions on the
transition it is taking, and the entry actions of the mode it is entering. If no
transitions are valid, the state chart remains in its current mode and executes
the during actions of that mode.

1
running

Add

Duration
1
start

>	0

IsRunning

Decrement

	>	0

Mode

T

F

SetCounterZero

counter

(a) Before: Simulink Block Diagram

Running
during:
running	=	true;
counter	=	counter	-	1.0;
exit:
running	=	true;
counter	=	counter	-	1.0;

Stopped
during:
running	=	false;
counter	=	0.0;
exit:
running	=	false;
counter	=	10.0; [counter	<=	1.0]

[start]

{counter	=	0.0;}

(b) After: Stateflow State Chart

Fig. 1: Model of a Timer in Simulink and Stateflow.

The Simulink and Stateflow models shown in Fig. 1 are functionally equiva-
lent. Both models capture a timer with one boolean input, start , and one boolean
output, running . When start becomes true, the system starts counting down
from ten to zero. While the system is counting down, running is true. Once the
counter reaches zero, running is set to false and becomes true again if start is
true. Although there are relatively few blocks in Fig. 1a, it is difficult to un-
derstand how this model achieves the behaviour while the state chart in Fig. 1b
clearly captures the system’s modes and the conditions triggering mode changes.

Our industrial experience has identified the need to refactor Simulink block
diagrams to Stateflow state charts for easier comprehension and maintenance.
More precisely, practice shows that Simulink is often used to specify stateful logic
even though Stateflow would be a more appropriate implementation language.
This might occur during model evolution when modes of operation are added
to previously mode-free block diagrams, and developers find it easier to modify
the existing Simulink logic to accommodate the change than to reproduce the
behaviour from scratch in a state chart. Other times, a developer’s preference
dictates the choice of modelling formalism. Manual refactoring from Simulink
to Stateflow, although feasible, is a time consuming and error prone process
which requires that the behaviour of complex Simulink models is completely
understood.

This paper presents an approach to translate block diagrams into behaviourally
equivalent state charts. The approach converts individual blocks into tabular ex-
pressions [21] to expose their latent state variables and decision logic. The data



SL2SF: Refactoring Simulink to Stateflow 3

flow between blocks is then used to combine tables into a single, larger table
describing the entire block diagram. Then, the elements of state charts (states,
transitions) are identified by reconfiguring the combined tables into a form sim-
ilar to state charts. Behavioural equivalence is established by giving semantics
to block diagrams, state charts, and the intermediate tables as Mealy machines.
The paper’s main contributions are: (i) A method for translating Simulink block
diagrams to Stateflow state charts via tabular expressions. (ii) A categorical
framework for composing Mealy machines by combining their update functions
as the basis of the translation. (iii) A prototype tool implementing the transla-
tion from Simulink to Stateflow.

This paper is organized as follows. Section 2 describes how we model sys-
tems and our categorical framework for combining them. Section 3 illustrates the
translation method with a simple example. Section 4 describes the application
of the categorical framework to convert block diagrams to tabular expressions.
Section 5 explains how tabular expressions are converted to state charts. Sec-
tion 6 describes the prototype tool. Related work is covered in Section 7 and the
paper concludes with Section 8.

2 Background: Modelling Systems & Their Combinations

This section describes the formalisms underlying the proposed translation ap-
proach: Mealy machines, tabular expressions, and monoidal categories.

2.1 Mealy Machines: Modelling Stateful Systems

To preserve behaviour, the semantics of both block diagrams and state charts
are modeled using Mealy machines.

Definition 1. A Mealy Machine m is a tuple (S, s0, Σ, Λ, ud), where S is a
set of states (the state space), s0 ∈ S (the initial state), Σ is a set of input
values (the input alphabet), Λ is a set of output values (the output alphabet),
and ud : Σ×S → Λ×S is a function (the update function) which computes the
current output and next state from the current input and current state.

For example, the unit delay 1
z block labelled counter in Fig. 1a can be mod-

elled as the Mealy machine delay = (R, 0,R,R, shift). The block has an input
variable (port) i, an output variable (port) o, and an internal state variable
counter , where i, o, counter ∈ R. When the block updates, it outputs the cur-
rent state value o = counter , and updates the state to store the current input
value counter ′ = i, i.e. (o, counter ′) = shift(i, counter), where shift : R2 → R2

is defined as shift(i, counter) = (counter , i).

While Simulink has no formal semantics, our use of Mealy machines to model
their behaviours is consistent with the informal semantics described in Chapter
3 of the Simulink User Guide [26].



