
Synthesis Method for
Hierarchical Interface-based

Supervisory Control

Version 1.01

By

Pengcheng Dai, B.Eng.

A Thesis
Submitted to the School of Graduate Studies

in partial fulfilment of the requirements for the degree of

Master of Applied Science
Department of Computing and Software

McMaster University

c© Copyright by Pengcheng Dai, April 2006

MASTER OF APPLIED SCIENCE(2006) McMaster University
(Software Engineering) Hamilton, Ontario

TITLE: Synthesis Method for
Hierarchical Interface-based Supervisory Control

AUTHOR: Pengcheng Dai, B.Eng.(Tianjin University)

SUPERVISOR: Dr. Ryan J. Leduc

NUMBER OF PAGES: viii, 212

ii

Abstract

Hierarchical Interface-based Supervisory Control (HISC) decomposes a discrete-

event system (DES) into a high-level subsystem which communicates with n ≥ 1

low-level subsystems, through separate interfaces which restrict the interaction of

the subsystems. It provides a set of local conditions that can be used to verify

global conditions such as nonblocking and controllability. As each clause of the

definition can be verified using a single subsystem, the complete system model

never needs to be stored in memory, offering potentially significant savings in

computational resources.

Currently, a designer must create the supervisors for a HISC system himself,

and then verify that they satisfy the HISC conditions. In this thesis, we develop

a synthesis method that respects the HISC hierarchical structure. We replace the

supervisor for each level by a corresponding specification DES. We then do a per

level synthesis to construct for each level a maximally permissive supervisor that

satisfies the corresponding HISC conditions.

We define a set of language based fixpoint operators and show that they com-

pute the required level-wise supremal languages. We then present algorithms that

implement the fixpoint operators. We present a complexity analysis for the al-

gorithms and show that they potentially offer significant improvement over the

monolithic approach.

A large manufacturing system example (estimated worst case state space on

the order of 1022) extended from the AIP example is discussed. A software tool for

synthesis and verification of HISC systems using our approach was also developed.

iii

Acknowledgments

I am full of gratitude to my supervisor, Dr. R.J. Leduc. With his enthusiasm,

his inspiration, and his great efforts to explain complicated things clearly and

simply, he helped to make this work fun for me. Throughout my masters study

and research, he provided sound advice, good teaching and lots of good ideas. I

would have been lost without him and this work can never be done without his

full support and continuous encouragement.

iv

Contents

Abstract iii

Acknowledgments iv

List of Figures viii

1 Introduction 1

1.1 Research Review . 2

1.2 Thesis Overview . 7

2 DES Overview 8

2.1 Language . 8

2.2 Automata . 10

2.3 Supervisory Control . 14

3 HISC Introduction 19

3.1 Basic Setting . 19

3.2 Interfaces . 20

3.3 Basic Notation . 22

3.4 Interface Consistency Definition . 24

3.5 Local Conditions for Global Nonblocking of the System 30

3.6 Local Conditions for Global Controllability of the System 31

v

4 Equivalence of HISC Definitions 33

4.1 Useful Propositions . 34

4.2 Interface Consistency . 41

4.3 Level-wise Nonblocking . 58

4.4 Level-wise Controllability . 64

4.5 Main Nonblocking and Controllability Results 72

5 HISC Synthesis Method 74

5.1 Synthesis Setting . 74

5.2 High Level Synthesis . 77

5.3 Low Level Synthesis . 96

6 Algorithms 118

6.1 Common Data Structures and Algorithms 118

6.2 Verify Command-pair Interfaces . 139

6.3 Level-wise Nonblocking and Controllable 147

6.4 Verify Interface Consistency . 148

6.5 Interface Consistent Synthesis . 160

7 AIP Example 186

7.1 Introduction . 186

7.2 Modifying the AIP . 190

8 Conclusions and Future Work 200

8.1 Conclusions . 200

8.2 Future Work . 201

Bibliography 202

vi

List of Figures

2.1 A Simple Recognizer . 11

3.1 Interface Block Diagram. 20

3.2 Two Tiered Structure of the System. 21

3.3 Example Interface. 22

3.4 Parallel Interface Block Diagram. 23

3.5 Two Tiered Structure of Parallel System 23

3.6 Plant and Supervisor Subplant Decomposition 31

4.1 The Serial System Extractions . 43

6.1 Trie Illustration . 123

7.1 AIP System Structure ([34]) . 187

7.2 Hierarchical Structure of AIP([34]) 188

7.3 Assembly Station Layout ([34]) . 188

7.4 Transfer Unit Layout ([34]) . 189

7.5 High Level DES List . 191

7.6 PalletArvGateSenEL 2 AS3 ([34]) 191

7.7 QueryPalletAtTU.i ([34]) . 191

7.8 ASStoreUpState . 192

7.9 ManageTU1 . 193

7.10 ManageTU2 . 194

vii

7.11 ManageTU3 . 195

7.12 EL3Cap . 195

7.13 Interface for AS1 and AS2 . 196

7.14 DoRobotTasks.AS1 . 197

7.15 DoRobotTasks.AS2 . 198

7.16 Robot.AS1 . 199

7.17 Robot.AS2 . 199

viii

Master’s Thesis - P. Dai McMaster - Computing and Software

Chapter 1

Introduction

In the area of Discrete-Event Systems (DES), two common tasks are to verify

that a composite system, based on a Cartesian product of subsystems, is (i) non-

blocking and (ii) controllable. The main obstacle to performing these tasks is the

combinatorial explosion of the product state space.

The Hierarchical Interface-based Supervisory Control(HISC) framework was

proposed by Leduc et al. in [34, 35, 36, 37, 33] to alleviate the state explosion

problem. The HISC approach decomposes a system into a high-level subsystem

which communicates with n ≥ 1 parallel low-level subsystems through separate

interfaces that restrict the interaction of the subsystems. It provides a set of

local conditions that can be used to verify global conditions such as nonblocking

and controllability. As each clause of the definition can be verified using a single

subsystem, the complete system model never needs to be stored in memory, offering

potentially significant savings in computational resources.

Currently, a designer must create the supervisors for a HISC system himself,

and then verify that they satisfy the HISC conditions. If they do not, he must

modify them until they do satisfy the conditions. For a complex system, it may be

very non obvious how to achieve this. Also, the resulting supervisors may be more

1

Master’s Thesis - P. Dai McMaster - Computing and Software

restrictive than they need to be. In this thesis, we develop a synthesis method that

respects the HISC hierarchical structure. We replace the supervisor for each level

by a corresponding specification DES. We then do a per level synthesis to construct

for each level a maximally permissive supervisor that satisfies the corresponding

HISC conditions. We then develop a set of algorithms to implement these fixpoint

operators. As the synthesis will be done on a per level basis, the complete system

model never needs to be constructed. We thus expect to see similar savings in

computation as in the HISC verification method. This savings should be even more

pronounced as synthesis is an iterative process, thus typically requiring much more

computation.

1.1 Research Review

Researchers in supervisory control have recently begun to advocate interface based

architectural solutions to dealing with complexity [38, 39, 41, 22].1 These ap-

proaches develop interfaces between components to provide structure that guaran-

tees global properties such as controllability [39, 41, 22] or nonblocking [38, 39, 41].

The most significant feature that distinguishes the HISC approach from [22] is the

results on nonblocking, although Endsley et al. later extended their work to include

a form of deadlock detection in [23].

In [21] interface automata are used to model software components and verify

their compatibility. This work has independently derived conditions for software

component interface compatibility that are similar to the HISC interface consis-

tency properties. In [21], automata representing component interfaces are directly

composed to produce the interface of the new composite component and a refine-

ment relation is developed to aid in refining a component interface specification

into an implementation. There is no explicit concept of control, though implic-

1This literature review is based heavily upon the review in [36], with permission.

2

Master’s Thesis - P. Dai McMaster - Computing and Software

itly component inputs are considered uncontrollable and the component outputs

are effectively controllable. In contrast HISC uses an interface automaton that

mediates communication between the components in order to decompose the veri-

fication of global nonblocking and controllability into “local” checks on each of the

components and their interface.