4 S. Wynn-Williams et al.

2.2 Tabular Expressions: Representing Conditional Behaviours

Both block diagrams and state charts can specify decision logic, but in rather dis-
tinct ways. We unify the presentation of decision logic in the two formalisms using
two similar forms of tabular expressions: horizontal condition tables (HCTs) as
presented in [28]; and state transition tables (STTs), which specialize HCTs to
describe state charts similarly to the ones presented in [24].

running counter ′

start
counter > 0 true counter − 1
counter ≤ 0 false 10

¬start counter > 0 true counter − 1
counter ≤ 0 false 0

(a) Horizontal Condition Table

Source Condition running counter ′ Target

Running
counter − 1 > 0 true counter − 1 Running
counter − 1 ≤ 0 true counter − 1 Stopped

Stopped
start false 10 Running
¬start false 0 Stopped

(b) State Transition Table

Fig. 2: Intermediate Representations

An HCT is represented in Fig. 2a. It is a tabular representation of the update
function of a Mealy machine which models the block diagram from Fig. 1a. Given
the variable values start = true and counter = 0, the table can be evaluated
from left to right in the following way. Since the first condition start of the first
column is satisfied, and the sub-condition counter ≤ 0 in the second row of the
second column is satisfied, we use the second row to determine that running is
given the value of false, and counter ′ is given a value of 10.

The second tabular representation, STTs, are also used to represent the up-
date function of Mealy machines. Their special format closely matches the state
charts they model. For example, the STT in Fig. 2b represents the state chart
in Fig. 1b. Each mode is listed in the first column, and the condition of each
transition is listed in the second column, adjacent to the mode they leave. The
columns after the double bars describe how each output/state variable is up-
dated by the actions of the associated transition. The final column of each row
indicates which mode the associated transition leads to.

Tabular expressions were given a precise semantics in [10]. The structure
of tables can be rearranged without changing the function they describe, e.g.,
conditions can be reordered as in [4]; conditions can be combined with sub-
conditions (via conjunction) to flatten the hierarchy of conditions; and normal
expressions in the table can be simplified by assuming the conditions to their
left hold.

2.3 Categorical Framework: Combining Systems

The key idea of block diagrams is to combine simple, predefined blocks to de-
scribe a behaviour. The language of monoidal categories explains how to break
down the complex data flow of block diagrams and describe it in terms of simpler



SL2SF: Refactoring Simulink to Stateflow 5

data flow [5] (i.e. cascading blocks in sequence, placing blocks in parallel, and
feeding outputs of blocks back to their inputs).

Monoidal categories describe data flow in an abstract setting where blocks
are called morphisms. Simple data flow constructs are described as operations
on morphisms, which can be visualized using block diagrams called string di-
agrams [5,22]. In this section, we discuss the wiring constructs in the concrete
setting of the category Set, where morphisms are functions from an input set
of tuples to an output set of tuples (called the domain/codomain objects of the
morphism).

A fragment of the block diagram from Fig. 1a can be used to illustrate the
idea behind the basic data flow operations. The string diagram in Fig. 3 describes
a function that is broken down into sub-functions combined via two operations:
sequential combination (denoted “;”) and parallel combination (denoted “⊗”).
The fragment describes a function g from R×B to R. Each wire extending from

Fig. 3: Functional Fragment of Timer Example

the left/right of the large compound function indicates an input/output value,
respectively. The wire is labelled with the set from which the value comes. If
there are multiple wires, the domain or codomain of the function is given as the
Cartesian product of those sets. In monoidal categories, the Cartesian product
is generalized as an operation called the monoidal product on objects.

The function g is composed of a sequence of sub-functions, g = f1; f2; f3; f4.
The sub-functions (except for f4) consist of functions composed in parallel with
wires and other functions. The wiring “data routing functions” are then defined
as follows: a normal wire is the identity function idX = {(x) 7→ (x)}; wires
crossing over each other define the braiding function BrA,B = {(a, b) 7→ (b, a)};
and branching wires are called the diagonal function ∆X = {(x) 7→ (x, x)}. The
functions are indexed with the set(s) over which they are defined. Morphisms
like these functions have special status in monoidal categories and must satisfy
some axioms to verify that they “act like wiring” in the host category.

Sub-function f3 can now be described as f3 = add ⊗ idR⊗ idR. Functions
combined in parallel have domains/codomains which are the Cartesian products



6 S. Wynn-Williams et al.

of the domain/codomain of the component functions. The parallel combination
uses each component function independently to calculate each component of
the output. For example, taking add = {(x1, x2) 7→ (x1 + x2)}, the function
add ⊗ idR⊗ idR is given by {(x1, x2, x3, x4) 7→ (x1 + x2, x3, x4)}. In monoidal
categories this operation is generalized as the monoidal product on morphisms,
where the domain/codomain of a product morphism is given by the monoidal
product of the domain/codomain objects of the component morphisms. It is
notable that we can also describe sub-function f3 as f3 = add ⊗ idR2 , where
the two wires are treated as one function. This is useful, for example, when
describing the sub-function f2 as f2 = BrR2,R ⊗ swB.

Describing f1 requires modelling constant blocks as functions. Therefore, con-
stants are described as functions with inputs from the singleton set 1 = {()},
and we draw functions with domain/codomain 1 as blocks with no wires extend-
ing from the left/right side, respectively. Functions modelling constant blocks,
[k] = {() 7→ (k)}, always take the empty tuple as input, and always pro-
duce the same value k as output. The function f1 can now be described as
f1 = ∆R⊗[−1]⊗[10]⊗idB⊗[0]. Objects like 1 have special status in monoidal cat-
egories and are called the monoidal unit. Taking their monoidal product with any
other object X yields the same object X. Intuitively, this means that concate-
nating any tuple (x1, .., xn) with the empty tuple () does nothing. This explains
why the product of the domains of the functions in f1 is the set R×1×1×B×1,
but the domain of f1 is described as R×B—the former simplifies to the latter.

We now describe the entire function g in terms of simple data flow:

g = (∆R ⊗ [−1]⊗ [10]⊗ idB⊗[0]); (BrR2,R⊗swB); (add⊗ idR⊗ idR); swR

However, this example does not contain feedback loops. Loops are obtained when
inputs and outputs of a function are connected by some common wire(s), such
as the wire connecting the first input and first output of the inner box in Fig. 4a.
Adding looping wires to a function f : X × A → X × B yields a new function
f∗ : A → B (e.g., the outer box in Fig. 4a) where f∗(a) = b if there exists a
unique x ∈ X such that f(x, a) = (x, b). When such an x exists for each a ∈ A,
the loop configuration is considered well-formed. Following [11], we encode the
addition of such loops with a trace operation: TrXA,B(f) = f∗.

For example, consider the function f = {(x, y) 7→ (x + x, x + y)}. In the
function TrRR,R(f) the trace applies the constraint that the first input is equal
to the first output (i.e. x = x + x) to which there is a unique solution: x = 0.
Given any y ∈ R, f(0, y) = (0, y), therefore TrRR,R(f) = {(y) 7→ (y)}. This
approach uses fixed point equations to specify traces, which is generalized by
the approach from [8]. Since these fixed point equations are not guaranteed to
have a unique solution, the trace operation is partial—it is only defined for loop
configurations that are well-formed. Partial traces have been described in [15],
and the guarded structure introduced in [7] compositionally describes which
feedback configurations are valid. For the loops to “act like wiring”, certain
axioms must be satisfied, e.g., the yanking axiom (as shown in Fig. 4b) states
that TrXX,X(BrX,X) = idX for any set X.



SL2SF: Refactoring Simulink to Stateflow 7

(a) TrXA,B(f) (b) Yanking: TrXX,X(BrX,X) = idX

Fig. 4: String diagrams For traced categories

3 Translation Strategy

The translation strategy is composed of three steps. This section illustrates these
steps by considering the example from Fig. 1.

First, the decision logic implemented by the block diagram is encoded as the
HCT in Fig. 8a. This step is described in Section 4. In the second step, the rep-
resentation is simplified as, depending on the value of counter , only some rows
of the table can be valid. By associating a certain range of state variable values
with a mode of operation, we simplify the representation by considering only
the conditions which are possible. This allows us to leverage the conditions from
HCTs to determine the modes of operation by rearranging HCTs into equiva-
lent STTs such as Fig. 2b. The final step trivially rearranges the information
from STTs into a state chart by creating a transition for each row. The conver-
sion from HCTs to STTs to state charts is described in Section 5, and possible
simplifications to the resulting state chart are discussed.

Even with such a simple example, the importance of automated refactoring
becomes apparent. If the model were to be refactored manually, a state chart
that is not equivalent to the block diagram could be created unintentionally.
For example, one can manually produce a state chart that transitions out of the
Running mode when counter is zero, rather than one.

4 Block Diagrams to HCTs: Mealy Composition

The first step of the translation strategy is to model the entire block diagram as a
Mealy machine whose update function is represented as a HCT. To achieve this,
Simulink block diagrams are modelled in a category Mealy, where morphisms
(i.e. blocks) are Mealy machines, not functions. We then show how the update
functions of composite Mealy machines built from the operations described in
Section 2.3 can be built from the update functions of the component Mealy
machines using the same operations on functions. Then, the predefined update
functions of individual blocks can be represented using HCTs and combined
according to the functional combinations derived from the block diagram.

4.1 Mealy Machines & Their Combinations via Functions

In this section, we consider a category Mealy whose objects are sets, and whose
morphisms m : Σ → Λ are Mealy machines with input alphabet Σ, and output



8 S. Wynn-Williams et al.

alphabet Λ. Composition of morphisms is given by the usual definition of cascade
composition of Mealy machines [13]. We also introduce a monoidal product,
giving the category a monoidal structure. It is defined on objects as the Cartesian
product of sets, and on morphisms as the parallel composition of Mealy machines.
The unit of the monoidal product is the same as for sets, the set containing one
element: 1. Considering equality of morphisms up to bisimilarity results in a
structure similar to the one used in [9] to describe symmetric lenses—according
to [9], this structure forms a (symmetric) monoidal category.

While the cascade/parallel composition of Mealy machines is well understood
(see, e.g. [13]), we introduce a definition for the update functions of the composed
machines which wires together the update functions of the individual machines.
Because string diagrams are used to represent both Mealy machines and their
update functions, let us introduce some graphical notation to differentiate them.
For Mealy machines, the string diagrams use black boxes to denote component
Mealy machines (e.g. Fig. 5a). The update function ud of a Mealy machine m can
be expressed using the projection mapping JmKud = ud . For update functions,
the string diagram is decorated with grey backing to group the inputs/outputs of
the update function into two main components: the upper components describe
the inputs/outputs to the Mealy machine, and the lower components describe
the current/next state (e.g. Fig. 5d).