Related work by Fabian et al. [25, 26] applied object-oriented concepts in the

design of DES control software, and extended supervisory control theory to the

nondeterministic supervisors which that approach required. Later, Shayman et

al. [64] introduced the concept of control and observation masks to encapsulate

process logic. These approaches have two disadvantages relative to interface based

supervisory control: (i) they do not address issues related to nonblocking and (ii)

they require a more complex mathematical setting than the deterministic automata

with synchronous product operator that is commonly employed in supervisory

control theory. By using interface DES to regulate subsystem interaction, we are

able to impose architecture without change to the standard DES setting.

One of the earliest and most useful methods designed to handle the combina-

torial explosion of the product state space that results from systems composed of

interacting subsystems is modular control [79, 20, 58, 67]. This method involves

designing multiple supervisors as opposed to a centralized supervisor, each super-

visor implementing a portion of the control specification. While the method scales

well in practice for the verification of controllability (see e.g. [3, 43]), verifying

nonblocking of the closed loop system is still a problem.

In Decentralized control [7, 45, 62, 63, 75, 80, 4], local supervisors, with only

partial observations of the plant, are designed as a group to implement a global

specification. While this is an effective method to design distributed controllers,

it still requires the computation of the synchronous product of all of the plant

subcomponents (the composite plant) and thus offers no computational savings

over a centralized solution.

3

Master’s Thesis - P. Dai McMaster - Computing and Software

One way to improve the scalability of modular and decentralized schemes is to

exploit the existing architecture of the system. In [73] the concept of a specifica-

tion that is separable over the component subsystems is introduced and shown to

be necessary and sufficient for a decentralized control scheme to exist that opti-

mally meets the specification. The work does not consider nonblocking supervision.

These results are extended to a more general architecture in [1] that deals with

nonblocking by detecting potential blocking states locally and then backtracking

globally to determine their reachability. The structure associated with the event

sets of subsystems is exploited in [58] to obtain a reduction in complexity for the

non-conflicting check of modular control. Similarly the standard controllability

definition has been refined and localized in [2] to check on a per subplant basis

only those uncontrollable events that can occur locally.

Another approach is embodied by Vector DES (VDES) [79, 17, 44] and Petri

Nets (PN) [50, 86, 87]. These state based methods make use of the algebraic

regularity inherent in certain systems. They are used when the state of the system

can be represented as a vector of integers, whose components are incremented or

decremented by events. These methods are primarily useful for systems with a

high degree of regularity that lend themselves to vector representation. However,

the VDES/PN models are not well adapted to the synthesis or verification of

nonblocking controllers without first converting the models to automata by means

of the reachability graph [70].

A promising approach is the development of a multi-level hierarchy. In order

to aid in classification, we make a distinction between structural multi-level hier-

archies with explicit mechanisms (modeling constructs) to facilitate hierarchy (e.g.

[10, 28, 72, 47]) as opposed to aggregate (bottom up) multi-level hierarchies which

we will discuss later. In structural multi-level hierarchies, plants and supervi-

sors are modeled as multi-level structures similar to automata, except that certain

states at a given level can be expanded into a more detailed lower level model.

4

Master’s Thesis - P. Dai McMaster - Computing and Software

Although [72] allowed a system to be represented hierarchically using Cartesian

products (AND superstates) or disjoint unions (OR superstates), AND states had

to be converted to OR states using the synchronous product before computations

could be effectively performed. Similarly, [28] was restricted to using only OR

states. Both approaches could verify controllability, but did not address nonblock-

ing. Recently, these limitations have been overcome by Ma et al. [47, 48] who,

with the use of binary decision diagrams (BDDs) [11], has been able to verify

controllability and nonblocking for a system on the order of 1024 states.

The next approach of interest is the model aggregation methods [5, 13, 16,

18, 24, 55, 56, 65, 85, 74, 69]. In these approaches, aggregate models are derived

from low level models by using either state-based or language-based aggregation

methods. Although this approach can be effective in constructing high level models

with reduced state spaces, they have some drawbacks:

• In hierarchical methods such as [85, 74, 55], there is no direct connection

between control actions at the high level, and at lower levels. To create an

implementation, a control action at the high-level may need to be “inter-

preted” as equivalent control action(s) at the low level.

• Aggregate models must be constructed sequentially from the bottom up,

starting from the lowest level; thus a given level cannot be constructed and

verified in parallel with the levels below it, making a distributed design pro-

cess difficult.

• The DES methods provide necessary and sufficient conditions for checking

controllability, and in many cases nonblocking, using the aggregate models.

While this is desirable, it causes the individual levels to be tightly coupled;

a change made to the lowest level may require that all aggregate models

and results have to be re-evaluated. In contrast, the sufficient conditions

of interface based supervisory control that we develop allow us to design

5

Master’s Thesis - P. Dai McMaster - Computing and Software

and verify levels independently, ensuring that a change to one level of the

hierarchy will not impact the others. This independence comes at the cost

of possible false negatives forcing an overly conservative design.

We also note the related work in hybrid systems of Moor et al. [51] who

have developed a multi-level aggregation approach inspired by [85, 74]. This new

approach is different as they use an input/output structure to represent both time

and event driven system dynamics, allowing them to verify both controllability

and nonblocking results.

In contrast to the majority of approaches which apply mathematical techniques

to produce aggregate models of an existing system, our method of restricting com-

ponent interaction to well defined interfaces provides a design heuristic to guarantee

scalability by construction.

The last approach we discuss is the use of symbolic methods to represent the

transition structures underlying DES [29]. Zhang et al. [83, 84] as well as Vahidi et

al [71] have developed algorithms that use integer decision diagrams (an extension

of BDDs) to verify centralized DES systems on the order of 1023 states. That work

builds on results of symbolic model checking [12, 49] that have successfully used

BDDs to handle systems of similar size.

While this thesis was being written, research work on using binary decision

diagrams to verify HISC properties was carried on by Song [66] independently.

This built upon the work in this thesis, allowing the HISC method to be applied

to even larger systems.

Finally we note that the interface DES that support the HISC system ar-

chitecture differ from the “interface processes” employed in compositional model

checking [8]. In the latter, an interface process is an aggregate model that is used

as a replacement for a particular subsystem to produce a reduced state model that

facilitates verification. For example, let Pi, i = 1, 2 be subsystem models and ψ

6

Master’s Thesis - P. Dai McMaster - Computing and Software

be the temporal logic formula of interest. In order to verify that P1 ‖ P2 |= ψ by

compositional model checking, P2 might be replaced by an aggregate “interface

process” A2 such that if P1 ‖ A2 |= ψ then P1 ‖ P2 |= ψ.

1.2 Thesis Overview

The thesis is organized as follows. Chapter 1 gives an introduction to the back-

ground of this work and outlines the structure of this thesis. Chapter 2 gives an

introduction to the basics of discrete event system and the supervisory control

theory.

Chapter 3 introduces the hierarchical interface-based supervisory control theory

and definitions. We discuss a new set of definitions, first introduced in [40], that

are more concise and easier to implement than the original ones. In Chapter 4, we

prove that these new definitions are equivalent to the original definitions given in

[34, 36, 37].

Chapter 5 defines the synthesis method for high and low level subsystems, and

a set of fixpoint operators that implement the synthesis method. We prove they

compute the required level-wise supremal languages.

In Chapter 6, we present our algorithms to verify the interface consistency

properties, and implement the fixpoint operators for synthesis. For each algorithm

we perform a complexity analysis.

In Chapter 7, We rework the AIP example from [33, 34, 40] and apply our

software to it. Finally we conclude our work in Chapter 8.

7

Master’s Thesis - P. Dai McMaster - Computing and Software

Chapter 2

DES Overview

RW supervisory control theory [59, 77, 79] provides a framework to model and

control the behavior of Discrete Event Systems, and it is the basis of this work. In

this chapter, we will give a brief introduction of the theory, including concepts of

languages, automata, supervisory control and a few common operators over DES

such as meet, sync and supcon.