(a) m1;m2 (b) m1 ⊗m2 (c) TrΘΣ,Λ(m)

(d) Jm1;m2Kud (e) Jm1 ⊗m2Kud (f) JTrΘΣ,Λ(m)Kud

Fig. 5: Composite Mealy machines and their update functions

Two Mealy machines m1 = (S1, s
1
0, Σ,Θ, ud1), and m2 = (S2, s

2
0, Θ, Λ, ud2)

can be composed in sequence as illustrated by Fig. 5a to form the composite
Mealy machine m1;m2 = (S1 × S2, (s

1
0, s

2
0), Σ, Λ, ud′). The update function ud′

for m1;m2 with the string diagram in Fig. 5d, is defined as:

Jm1;m2Kud = (Jm1Kud ⊗ idS2
); (idΘ ⊗ BrS1,S2

); (Jm2Kud ⊗ idS1
); (idΛ ⊗ BrS2,S1

)

The parallel composition of m1 and m2 is the Mealy machine m1 ⊗ m2 =
(S1 × S2, (s

1
0, s

2
0), Σ1 × Σ2, Λ1 × Λ2, ud

′) as illustrated by Fig. 5b. The update



SL2SF: Refactoring Simulink to Stateflow 9

function ud′ for m1 ⊗m2, with string diagram Fig. 5e, is defined as:

Jm1⊗m2Kud = (idΣ1
⊗BrΣ2,S1

⊗ idS2
); (Jm1Kud⊗Jm2Kud); (idΛ1

⊗BrS1,Λ2
⊗ idS2

)

Feedback configurations of Mealy machines (e.g., Fig. 5c) can be defined with
fixed-point equations, such as in [13]. We give an equivalent description in terms
of the trace operation in Set. A Mealy machine m = (S, s0, Θ×Σ,Θ×Λ, ud) can
be traced to form the machine TrΘΣ,Λ(m) = (S, s0, Σ, Λ, ud

′) where the update

function ud ′ is defined as JTrΘΣ,Λ(m)Kud = TrΘΣ×S,Λ×S(JmKud) as illustrated by
Fig. 5f. Since this operation is defined in terms of traces in Set, many of the
properties of traces can be derived from traces in Set.

The above results mean that if we know the update functions of individual
Simulink blocks, then we can model the update functions of block diagrams
which configure those blocks in sequence, in parallel, and with feedback.

4.2 Functional Embedding & Wiring Morphisms

In this section, we address the fact that a large part of a Simulink block diagram
looks very functional (i.e. stateless). For example, many of the blocks and wiring
in Fig. 1a can be modelled as functions. For this reason, we consider a class
of Mealy machines which produce outputs as a function of only their current
inputs. Any function f : X → Y can be described as the Mealy machine Mf =
(1, (), X, Y, f), with one state, and update function f (see Fig. 6a). The mapping
M embeds morphisms from Set into the category Mealy, because any two
embedded functions Mf and Mg interact in Mealy very similarly to the way
they interact as functions in Set.

(a) JMfKud = f (b) MswR; delay (c) JMswR; delayKud

Fig. 6: Embedded functions and their interactions

This explains how functional aspects of Simulink block diagrams can be mod-
elled with Mealy machines. For example, the block labelled Mode in Fig. 1a can
be modelled with the Mealy machine MswR. Perhaps more importantly, the
morphisms introduced to describe wiring in functional diagrams (i.e. idX , ∆X ,
BrA,B) can again be used to describe the same (functional) wiring for Mealy ma-
chines. Therefore, in string diagrams representing Mealy machines, plain wires



10 S. Wynn-Williams et al.

represent the morphism M idX which carries data without changing it, branch-
ing wires represent the morphism M∆X which duplicates data, and crossing
wires represent the morphismMBrA,B which reorders the components of data.
The fact that M idX and MBrA,B “act like wiring” is established in [9].

This establishes how to model wiring and functional blocks in Simulink block
diagrams as Mealy machines. We can now use the operations from Section 4.1
to describe block diagrams which use complex wiring and functional blocks in
combinations with stateful blocks.

4.3 Block Diagrams to Horizontal Condition Tables

We have explained how the categorical structure from Section 2.3 applies to
Mealy, and related it to the same structure in Set. This framework allows us
to combine update functions of individual blocks into update functions of entire
block diagrams using the above definitions. For example, the update function
JMswR; delayKud of the machine from Fig. 6b is equal to

(JMswRKud ⊗ idR); (idR⊗Br1,R); (JdelayKud ⊗ id1); (idR⊗BrR,1),

as shown in Fig. 6c, where the “1” wire is drawn in grey to illustrate how it
achieves the data flow described by Fig. 5d (normally, this wire is not drawn).
This can be simplified, e.g., the final sequential sub-function idR⊗BrR,1 is given
by {(x, (y, ())) 7→ (x, ((), y))} which simplifies to {(x, y) 7→ (x, y)} by flattening
tuples. Our presentation of monoidal categories skips the formalities which de-
scribe this simplification, but it can be intuitively understood by considering the
data flow described in Fig. 6c if the grey wire were absent (as usual). Taking
JdelayKud = shift (as defined in Section 2.1) which we now describe as BrR,R
and using JMswRKud = swR along with appropriate axioms over the wiring
morphisms, JMswR; delayKud simplifies to (swR ⊗ idR); BrR,R. This simplifica-
tion can be intuitively understood by considering only the black data flow in
Fig. 6c. In the same way that we describe the functional data flow of Fig. 3, this
approach can be repeated to describe the entire block diagram in Fig. 1a, not
just the combination of blocks labelled Mode and counter.