2.1 Language

Let alphabet Σ be a non-empty finite set of distinct symbols, such as α, β, and

so on. A string is a finite symbol sequence over Σ, such as ααβ. We denote the

empty string (a string with no symbols) as ε and the set of all non-empty strings

over Σ as Σ+. We then extend this to include ε as below

Σ∗ = {ε} ∪ Σ+.

We say that L is a language over Σ if L ⊆ Σ∗, and we denote the set of all

sublanguages of Σ∗ as Pwr(Σ∗) We then have that (Pwr(Σ∗), ⊆) is a poset, i.e., the

relation ⊆ is reflexive, transitive and antisymmetric on Pwr(Σ∗). The operations

∩ and ∪ of any two elements in Pwr(Σ∗) always exists, thus (Pwr(Σ∗),∩,∪) is a

8

Master’s Thesis - P. Dai McMaster - Computing and Software

lattice. When there always exists a greatest lower bound and least upper bound

for each subset in the lattice, we say the lattice is complete.

Let (X,≤) be a poset. We say a function f : X → X is monotone if

(∀x, x′ ∈ X) x ≤ x′ ⇒ f(x) ≤ f(x′)

We say an element x ∈ X is a fixpoint of f if f(x) = x. Further, we say x is

the greatest fixpoint of f if

(∀x′ ∈ X) f(x′) = x′ ⇒ x′ ≤ x

We will also use the notation f i(x), i ∈ {0, 1, 2, . . .}, to mean i applications of

f in a row with f 0(x) := x. i.e. f 1(x) = f(x), f 2(x) = f(f(x)) and so on.

Let t, s ∈ Σ∗. We say that t is a prefix of s and write t ≤ s, if s = tu for some

u ∈ Σ∗. We also say that t can be extended to s. We can now define the extension

operator.

Definition 2.1.1 For language L ⊆ Σ∗, we define the function ExtL : Pwr(Σ∗)→
Pwr(Σ∗), for arbitrary K ∈ Pwr(Σ∗) as follows:

ExtL(K) := {t ∈ L| s ≤ t for some s ∈ K}

In essence, ExtL(K) is the set of all strings in L that have prefixes in K. If we

have K ⊆ L, we would then have K ⊆ ExtL(K) as s ≤ s.

The prefix closure of language L, denoted L is the language consisting of all

prefixes of strings of L, and is defined as follows:

L = {t ∈ Σ∗| t ≤ s for some s ∈ L}

We say that L is closed if L = L.

9

Master’s Thesis - P. Dai McMaster - Computing and Software

An equivalence relation E ⊆ X ×X is a binary relation over a non-empty set

X, such that is satisfies:

Reflexive :(∀x ∈ X)xEx

Symmetric :(∀x, x′ ∈ X)xEx′ ⇒ x′Ex

Transitive :(∀x, x′, x′′ ∈ X)xEx′ ∧ x′Ex′′ ⇒ xEx′′

For x ∈ X, the coset of x with respect to equivalence relation E, denoted by [x],

is the set of all elements in X that are equivalent to x:

[x] := {x′ ∈ X|x′Ex}

Two such cosets [x], [y] are either identical or disjoint.

Let L ⊆ Σ∗ be an arbitrary language, and let s, t ∈ Σ∗. The Nerode equivalence

relation over Σ on L is defined as:

s ≡L t iff (∀u ∈ Σ∗)su ∈ L⇔ tu ∈ L

We write ‖L‖ as the cardinality of the set of all cosets of the Nerode equivalence

relation on L. We say a language L is regular if ‖L‖ < ∞. All languages in this

report are regular unless otherwise stated.

Example 2.1.2 Let Σ = {α, β}, L = {ε, α}. Then we have cosets

{ε}, {α}, {α{α, β}+, β{α, β}∗}, thus we have ‖L‖ = 3. ♦

2.2 Automata

For a regular language L, since we have finite number of Nerode cosets, we can use

a finite state machine to represent this language. A recognizer over Σ is a 5-tuple

R = (X,Σ, ζ, xo, Xm)

10

Master’s Thesis - P. Dai McMaster - Computing and Software

in which X is the state set, xo is the initial state, Xm ⊆ X is the set of marker

states, and ζ : X × Σ→ X is the transition function. The function ζ is extended

to

ζ : X × Σ∗ → X

in the standard way by induction on string length.

The language L recognized by R is defined to be

L := {s ∈ Σ∗|ζ(xo, s) ∈ Xm}

For string s ∈ (Σ∗ − L), ζ(xo, s) leads to a dump state.

In a recognizer, we use a small circle to represent a state and we assign a name

for each state such s0, s1, and so on. The initial state has a thicker border and all

marker states are indicated by a gray filled circle. The dump state is marked with

a + sign. A transition is indicated by an arrow from its source state leading to its

target state, labelled by an event in Σ. If the arrow is labelled by multiple events,

then it represents a transition for each event.

Example 2.2.1 For language L given in example 2.1.2, the recognizer is shown

in Figure 2.1. In this recognizer, state s0 is the initial state and states s0 and s1

are marker states. State s2 is the dump state. ♦

s0 s1
+

s2

α, β

β

α

α, β

Figure 2.1: A Simple Recognizer

When every state in the recognizer corresponds to a unique Nerode equivalent class

of L, we say such a recognizer is canonical.

11

Master’s Thesis - P. Dai McMaster - Computing and Software

Let L ⊆ Σ∗ be an arbitrary language. For a string s ∈ L, the EligL() operator

is defined to be the set of events that can immediately follow s in L:

EligL(s) = {σ|sσ ∈ L}

We will represent DES using generators. A generator G is a 5-tuple

G = (Y,Σ, δ, yo, Ym)

where Σ is the event set, Y 6= ∅ is the state set, yo ∈ Y is the initial state, Ym ⊆ Y

is set of marker states, and our transition function δ : Y × Σ → Y is a partial

function. We use the notation δ(y, σ)! to mean that δ(y, σ) is defined. We extend

δ to the partial function δ : Y × Σ∗ → Y in the standard way.

For a generator G, the language

Lm(G) := {s ∈ Σ∗ | δ(yo, s)! ∧ δ(yo, s) ∈ Ym}

is called the marked behavior or marked language of G.

The language

L(G) := {s ∈ Σ∗ | δ(yo, s)!}

is called the closed behavior of G. L(G) contains all strings that G can generate.

A state is reachable if there is a path from yo to it. We say the state is

coreachable if there is a path from it to any marked state. We say a generator G

is reachable if all of its states are reachable. We say G is coreachable if all of its

states are coreachable. We say G is nonblocking if every reachable state of G is

coreachable. For a nonblocking generator, we have

Lm(G) = L(G)

If a generator is both reachable and coreachable, we say it’s trim. A trim generator

is always nonblocking, but the reverse doesn’t always hold.

12

Master’s Thesis - P. Dai McMaster - Computing and Software

Let Σ1 ⊆ Σ. We define a natural projection P : Σ∗ → Σ∗
1 according to

P (ε) = ε

P (σ) = ε if σ /∈ Σ1

P (σ) = σ if σ ∈ Σ1

P (sσ) = P (s)P (σ) s ∈ Σ∗, σ ∈ Σ

For any string s ∈ Σ∗, P (s) filters out all events that belong to Σ−Σ1. The inverse

image function of P is P−1 : Pwr(Σ∗
1)→ Pwr(Σ∗). For L ⊆ Σ∗

1, we get

P−1(L) := {s ∈ Σ∗|P (s) ∈ L}.

Let Pi : Σ∗ → Σ∗
i , i = 1, 2, be natural projections. Let L1 ⊆ Σ∗

1, L2 ⊆ Σ∗
2. We

define the synchronous product of L1, L2, denoted L1‖L2, according to

L1‖L2 = P−1
1 (L1) ∩ P−1

2 (L2)

thus s ∈ L1‖L2 iff P1(s) ∈ L1 ∧ P2(s) ∈ L2.