This example illustrates how our categorical algebra for Mealy machines is
structurally similar to the one used in [6] which describes the algorithm that rep-
resents block diagrams in terms of sequential/parallel/feedback configurations
of components. The algorithm from [6] constructs descriptions which contain no
feedback operations. A similar result can be shown in our framework, allowing
us to produce trace-free descriptions of update functions in terms of the update
functions of their components.

As mentioned in Section 2.3, not all feedback configurations are valid. The
validity of a feedback configuration describing a Mealy machine is decided by
determining whether or not the trace on its update function is defined. In many
settings, the trace is defined if the aforementioned fixed-point equations have a
unique solution [13]. However, for Simulink models that are used to generate em-
bedded software, the configuration must satisfy a more strict validity condition:



SL2SF: Refactoring Simulink to Stateflow 11

(a) Mealy Machine (b) Update Function (c) Function Rearranged

Fig. 7: The update function of a Mealy machine with feedback

there must be no algebraic loops. This means there can be no cyclic dependen-
cies in the underlying update function, any feedback can be trivially removed by
rearranging the components and wiring to “yank out” the loops while preserving
the connections between blocks. For example, Fig. 7 illustrates how the update
function of a simple feedback configuration can be rearranged to remove loops.
This can be formalized by the notion of vacuous guardedness introduced in [7].

This means that the update functions of well-formed block diagrams can
be modelled without traces. In this manner, the update function of the block
diagram in Fig. 1a can be described as

BrB,R; ([−1]⊗∆R⊗[10]⊗idB⊗[0]); (add⊗∆R⊗swB); (idR2⊗BrR,R); (swR⊗gtz); BrR,B

where each individual function has a fixed definition, and can be represented
as a predefined tabular expression. Here gtz denotes the > 0 block labelled
IsRunning. Functions whose behaviours are not conditional are trivially rep-
resented by a table with a single condition: true.

HCTs—being representations of functions—can be composed like functions.
We modify the composition operation in [20] to describe HCTs so that we
can compose predefined tabular expressions as stated above. When compos-
ing two HCTs sequentially, the conditions of the first HCT appear first in the
composed HCT and the conditions of the second HCT are included as sub-
conditions. The conditions from the second HCT are evaluated using the output
values from the first one. Consider, for example, the composition of Fig. 8a
with Fig. 8b, where the output counter ′ of the first table is routed to the input
counter of the second (ignore the running output for now). Their composition
is shown in Fig. 8c (ignore the running and counter ′ outputs). The conditions
counter > 0 and start (and their complements) appear in the same configura-
tion as the first HCT. However, the sub-conditions (e.g. counter − 1 ≤ 0) come
from the conditions (counter ≤ 0) in the second HCT, evaluated with the values
(counter 7→ counter − 1) from the row in the first HCT associated with the
parent condition (counter > 0). The conditions 10 > 0 and 0 > 0 (and their
complements) are generated in a similar manner, but because they are trivially
satisfied/impossible conditions, the sub-conditions/entire row can be removed
(the removable conditions/rows are shaded in Fig. 8c).

Similarly to the conditions, the output expressions of the second HCT are
evaluated with the corresponding values from the first HCT, and those are used



12 S. Wynn-Williams et al.

running counter ′

counter > 0 true counter − 1

counter ≤ 0
start false 10
¬start false 0

(a) ud

mode

counter > 0 Running

counter ≤ 0 Stopped

(b) md

running counter ′ mode ′

counter − 1 > 0 true counter − 1 Running
counter > 0

counter − 1 ≤ 0 true counter − 1 Stopped

10 > 0 false 10 Running
start

10 ≤ 0 false 10 Stopped
0 > 0 false 0 Running

counter ≤ 0
¬start

0 ≤ 0 false 0 Stopped

(c) ud+

Fig. 8: Introducing Modes

as the output expressions of the combined HCT. In Fig. 8b, the output values
for mode are constants, therefore they appear unchanged in Fig. 8c. For HCTs
composed in parallel, the conditions from the second HCT are once again used
as sub-conditions, but they are not modified. Similarly, the output expressions
from both HCTs are placed in the combined table unchanged.

The predefined HCTs representing each function in the equation above can be
combined using the operations described above to achieve a tabular expression
for the entire block diagram. For example, the tabular expression in Fig. 2a can
be obtained this way.

5 HCTs to STTs: Modes via Tables

The HCTs produced using the technique described in Section 4 are an inter-
mediate representation in our translation strategy. They illustrate the decision
logic of the system as a whole, but the logic is not related to state the way
it is for state charts, i.e., through modes. This section explains how HCTs are
augmented with modes to form STTs, and finally state charts.