Example 2.2.2 Let Σ = {α, β, γ}, Σ1 = {α, β}, Σ2 = {α, γ}, Pi : Σ∗ →
Σ∗

i , i = 1, 2, and L1 = {αβ}, L2 = {αγ}. Then we have P−1
1 (L1) =

{γ∗αγ∗βγ∗}, P−1
2 (L2) = {β∗αβ∗γβ∗}, and we get L1‖L2 = {αβγ, αγβ}. ♦

When we synchronize two generators, we get a new generator which has the

synchronized languages as its languages. For generators G1 = (Y1,Σ1, δ1, yo,1, Ym,1)

and G2 = (Y2,Σ2, δ2, yo,2, Ym,2), the synchronous product of the two DES, denoted

G = G1‖G2, is the reachable DES with the properties

L(G) =L(G1)‖L(G2)

Lm(G) =Lm(G1)‖Lm(G2)

and with event set Σ = Σ1 ∪ Σ2.

13

Master’s Thesis - P. Dai McMaster - Computing and Software

When two generators has the same event set, the synchronous product op-

eration turns into the meet (intersection) operation. The TCT procedure meet

implements the meet operation on two generators. Let G = meet(G1, G2), we

then get a reachable DES with the properties

L(G) =L(G1) ∩ L(G2)

Lm(G) =Lm(G1) ∩ Lm(G2)

For two arbitrary languages L1, L2, we say they are nonconflicting if

L1 ∩ L2 = L1 ∩ L2

Example 2.2.3 Let Σ = {α, β, γ}, L1 = {αβ}, L2 = {αγ}. We have

L1 ∩ L2 = ∅
6= L1 ∩ L2 = {ε, α, αβ} ∩ {ε, α, αγ} = {ε, α}

thus L1 and L2 are conflicting. ♦

2.3 Supervisory Control

In supervisory control theory, control action is achieved by disabling certain events

to prevent some unwanted events from happening. Events in an alphabet Σ are

divided into two categories,

Σ = Σc ∪̇ Σu

where the disjoint subsets Σc and Σu comprise respectively the controllable events

and the uncontrollable events. A controllable event works like a switch which

can be either turned on or off. An uncontrollable event can not be blocked from

happening, i.e., if an uncontrollable event is defined at a certain state, there is no

chance for us to stop it from happening if the current work flow reaches that state.

14

Master’s Thesis - P. Dai McMaster - Computing and Software

A control pattern is a subset of Σ that contains all uncontrollable events. We

introduce the set of all control patterns:

Γ = {γ|γ ∈ Pwr(Σ) ∧ Σu ⊆ γ}.

A supervisory control for G is any map

V : L(G)→ Γ

The pair (G, V) will be written as V/G, to suggest ’G under the supervision of

V ’. The closed behavior of V/G is defined to be the language L(V/G) ⊆ L(G)

described as follows:

1. ε ∈ L(V/G)

2. s ∈ L(V/G) ∧ σ ∈ V (s) ∧ sσ ∈ L(G)⇒ sσ ∈ L(V/G)

3. No other strings belong to L(V/G).

The marked behavior of V/G is

Lm(V/G) = L(V/G) ∩ Lm(G)

With respect to G, we say that V is nonblocking if

Lm(V/G) = L(V/G)

With G understood, we use the abbreviation NSC to refer to a nonblocking

supervisory control.

A useful generalization of a NSC is to allow the supervisory control to also

include marking. Let M ⊆ Lm(G). We define a marking nonblocking supervisory

control (MNSC) for the pair (M,G) as a map V : L(G) → Γ as before, with the

difference that we now define the marked behavior of V/G as

Lm(V/G) = L(V/G) ∩M.

15

Master’s Thesis - P. Dai McMaster - Computing and Software

A language K ⊆ Σ∗ is said to be controllable(with respect to G) if

(∀s, t)s ∈ K ∧ t ∈ Σu ∧ st ∈ L(G)⇒ st ∈ K

For a more concise statement, we use the following notation. For S ⊆ Σ∗ and

Σo ⊆ Σ, let SΣo denote the set of strings of form sσ with s ∈ S and σ ∈ Σo. Then

K is controllable iff

KΣu ∩ L(G) ⊆ K

Let G be a plant DES defined over alphabet ΣG, and S be a supervisor DES

defined over alphabet ΣS. We will use the following notation:

Σ : = ΣG ∪ ΣS

PG :Σ∗ → Σ∗
G

PS :Σ∗ → Σ∗
S

LG : = P−1
G (L(G))

LS : = P−1
S (L(S))

We say that a supervisor S is controllable for G if

(∀s ∈ LG ∩ LS)EligLG
(s) ∩ Σu ⊆ EligLS

(s) (2.1)

We define the closed loop behavior, denoted CL, of our system to be

CL := S||G

This is essentially the expected behavior of the plant under the control of our

supervisor.

It is clear that the empty set ∅, L(G) and Σ∗ are always controllable with

respect to G.

Let K ⊆ L ⊆ Σ∗. We say the language K is L-Closed if K = K ∩ L. The

following two theorems are from [79].

16

Master’s Thesis - P. Dai McMaster - Computing and Software

Theorem 1 Let K ⊆ Lm(G), K 6= ∅. There exists a nonblocking supervisory

control V for G such that Lm(V/G) = K iff

1. K is controllable with respect to G, and

2. K is Lm(G)-closed. ♦

We now give the counterpart to Theorem 1 for MNSC.

Theorem 2 Let K ⊆ Lm(G), K 6= ∅. There exists a marking nonblocking super-

visory control V for (K,G) such that

Lm(V/G) = K

iff K is controllable with respect to G. ♦

In this thesis, we will only be dealing with marking nonblocking supervisory con-

trols.

In order to implement the supervision in the supervisory control framework,

one way is to design the supervisor directly. In this approach, the designer needs to

make sure the supervisor is controllable with respect to the plant and satisfies the

control specifications. The other way to do this is based on constructing specifica-

tion DES which are generally not controllable with respect to the plant, and use

software to automatically compute a controllable supervisor from the given DES

specifications and the plant model. Usually the specification DES are much easier

to design than supervisors, since the designer only needs to focus on specifying

what they want the system to do, instead of the details of how to make the system

do what they want.

Let G be a plant DES with Σ = Σc∪Σu and E ⊆ Σ∗ be a specification language

over Σ. We introduce the set of all sublanguages of E that are controllable with

respect to G:

C(E) = {K ⊆ E | K is controllable with respect to G}

17

Master’s Thesis - P. Dai McMaster - Computing and Software

It is shown in [79] that the the supremal element, denoted supC(E), always

exists and equals :

supC(E) =
⋃

K∈C(E)

K

TCT provides a procedure supcon to calculate the supremal controllable element

of a specification DES for given plant DES. It starts from the meet of the two DES

and trims off non-controllable and blocking states until the result is controllable

for the plant and nonblocking. Since we are dealing with regular languages and

finite state machines only, this process is guaranteed to stop after finite number of

iterations.

18

Master’s Thesis - P. Dai McMaster - Computing and Software

Chapter 3

HISC Introduction

For a detailed introduction to HISC, we refer you to [34]. In this chapter, we will

introduce to you the primary definitions and notation, but will not go into depth

about their development and interpretation. In this thesis, we use use the HISC

definitions from [33], which are a slightly modified set of definitions from those of

[34]. In Chapter 4, we explain our rationale for this, and we present proofs that

these definitions are equivalent to the originals.

3.1 Basic Setting

In HISC there is a master-slave relationship.1 A high level subsystem sends a

command to a particular low level subsystem, which then performs the indicated

task and returns an answer. Figure 3.1 shows conceptually the structure and

information flow of the system in the special case when there is only a single low

level system. Communication between the high level system and the low level

system occurs in a serial fashion. A request from the high level is followed by

an answer from the low level before the next request is issued to the low level

1Most of this chapter originally appeared as part of [40] and is reused with permission. Defi-
nition 3.4.2 and Lemma 1 are new.

19

Master’s Thesis - P. Dai McMaster - Computing and Software

subsystem. This style of interaction is enforced by an interface that mediates

communication between the two subsystems. All system components, including

the interface, are modeled as automata as shown in Fig. 3.2 where our flat system

would be G := GH ||GI ||GL. By flat system we mean the equivalent DES if we

ignored the interface structure.

Figure 3.1: Interface Block Diagram.

In order to restrict information flow and decouple the subsystems, the event

set Σ is split into four disjoint alphabets: ΣH , ΣL, ΣR, and ΣA. The events in ΣH

are high level events and the events in ΣL low level events as these events appear

only in the high level and low level models, GH and GL respectively. We then

have GH defined over ΣH∪̇ΣR∪̇ΣA and GL defined over ΣL∪̇ΣR∪̇ΣA.

3.2 Interfaces

As the interface automaton GI is only concerned with communication between the

two subsystems, it is defined over the events that are common to both levels of

20

Master’s Thesis - P. Dai McMaster - Computing and Software

the hierarchy, ΣR∪̇ΣA, which are collectively known as the set of interface events,

denoted ΣI . The events in ΣR, called request events, represent commands sent

from the high level subsystem to the low level subsystem. The events in ΣA are

answer events and represent the low level subsystem’s responses to the request

events. In order to enforce the serialization of requests and answers, we restrict

the interface to the subclass of command-pair interfaces defined below.

Definition 3.2.1 A DES GI = (X, ΣR ∪̇ΣA, ξ, xo, Xm) is a command-pair in-

terface if:

(A) L(GI) ⊆ (ΣR.ΣA)∗, and

(B) Lm(GI) = (ΣR.ΣA)∗ ∩ L(GI)

Figure 3.2: Two Tiered Structure of the System.

Condition (A) says that request events and answer events must alternate

(i.e. serialization of requests) while condition (B) states that every answered

request results in a marked state. An example command pair interface with

ΣR := {ρi|i = 1, 2, 3} and ΣA := {αi|i = 1, . . . , 7} is shown in Fig. 3.3.

21

Master’s Thesis - P. Dai McMaster - Computing and Software

G
I

r
1

r
2

r
3

a
1
,a

2

a
3

a
7

,a
5
,a

6a
4

0

1

2

3
4

Figure 3.3: Example Interface.

3.3 Basic Notation

We now generalize the above “serial case” where there is a single low level system,

to the parallel case where there are n low level subsystems. In this case we say

that the system is an nth degree parallel system. Figure 3.4 shows conceptually

the structure and flow of information. The single high level subsystem, interacts

with n ≥ 1 independent low level subsystems, communicating with each low level

subsystem in parallel through a separate interface.

As in the serial case, to restrict the flow of information at the interface, we

partition the system alphabet into pairwise disjoint alphabets:

Σ := ΣH ∪̇
⋃̇

j=1,...,n

[ΣLj
∪̇ΣRj

∪̇ΣAj
] (3.1)

The high level subsystem is modeled by DES GH (defined over event set

ΣH∪̇(∪̇j∈{1,...,n}[ΣRj
∪̇ΣAj

])). For j ∈ {1, . . . , n}, the jth low level subsystem is

modeled by DES GLj
(defined over event set ΣLj

∪̇ΣRj
∪̇ΣAj

), and the jth in-

terface by DES GIj
(defined over event set ΣRj

∪̇ΣAj
). The overall system has

the structure shown in Fig. 3.5. Thus our flat system is G = GH ||GI1||GL1||
. . . ||GIn||GLn .

22

Master’s Thesis - P. Dai McMaster - Computing and Software

Figure 3.4: Parallel Interface Block Diagram.

Figure 3.5: Two Tiered Structure of Parallel System

23

Master’s Thesis - P. Dai McMaster - Computing and Software

To simplify notation in our exposition, we bring in the following event sets,

natural projections, and languages. For the remainder of this section, the index j

has range {1, . . . , n}.

ΣIj
:= ΣRj

∪ΣAj
, PIj

: Σ∗ → Σ∗
Ij

ΣILj
:= ΣLj

∪ΣIj
, PILj

: Σ∗ → Σ∗
ILj

ΣIH := ΣH ∪
⋃

k∈{1,...,n}
ΣIk

PIH : Σ∗ → Σ∗
IH

H := P−1
IH (L(GH)), Hm := P−1

IH (Lm(GH)) ⊆ Σ∗

Lj := P−1
ILj

(L(GLj
)), Lmj

:= P−1
ILj

(Lm(GLj
)) ⊆ Σ∗

Ij := P−1
Ij

(L(GIj
)), Imj

:= P−1
Ij

(Lm(GIj
)) ⊆ Σ∗

3.4 Interface Consistency Definition

We now present the properties that the system must satisfy to ensure that it

interacts with the interfaces correctly.

Definition 3.4.1 The nth degree (n ≥ 1) parallel interface system composed of

DES GH ,GI1 , GL1 , . . . ,GIn ,GLn, is interface consistent with respect to the alpha-

bet partition given by (3.1), if for all j ∈ {1, . . . , n}, the following conditions are

satisfied:

Multi-level Properties

1. The event set of GH is ΣIH , and the event set of GLj
is ΣILj

.

2. GIj
is a command-pair interface.

High Level Property

24

Master’s Thesis - P. Dai McMaster - Computing and Software

3.

(∀s ∈ H ∩
⋂

k=1,...,n

Ik) EligIj
(s) ∩ ΣAj

⊆ Elig
H∩ T

k 6= j
Ik

(s)

Low Level Properties

4. (∀s ∈ Lj ∩ Ij) EligIj
(s) ∩ ΣRj

⊆ EligLj
(s)

5. (∀s ∈ Σ∗.ΣRj
∩ Lj ∩ Ij)

EligLj ∩Ij
(sΣ∗

Lj
) ∩ ΣAj

= EligIj
(s) ∩ ΣAj

where

EligLj∩Ij
(sΣ∗

Lj
) :=

⋃

l∈Σ∗Lj

EligLj∩Ij
(sl)

6. (∀s ∈ Lj ∩ Ij)

s ∈ Imj
⇒ (∃l ∈ Σ∗

Lj
) sl ∈ Lmj

∩ Imj
.

The first two properties assert that the system has the required basic architecture,

with the high level and low level subsystems only sharing request and answer events

and the interaction between the levels mediated by interfaces. This provides a form

of information hiding as it restricts the high level subsystem from knowing (and

directly affecting) internal details of the low level subsystems and vice versa.

The High level property (3) asserts that when GH is synchronized with all of

the other subsystem interfaces GIk
, k 6= j, it must always accept an answer event if

the event is eligible in the interface GIj
. In other words, the high level subsystem

is forbidden to assume more about when an answer event can occur than what is

provided by the interface. Similarly, low level property (4) asserts that the low

level subsystem (GLj
) must always accept a request event if the event is eligible

in its interface GIj
. We note that both (3) and (4) can be computed using the

standard algorithms for controllability.

Condition (5) states that immediately after a request event (some ρ ∈ ΣRj
) has

occurred, and before it is followed by any low level events in ΣLj
, there exist one

or more paths via strings in Σ∗
Lj

to each answer event that GIj
says can follow the

25

Master’s Thesis - P. Dai McMaster - Computing and Software

request event. Finally, (6) asserts that every string marked by the interface GIj

and accepted by the low level subsystem, can be extended by a low level string to

a string marked by GLj
.

We now give an equivalent definition for interface consistency that will be useful

later when we examine synthesis in the HISC setting. This new definition is only

used to make the definitions for synthesis easier and clearer. The only thing that

has changed is that point 5 is given in a new formulation. The new point 5 is

not exactly equal to the old one, but when used in conjunction with point 4, it is

equivalent to the original point 5.

Definition 3.4.2 The nth degree (n ≥ 1) parallel interface system composed of

DES GH ,GI1 , GL1 , . . . ,GIn ,GLn, is interface consistent with respect to the alpha-

bet partition given by (3.1), if for all j ∈ {1, . . . , n}, the following conditions are

satisfied:

Multi-level Properties

1. The event set of GH is ΣIH , and the event set of GLj
is ΣILj

.

2. GIj
is a command-pair interface.

High Level Property

3.