5.1 Defining Modes

The STTs described in Section 2.2 have obvious similarities to state charts, but
they are just syntactic sugar for HCTs. STTs and state charts are modelled as
Mealy machines with a special state variable mode with values from an enu-
merated set M (see, e.g., extended state machines in [2]). The cells in the first
column of STTs (see Fig. 2b) express conditions of the form mode = Running
which compare the value of mode to each element of M . The last column identi-
fies the updated value of mode ′. Therefore, the state spaces of Mealy machines
modelling STTs and state charts have the form Q = S ×M , where M is the set
of modes, and S contains tuples of the other state variable values.

A HCT produced via the techniques in the previous section describes the
update function ud of a Mealy machine m = (S, s0, Σ, Λ, ud). We will en-
hance m with a state variable mode to produce a Mealy machine m+ = (S ×
M, (s0,mode0), Σ, Λ, ud+) whose update function is given by a HCT which
matches the format of an STT. To achieve the goal of improving readability,
we leverage the existing decision logic in HCTs.



SL2SF: Refactoring Simulink to Stateflow 13

When a state chart updates, it only considers the transitions leaving its
current mode, i.e., depending on its state, only some behaviours are possible.
The same dependence on state is expressed in HCTs by conditions which depend
only on the values of state variables, which will be referred to as state conditions.
For example, in Fig. 8a, if the condition counter > 0 is satisfied, the system can
only do one thing: decrement counter and set running to true. Our strategy
associates the condition counter > 0 with a mode of operation Running ∈ M ,
and replaces the original condition with mode = Running. We augment the
HCTs into STTs in a way that preserves the behaviour of the Mealy machines.

As the modes are all listed in the first column of an STT, the first augmen-
tation reorders conditions in HCTs so that the state conditions appear first. For
example, the conditions in Fig. 2a can be rearranged via the methods in [4] to ob-
tain Fig. 8a. While our example contains only one pair of state conditions, HCTs
describing general block diagrams may contain multiple nested state conditions.
The second augmentation uses conjunction to flatten nested state conditions into
a single column with a condition for each branch of the stateful logic.

The augmented HCT now has a specific form (Fig. 8a) which superficially
resembles an STT, but the behaviour is unchanged. We now introduce a set
of modes M with each element associated with a distinct condition in the first
column of the augmented HCT. This association is defined by a function md :
S →M which maps tuples of state variable values to the mode whose associated
state condition is satisfied. This function is represented by an HCT with the state
conditions from the augmented HCT, and distinct values from M as outputs.
The md function for the timer example is given by the HCT in Fig. 8b.

Next, the Mealy machine is enhanced by introducing a state variable mode
with values from M . We design the enhancement to maintain the invariant that
the value of mode always corresponds with the state condition which the other
state variables satisfy. The invariant is satisfied by the initial state (s0,md(s0)).
The enhanced update function trivially preserves the original behaviour by ignor-
ing the value of mode, but updates mode′ to maintain the invariant by evaluating
md with the updated state variable values. The update function is therefore de-
fined as ud+ = (ud⊗!M ); (idΛ ⊗ (∆S ; (idS ⊗ md))), where !M : M → 1 =
{(mode) 7→ ()} introduces an input whose value is discarded. Since ud and md
are given as HCTs (e.g. Fig. 8a and Fig. 8b), the enhanced update function can
be achieved through composition of tables (e.g. Fig. 8c).

This enhanced Mealy machine operates within a subset of the state space S×
M where the aforementioned invariant holds. The validity of any state condition
can now be deduced from the value of the mode variable (e.g. (counter > 0)⇔
(mode = Running)). Thus, replacing those conditions with the corresponding
modes in the HCT representation of ud+ does not modify its behaviour. This is
the final step in rearranging the HCT from Fig. 8c into the STT in Fig. 2b.

5.2 Converting to State Charts & Simplifying

The state chart in Fig. 9 implements the STT in Fig. 2b by creating a transition
for each row and by creating assignment actions to update state and output



14 S. Wynn-Williams et al.

variables. State charts produced in this manner can often be simplified by moving
common actions from transitions to entry/exit actions of modes, or by removing
transitions and performing the corresponding actions as during actions. For
example, the state chart in Fig. 9 simplifies to the one in Fig. 1b.

In the example given above, it is crucial that the new state variable mode is
tracked in addition to the existing variable counter . The mode variable tracks the
high level system state, but the counter variable is still important for tracking
the detailed system state. This additional information is not always important,
i.e., sometimes the mode is sufficient and the old state variable may be removed
from the description of the Mealy machine. This may happen if a Boolean state
variable generates a state condition; knowing the value of mode can be sufficient
to deduce the value of the original state variable. It is also possible that a state
variable from the block diagram stores more detailed information than necessary,
and knowing the mode is sufficient for the state chart to act. In these cases, the
unnecessary state variables can be removed from the state chart.

6 Prototype, Evaluation, and Future Work

The methodologies presented here have been used to develop a prototype tool
which automatically refactors Simulink model fragments to Stateflow [18]. The
tool supports a large subset of discrete Simulink blocks typically used for imple-
mentation of embedded software. The refactoring tool is implemented in Matlab
and integrates with Simulink allowing the user to select the blocks they would
like to replace. When the tool is invoked, it generates a Stateflow chart and uses
the Simulink Design Verifier [17] to verify that it is equivalent to the selected
blocks.