(∀s ∈ H ∩
⋂

k=1,...,n

Ik) EligIj
(s) ∩ ΣAj

⊆ Elig
H∩ T

k 6= j
Ik

(s)

Low Level Properties

4. (∀s ∈ Lj ∩ Ij) EligIj
(s) ∩ ΣRj

⊆ EligLj
(s)

5. (∀s ∈ Lj ∩ Ij)(∀ρ ∈ ΣRj
)(∀α ∈ ΣAj

)

sρα ∈ Ij ⇒ (∃l ∈ Σ∗
Lj

) sρlα ∈ Lj ∩ Ij

26

Master’s Thesis - P. Dai McMaster - Computing and Software

6. (∀s ∈ Lj ∩ Ij)

s ∈ Imj
⇒ (∃l ∈ Σ∗

Lj
) sl ∈ Lmj

∩ Imj
.

We now prove that Definition 3.4.1 and Definition 3.4.2 are equivalent.

Lemma 1 The nth degree (n ≥ 1) parallel interface system composed of DES

GH ,GI1 , GL1 , . . . ,GIn ,GLn, satisfies Definition 3.4.1 with respect to the alphabet

partition given by (3.1), if and only if the system satisfies Definition 3.4.2 with

respect to the alphabet partition given by (3.1).

Proof We will show that Definition 3.4.1 ⇔ Definition 3.4.2.

As the only difference between Definition 3.4.1 and Definition 3.4.2 is their

respective point 5, it is sufficient to show that each definition implies that point 5

of the other definition is satisfied.

Let j ∈ {1, . . . , n}.

(I) Show Definition 3.4.1 ⇒ Definition 3.4.2.

We assume the parallel system satisfies Definition 3.4.1.

We will now show this implies the system satisfies point 5 of Definition 3.4.2.

To show that point 5 of Definition 3.4.2 is satisfied, we need to show:

(∀s ∈ Lj ∩ Ij)(∀ρ ∈ ΣRj
)(∀α ∈ ΣAj

) sρα ∈ Ij ⇒ (∃l ∈ Σ∗
Lj

) sρlα ∈ Lj ∩ Ij

Let s ∈ Lj ∩ Ij, ρ ∈ ΣRj
, and α ∈ ΣAj

(1)

Assume sρα ∈ Ij (2)

We will now show this implies: (∃l ∈ Σ∗
Lj

) sρlα ∈ Lj ∩ Ij

As we wish to apply point 5 of Definition 3.4.1, we need to show that sρ ∈ Lj.

As we have sρα ∈ Ij by (2), we can conclude that sρ ∈ Ij as Ij is closed.

27

Master’s Thesis - P. Dai McMaster - Computing and Software

⇒ ρ ∈ EligIj
(s)

⇒ sρ ∈ Lj by (1) and point 4 of Definition 3.4.1.

By point 5 of Definition 3.4.1, we can now conclude:

EligLj ∩Ij
(sρΣ∗

Lj
) ∩ ΣAj

= EligIj
(sρ) ∩ ΣAj

⇒ α ∈ EligLj ∩Ij
(sρΣ∗

Lj
), by (2).

⇒ (∃l ∈ Σ∗
Lj

)sρlα ∈ Lj ∩ Ij, as required.

Part I complete.

(II) Show Definition 3.4.2 ⇒ Definition 3.4.1.

We assume the parallel system satisfies Definition 3.4.2.

We will now show this implies the system satisfies point 5 of Definition 3.4.1.

To show that point 5 of Definition 3.4.1 is satisfied, we need to show:

(∀s ∈ Σ∗.ΣRj
∩ Lj ∩ Ij) EligLj ∩Ij

(sΣ∗
Lj

) ∩ ΣAj
= EligIj

(s) ∩ ΣAj

Let s ∈ Σ∗.ΣRj
∩ Lj ∩ Ij. (3)

We will now show that: EligLj ∩Ij
(sΣ∗

Lj
) ∩ ΣAj

= EligIj
(s) ∩ ΣAj

As EligLj∩Ij
(sΣ∗

Lj
) :=

⋃
l∈Σ∗Lj

EligLj∩Ij
(sl), it is sufficient to show:

⋃

l∈Σ∗Lj

EligLj∩Ij
(sl) ∩ ΣAj

= EligIj
(s) ∩ ΣAj

We will show: ⊆ and ⊇.

(II.a) We first show:
⋃

l∈Σ∗Lj

EligLj∩Ij
(sl) ∩ ΣAj

⊆ EligIj
(s) ∩ ΣAj

Let α ∈ ⋃
l∈Σ∗Lj

EligLj∩Ij
(sl) ∩ ΣAj

(4)

28

Master’s Thesis - P. Dai McMaster - Computing and Software

⇒ (∃l ∈ Σ∗
Lj

) slα ∈ Lj ∩ Ij

⇒ slα ∈ Ij

As PIj
(slα) = PIj

(sα) by definition of PIj
, we can apply Proposition 20 Point (e)

of [34] and conclude:

sα ∈ Ij

⇒ α ∈ EligIj
(s) ∩ ΣAj

by (4), as required.

(II.b) Show: EligIj
(s) ∩ ΣAj

⊆ ⋃
l∈Σ∗Lj

EligLj∩Ij
(sl) ∩ ΣAj

Let α ∈ EligIj
(s) ∩ ΣAj

(5)

⇒ sα ∈ Ij (6)

We will now show this implies: α ∈ ⋃
l∈Σ∗Lj

EligLj∩Ij
(sl) ∩ ΣAj

We first note that s ∈ Σ∗.ΣRj
∩ Lj ∩ Ij by (3) implies:

(∃s′ ∈ Σ∗)(ρ ∈ ΣRj
) s′ρ = s (7)

⇒ s′ρα ∈ Ij by (6), and s′ ∈ Lj ∩ Ij as Ij is closed.

We can now conclude by (5) and point 5 of Definition 3.4.2, that:

(∃l ∈ Σ∗
Lj

) s′ρlα ∈ Lj ∩ Ij

⇒ (∃l ∈ Σ∗
Lj

) slα ∈ Lj ∩ Ij, by (7).

⇒ α ∈ ⋃
l∈Σ∗Lj

EligLj∩Ij
(sl) ∩ ΣAj

, as required.

By Part II.a and II.b, we can conclude:
⋃

l∈Σ∗Lj

EligLj∩Ij
(sl) ∩ ΣAj

= EligIj
(s) ∩ ΣAj

.

Part II complete.

29

Master’s Thesis - P. Dai McMaster - Computing and Software

By Part I and Part II, we can conclude:

Definition 3.4.1 ⇔ Definition 3.4.2

¤

3.5 Local Conditions for Global Nonblocking of

the System

We now provide the conditions that the subsystems and their interface(s) must

satisfy in addition to the interface consistency properties, if the system G is to be

nonblocking.

Definition 3.5.1 The nth degree (n ≥ 1) parallel interface system composed of

DES GH ,GI1 , GL1 , . . . ,GIn ,GLn, is said to be level-wise nonblocking if the fol-

lowing conditions are satisfied:

(I) nonblocking at the high level:

Hm ∩
⋂

k=1,...,n

Imk
= H ∩

⋂

k=1,...,n

Ik

(II) nonblocking at the low level: for all j ∈ {1, . . . , n},

Lmj
∩ Imj

= Lj ∩ Ij

The above definition can be paraphrased as saying that for each component sub-

system synchronized with its interface(s), every reachable state must have a path

to a state that is marked by both the subsystem and its interface(s).

30

Master’s Thesis - P. Dai McMaster - Computing and Software

3.6 Local Conditions for Global Controllability

of the System

The representation of the system given in Fig. 3.5 simplifies notation when veri-

fying nonblocking by ignoring the distinction between plants and supervisors. For

controllability, we need to split the subsystems into their plant and supervisor

components, as shown in Fig. 3.6 for the serial case. To do this, we define the high

level plant to be Gp
H , and the high level supervisor to be SH (both defined over

event set ΣIH). Similarly, the jth low level plant and supervisor are Gp
Lj

and SLj

(defined over ΣILj
). The high level subsystem and the jth low level subsystem are

then GH := Gp
H ||SH and GLj

:= Gp
Lj
||SLj

, respectively.

Figure 3.6: Plant and Supervisor Subplant Decomposition

We can now define our flat supervisor and plant as well as some useful languages

31

Master’s Thesis - P. Dai McMaster - Computing and Software

as follows:

Plant := Gp
H ||Gp

L1
|| . . . ||Gp

Ln
Sup := SH ||SL1|| . . . ||SLn||GI1|| . . . ||GIn

Hp := P−1
IH (L(Gp

H)), SH := P−1
IH (L(SH)), ⊆ Σ∗

Lp
j := P−1

ILj
(L(Gp

Lj
)), SLj

:= P−1
ILj

(L(SLj
)), ⊆ Σ∗

For the controllability requirements at each level, we adopt the standard parti-

tion Σ = Σu ∪̇Σc, splitting our alphabet into uncontrollable and controllable events.

Note that this partition may, in general, be independent of the partition (3.1).

Definition 3.6.1 The nth degree (n ≥ 1) parallel interface system composed of

DES Gp
H , G

p
L1
, . . . , Gp

Ln
, SH , SL1 , . . . ,SLn , GI1 , . . . ,GIn, is level-wise controllable

with respect to the alphabet partition given by (3.1), if for all j ∈ {1, . . . , n} the

following conditions hold:

(I) The alphabet of Gp
H and SH is ΣIH , the alphabet of Gp

Lj
and SLj

is ΣILj
,

and the alphabet of GIj
is ΣIj

(II) (∀s ∈ Lp
j ∩ SLj

∩ Ij) EligLp
j
(s) ∩ Σu ⊆ EligSLj

∩Ij
(s)

(III) (∀s ∈ Hp ∩ [∩k∈{1,...,n}Ik] ∩ SH) EligHp∩[∩k∈{1,...,n}Ik](s) ∩ Σu ⊆
EligSH

(s)

The above definition states that the system is level-wise controllable if, for the given

distributed supervisor, the high level supervisor is controllable for the high level

plant combined with all of the interfaces (by III) and that each low level supervisor

synchronized with the subsystem’s interface is controllable for the subsystem’s low

level plant (by II).

32

Master’s Thesis - P. Dai McMaster - Computing and Software

Chapter 4

Equivalence of HISC Definitions

In the original Hierarchical Interface-based Supervisory Control definitions pre-

sented in [34], systems are divided into serial systems (single low level) and parallel

systems (n ≥ 1 low levels), where a serial system is a special case of a parallel sys-

tem with degree n = 1. For each type of system, a set of interface conditions were

developed, with the parallel system definitions building upon the serial system

definitions.

In this thesis,1 we use a slightly modified set of definitions, which no longer

treats serial systems (referred to as the “serial case”) and parallel systems (referred

to as the “parallel case”) differently. We present a single set of definitions (interface

consistency from Section 3.4, level-wise nonblocking from Section 3.5, and level-

wise controllable from Section 3.6) for the parallel case that is expressed directly

in terms of the components of a parallel system. The new definitions introduced

in this work are more concise and clear as a result. The new definitions also make

it clear exactly what checks need to be performed, and on which component. In

this chapter, we will show that these new definitions are equivalent to the original

ones from [34].

1This chapter also appeared as part of [40], but is originally from this thesis.

33

Master’s Thesis - P. Dai McMaster - Computing and Software

In the following sections we will restate the original definitions for ease of

reference, adding “(ORIG)” to the titles that are the same as our new definitions to

prevent confusion. We will first present the interface consistency definitions, then

nonblocking, and finally controllability. We will then show that each is equivalent

to the corresponding new definition.

4.1 Useful Propositions

We start by introducing a few useful propositions for later proofs. However, we

first need to introduce the following definition:

Definition 4.1.1 For natural projection Po : Σ∗ → Σ∗
o for some Σo ⊆ Σ, we say

that language L ⊆ Σ∗ is Po-invariant if P−1
o (Po(L)) = L.

In short, events in Σ−Σo (Σ with the events of Σo removed) have no affect on

membership in L. If L was the language generated by some DES G, then these

events would be selflooped at every state in G.

Our first proposition is for a nth degree (n ≥ 1) parallel interface system

composed of DES GH ,GI1 , GL1 , . . . ,GIn ,GLn as defined in Section 3.3. We first

need to define the natural projection, Pj : Σ∗ → Σ′(j)∗, where Σ is given by (3.1)

in Section 3.3, j ∈ {1, . . . , n}, and Σ′(j) = Σ − ∪̇k∈{1, ..., (j−1), (j+1), ..., n}ΣLk
. The

proposition below essentially states that the indicated languages are Pj-invariant,

a property that will be useful in the following proofs. The result follows from the

fact that the languages are inverse projections of closed and marked languages of

DES whose alphabets are subsets of Σ′(j).

Proposition 1 With H, Hm, Ik, Imk
(k = {1 . . . n}), Lj, and Lmj

as defined in

Section 3.3, we have:

(a) P−1
j (Pj(H)) = H

34

Master’s Thesis - P. Dai McMaster - Computing and Software

(b) P−1
j (Pj(Hm)) = Hm

(c) P−1
j (Pj(Ik)) = Ik, k = {1 . . . n}

(d) P−1
j (Pj(Imk

)) = Imk
, k = {1 . . . n}

(e) P−1
j (Pj(Lj)) = Lj

(f) P−1
j (Pj(Lmj

)) = Lmj

Proof

Point (a): Show P−1
j (Pj(H)) = H

By definition, H = P−1
IH (L(GH)). It is thus sufficient to show:

P−1
j · Pj · P−1

IH (L(GH)) = P−1
IH (L(GH))

We then note that PIH : Σ∗ → Σ∗
IH , and Σ′(j) = ΣIH ∪ ΣLj

, by definition.

We thus have ΣIH ⊆ Σ′(j).

We can now apply Proposition 6 from [34] by taking Σb = ΣIH and Σa = Σ′(j),

and conclude:

P−1
j · Pj · P−1

IH = P−1
IH

It follows immediately that: P−1
j · Pj · P−1

IH (L(GH)) = P−1
IH (L(GH))

Point (b)-(f):

Proofs are identical to Point (a) after appropriate substitutions.

¤

Our next proposition develops some useful properties of P -invariant languages.

Point (a) essentially says that removing events from Σ−Σ1 does not affect mem-

bership in languages Lk defined in the proposition. Point (b) says that the natural

projection P and set intersection commute for P -invariant languages. Point (c)

35

Master’s Thesis - P. Dai McMaster - Computing and Software

says that the intersection of P -invariant languages is also P -invariant. Point (d)

provides a useful relationship between strings P (s) and s for P -invariant languages.

Proposition 2 Let Σ1 ⊆ Σ, language Lk ⊆ Σ∗, k = 1, 2, . . . , n, natural projection

P : Σ∗ → Σ∗
1. If P−1(P (Lk)) = Lk, then

(a) P (Lk) ⊆ Lk;

(b) P (L1) ∩ P (L2) ∩ . . . ∩ P (Ln) = P (L1 ∩ L2 ∩ . . . ∩ Ln);

(c) P−1(P (L1 ∩ L2 ∩ . . . ∩ Ln)) = L1 ∩ L2 ∩ . . . ∩ Ln.

(d) (∀s ∈ Σ∗)P (s) ∈ P (Lk)⇒ s ∈ Lk

Proof Assume P−1(P (Lk)) = Lk, k = 1, 2, . . . , n. (A.1)

Point (a): Show P (Lk) ⊆ Lk.

Let s ∈ P (Lk). Sufficient to show s ∈ Lk.

s ∈ P (Lk)⇒ s ∈ Σ∗
1

⇒ P (s) = s thus P (s) ∈ P (Lk).

s ∈ P−1(P (Lk)), by definition of P−1.

We then have s ∈ P−1(P (Lk)) = Lk (by (A.1)) as required.