The prototype tool improves the readability of small to medium sized block
diagrams such as the one in Fig. 1a. However, we found that the stateful logic of
complex industrial-scale models incorporates multiple state machines interacting
with each other and with stateless conditional logic. To elegantly represent these
complex block diagrams in Stateflow, the translation methodologies presented
here can be enhanced to utilize the more sophisticated mechanisms of state
charts such as hierarchical/parallel modes. We believe that many state chart
mechanisms have analogies in tabular expressions, e.g., using hierarchies of state
conditions can be leveraged to specify sub-modes. We found that block diagrams

RunningStopped

[counter	<=	1]/
{counter	=	counter	-	1;
running	=	true;}

1

[counter	>	1]/
{counter	=	counter	-	1;
running	=	true;}

2

[start]/
{counter	=	10;
running	=	false;}

1[~start]/
{counter	=	0;
running	=	false;}

2

{counter	=	0;}

Fig. 9: State Chart Equivalent to STT



SL2SF: Refactoring Simulink to Stateflow 15

encoding more than 4 high-level modes can often become difficult to understand
without these mechanisms.

We also recognize the importance of finding refactorable fragments in large
models. In fact, the translation methodology presented in this paper was devel-
oped in parallel with an identification strategy that pinpoints block diagrams
which are candidates for refactoring—it searches for certain patterns of logical
and stateful blocks which indicate complex state update logic. An elaborated
description of both translation and identification strategies will be presented in
the master’s thesis of the first author[29].

7 Related Work

Several papers propose translating Simulink block diagrams to formal languages
to enable their verification using existing tools (e.g., [1,6,14,23,27,30]). Only a
few, however, translate Simulink block diagrams to state transition diagrams.
In [19], Simulink block diagrams are converted into an extended version of hy-
brid automata, with each block in a block diagram converted to a hybrid au-
tomaton, leading to an explosion in the number of states of the resulting model.
In [31], Simulink models are converted to finite state machines, but transitions
between states represent the small execution steps of individual blocks updates,
not changes in the high level system modes. Both studies [19,31], as well as [16],
do not aim to capture the high-level state machine of an entire block diagram.
This is exactly what our approach does, with maintainability of the resulting
model as a prime motivator.

Our approach to modelling Mealy machines and their interactions using the
monoidal category Mealy follows a general trend in behavioural modelling. For
example, monoidal categories have been used to describe interactions of quantum
processes [5], labelled transition systems [12], and control systems [3]. The alge-
bra of (traced symmetric) monoidal categories is similar to the algebra used to
describe block diagrams in [6], but our approach uses a standard mathematical
framework with a rich history and many known results. For example, the results
of [9] indicate that by considering equivalence up to bisimilarity, the category
Mealy is symmetric monoidal, meaning the appropriate axioms and resulting
properties of this structure are already known.

8 Conclusion

In this paper, we proposed a method for translating Simulink block diagrams
to Stateflow state charts via tabular expressions representing their respective
Mealy machines update functions. A categorical framework for composing Mealy
machines provides a theoretical basis for the translation. To the best of our
knowledge, this is the first method for Simulink to Stateflow translation. Our
proposed method is relevant to industrial development where it can help improve
software maintainability and aid compliance with modelling guidelines.



16 S. Wynn-Williams et al.

References

1. Agrawal, A., Simon, G., Karsai, G.: Semantic translation of Simulink/Stateflow
models to hybrid automata using graph transformations. Electronic Notes in The-
oretical Computer Science 109, 43–56 (2004)

2. Alur, R.: Principles of cyber-physical systems. MIT Press (2015)
3. Baez, J.C., Erbele, J.: Categories in control. Theory and Applications of Categories

30(24), 836–881 (2015)
4. Bialy, M., Lawford, M., Pantelic, V., Wassyng, A.: A methodology for the sim-

plification of tabular designs in model-based development. In: Proceedings of the
3rd FME Workshop on Formal Methods in Software Engineering (FormaliSE). pp.
47–53. IEEE Press (May 2015)

5. Coecke, B., Kissinger, A.: Picturing quantum processes. Cambridge University
Press (2017)

6. Dragomir, I., Preoteasa, V., Tripakis, S.: Translating hierarchical block diagrams
into composite predicate transformers. arXiv preprint arXiv:1510.04873 (2015)

7. Goncharov, S., Schröder, L.: Guarded traced categories. In: Baier, C., Dal Lago, U.
(eds.) Foundations of Software Science and Computation Structures. pp. 313–330.
Springer International Publishing, Cham (2018)

8. Hasegawa, M.: Recursion from cyclic sharing: traced monoidal categories and mod-
els of cyclic lambda calculi. In: International Conference on Typed Lambda Calculi
and Applications. pp. 196–213. Springer (1997)

9. Hofmann, M., Pierce, B., Wagner, D.: Symmetric lenses. ACM SIGPLAN Notices
46(1), 371–384 (2011)

10. Jin, Y., Parnas, D.L.: Defining the meaning of tabular mathematical expressions.
Science of Computer Programming 75(11), 980–1000 (2010)

11. Joyal, A., Street, R., Verity, D.: Traced monoidal categories. In: Mathematical Pro-
ceedings of the Cambridge Philosophical Society. vol. 119, pp. 447–468. Cambridge
University Press (1996)

12. Katis, P., Sabadini, N., Walters, R.F.: Span (graph): A categorical algebra of transi-
tion systems. In: International Conference on Algebraic Methodology and Software
Technology. pp. 307–321. Springer (1997)

13. Lee, E.A., Varaiya, P.: Structure and interpretation of signals and systems. Lee-
Varaiya.org, 2nd edn. (2011)

14. Liebrenz, T., Herber, P., Glesner, S.: Deductive verification of hybrid control sys-
tems modeled in Simulink with KeYmaera X. In: International Conference on
Formal Engineering Methods. pp. 89–105. Springer (2018)

15. Malherbe, O., Scott, P.J., Selinger, P.: Partially traced categories. Journal of Pure
and Applied Algebra 216(12), 2563–2585 (2012)

16. Manamcheri, K., Mitra, S., Bak, S., Caccamo, M.: A step towards verification
and synthesis from Simulink/Stateflow models. In: Proceedings of the 14th Inter-
national Conference on Hybrid systems: Computation and Control. pp. 317–318.
ACM (2011)

17. MathWorks: Simulink Design Verifier. https://www.mathworks.com/products/

sldesignverifier.html (2018), [Online; accessed Nov 18th, 2018]
18. McSCert: Simulink-to-Stateflow. https://www.mathworks.com/matlabcentral/

fileexchange/70317-simulink-to-stateflow (2019), [Online; accessed February
2019]

19. Minopoli, S., Frehse, G.: Sl2sx translator: From Simulink to SpaceEx models (April
2016), uRL: http://www-verimag.imag.fr/~minopoli/SL2SX.pdf

https://www.mathworks.com/products/sldesignverifier.html
https://www.mathworks.com/products/sldesignverifier.html
https://www.mathworks.com/matlabcentral/fileexchange/70317-simulink-to-stateflow
https://www.mathworks.com/matlabcentral/fileexchange/70317-simulink-to-stateflow
http://www-verimag.imag.fr/~minopoli/SL2SX.pdf


SL2SF: Refactoring Simulink to Stateflow 17

20. von Mohrenschildt, M.: Algebraic composition of function tables. Formal aspects
of computing 12(1), 41–51 (2000)

21. Parnas, D.L.: Tabular representation of relations. Tech. rep., McMaster University
(October 1992)

22. Selinger, P.: A survey of graphical languages for monoidal categories. In: New
structures for physics, pp. 289–355. Springer (2010)

23. Sfyrla, V., Tsiligiannis, G., Safaka, I., Bozga, M., Sifakis, J.: Compositional trans-
lation of Simulink models into synchronous bip. In: Industrial Embedded Systems
(SIES), 2010 International Symposium on. pp. 217–220. IEEE (2010)

24. Singh, N.K., Lawford, M., Maibaum, T.S., Wassyng, A.: Stateflow to tabular ex-
pressions. In: Proceedings of the Sixth International Symposium on Information
and Communication Technology (SolCT). p. 47. ACM (2015)

25. The MathWorks: MathWorks Automotive Advisory Board (MAAB): Control Al-
gorithm Modeling Guidelines Using MATLAB, Simulink, and Stateflow, Version
3.0 (2012), www.mathworks.com/solutions/automotive/standards/maab.html

26. The MathWorks: Simulink user’s guide. http://www.mathworks.com/help/

releases/R2018b/pdf_doc/simulink/sl_using.pdf (Sep 2018), http://www.

mathworks.com/help/releases/R2015b/pdf_doc/simulink/sl_using.pdf,
version R2018b. [Online; accessed Feb 2019]

27. Tripakis, S., Sofronis, C., Caspi, P., Curic, A.: Translating discrete-time Simulink
to Lustre. ACM Transactions on Embedded Computing Systems (TECS) 4(4),
779–818 (2005)

28. Wassyng, A., Janicki, R.: Tabular expressions in software engineering. Proceed-
ings of 2003. International Conference on Software and System Engineering (IC-
SSEA’03) pp. 1–46 (2003)

29. Wynn-Williams, S.: SL2SF: Refactoring Simulink to Stateflow (2019), unpublished
thesis

30. Zhan, N., Wang, S., Zhao, H.: Formal Verification of Simulink/Stateflow Diagrams.
Springer (2017)

31. Zhou, C., Kumar, R.: Semantic translation of Simulink diagrams to input/output
extended finite automata. Discrete Event Dynamic Systems 22(2), 223–247 (2012)

www.mathworks.com/solutions/automotive/standards/maab.html
http://www.mathworks.com/help/releases/R2018b/pdf_doc/simulink/sl_using.pdf
http://www.mathworks.com/help/releases/R2018b/pdf_doc/simulink/sl_using.pdf
http://www.mathworks.com/help/releases/R2015b/pdf_doc/simulink/sl_using.pdf
http://www.mathworks.com/help/releases/R2015b/pdf_doc/simulink/sl_using.pdf

	SL2SF: Refactoring Simulink to Stateflow