Point (b): Show P (L1) ∩ P (L2) ∩ . . . ∩ P (Ln) = P (L1 ∩ L2 ∩ . . . ∩ Ln)

We need to show:

(b.I) P (L1) ∩ P (L2) ∩ . . . ∩ P (Ln) ⊆ P (L1 ∩ L2 ∩ . . . ∩ Ln) and

(b.II) P (L1 ∩ L2 ∩ . . . ∩ Ln) ⊆ P (L1) ∩ P (L2) ∩ . . . ∩ P (Ln).

(b.I) Show P (L1) ∩ P (L2) ∩ . . . ∩ P (Ln) ⊆ P (L1 ∩ L2 ∩ . . . ∩ Ln).

Let s ∈ P (L1) ∩ P (L2) ∩ . . . ∩ P (Ln). (A.2)

36

Master’s Thesis - P. Dai McMaster - Computing and Software

Must show implies s ∈ P (L1 ∩ L2 ∩ . . . ∩ Ln)

By Point (a), (A.1), and (A.2), we have s ∈ L1 ∩ L2 ∩ . . . ∩ Ln

⇒ P (s) ∈ P (L1 ∩ L2 ∩ . . . ∩ Ln) (A.3)

Since s ∈ P (L1) (by (A.2)), we have s ∈ Σ∗
1 by definition of the natural projection

P .

We then have P (s) = s, and thus s ∈ P (L1∩L2∩ . . .∩Ln) (by (A.3)), as required.

(b.II) Show P (L1 ∩ L2 ∩ . . . ∩ Ln) ⊆ P (L1) ∩ P (L2) ∩ . . . ∩ P (Ln).

Let s ∈ P (L1 ∩ L2 ∩ . . . ∩ Ln). (A.4)

Must show implies s ∈ P (L1) ∩ P (L2) ∩ . . . ∩ P (Ln).

From (A.4), we know: (∃s′ ∈ L1 ∩ L2 ∩ . . . ∩ Ln)P (s′) = s (A.5)

We next note that s′ ∈ Lk ⇒ P (s′) ∈ P (Lk), k = 1, . . . , n.

⇒ s = P (s′) ∈ P (L1) ∩ P (L2) ∩ . . . ∩ P (Ln) (by (A.5)), as required.

By Part (b.I) and Part (b.II), we can now conclude:

P (L1) ∩ P (L2) ∩ . . . ∩ P (Ln) = P (L1 ∩ L2 ∩ . . . ∩ Ln)

Point (c): Show P−1(P (L1 ∩ L2 ∩ . . . ∩ Ln)) = L1 ∩ L2 ∩ . . . ∩ Ln

We need to show:

(c.I) P−1(P (L1 ∩ L2 ∩ . . . ∩ Ln)) ⊆ L1 ∩ L2 ∩ . . . ∩ Ln and

(c.I) L1 ∩ L2 ∩ . . . ∩ Ln ⊆ P−1(P (L1 ∩ L2 ∩ . . . ∩ Ln)).

(c.I) Show P−1(P (L1 ∩ L2 ∩ . . . ∩ Ln)) ⊆ L1 ∩ L2 ∩ . . . ∩ Ln.

Let s ∈ P−1(P (L1 ∩ L2 ∩ . . . ∩ Ln)) (A.6)

37

Master’s Thesis - P. Dai McMaster - Computing and Software

Must show implies s ∈ L1 ∩ L2 ∩ . . . ∩ Ln

From (A.6) and definition of P−1, we have:

P (s) ∈ P (L1 ∩ L2 ∩ . . . ∩ Ln).

⇒ P (s) ∈ P (L1) ∩ P (L2) ∩ . . . ∩ P (Ln), by Point (b).

⇒ s ∈ P−1P (Lk), k = 1, . . . , n.

⇒ s ∈ Lk, k = 1, . . . , n, by (A.1).

⇒ s ∈ L1 ∩ L2 ∩ . . . ∩ Ln, as required.

(c.II) Show L1 ∩ L2 ∩ . . . ∩ Ln ⊆ P−1(P (L1 ∩ L2 ∩ . . . ∩ Ln)).

Let s ∈ L1 ∩ L2 ∩ . . . ∩ Ln (A.7)

Must show implies s ∈ P−1(P (L1 ∩ L2 ∩ . . . ∩ Ln)

From (A.7) and definition of P , we can conclude:

P (s) ∈ P (L1 ∩ L2 ∩ . . . ∩ Ln)

By definition of P−1, we can conclude:

s ∈ P−1(P (L1 ∩ L2 ∩ . . . ∩ Ln))

By Part (c.I) and Part (c.II), we can now conclude:

P−1(P (L1 ∩ L2 ∩ . . . ∩ Ln)) = L1 ∩ L2 ∩ . . . ∩ Ln

Point (d): Show (∀s ∈ Σ∗)P (s) ∈ P (Lk)⇒ s ∈ Lk.

Let s ∈ Σ∗ and assume P (s) ∈ P (Lk).

⇒ s ∈ P−1(P (Lk)), by definition of P−1.

38

Master’s Thesis - P. Dai McMaster - Computing and Software

⇒ s ∈ Lk as P−1(P (Lk)) = Lk by (A.1).

¤

The next proposition provides a useful result about the controllability defini-

tion. If, in the left side of the iff condition below, we equate Σb with the set of

uncontrollable events, L2 with the language of the plant, L3 with the language

of the supervisor, and L1 = L2 ∩ L3, we have the controllability definition. The

proposition essentially says that if Lk is P -invariant, controllability is not affected

by removing all events in Σ− Σa.

Proposition 3 For alphabet Σ, with event sets Σb ⊆ Σa ⊆ Σ, languages

L1, L2, L3 ⊆ Σ∗, and natural projection P : Σ∗ → Σ∗
a, if P−1(P (Lk)) = Lk,

k = 1, 2, 3, then

(∀s ∈ L1) EligL2
(s) ∩Σb ⊆ EligL3

(s)⇔ (∀s′ ∈ P (L1)) EligP (L2)(s
′) ∩Σb ⊆ EligP (L3)(s

′)

Proof

Assume P−1(P (Lk)) = Lk, k = 1, 2, 3. (A.1)

By the definition of Elig() operator, it is sufficient to show:

[(∀s ∈ L1)(∀σ ∈ Σb) sσ ∈ L2 ⇒ sσ ∈ L3] ⇔ (A.2)

[(∀s′ ∈ P (L1))(∀σ′ ∈ Σb) s
′σ′ ∈ P (L2)⇒ s′σ′ ∈ P (L3)] (A.3)

We must show: I) (A.2) ⇒ (A.3) and II) (A.3) ⇒ (A.2).

(I) Show (A.2) ⇒ (A.3).

Assume (A.2).

Let s′ ∈ P (L1), σ
′ ∈ Σb, and assume s′σ′ ∈ P (L2). (A.4)

39

Master’s Thesis - P. Dai McMaster - Computing and Software

Must show implies s′σ′ ∈ P (L3).

By Proposition 2(a) and (A.1), we have P (L1) ⊆ L1

⇒ s′ ∈ L1, by (A.4).

Similarly, we have s′σ′ ∈ L2.

⇒ s′σ′ ∈ L3, as, σ′ ∈ Σb, and by (A.2)

⇒ P (s′σ′) ∈ P (L3). (A.5)

By (A.4), s′ ∈ P (L1) ⊆ Σ∗
1, thus P (s′) = s′, by definition of P .

⇒ P (s′σ′) = s′P (σ′) = s′σ′, by definition of P , and fact Σb ⊆ Σa.

⇒ s′σ ∈ P (L3) (by (A.5)), as required.

Part (I) complete.

(II) Show (A.3) ⇒ (A.2).

Assume (A.3).

Let s ∈ L1, σ ∈ Σb, and assume sσ ∈ L2. (A.6)

Must show implies sσ ∈ L3.

From (A.6), we have:

P (s) ∈ P (L1) and, P (sσ) = P (s)σ ∈ P (L2), by definition of P , and fact

Σb ⊆ Σa.

⇒ P (s)σ ∈ P (L3), by (A.3), after taking s′ = P (s) and σ′ = σ.

⇒ P (sσ) ∈ P (L3), as σ ∈ Σb and Σb ⊆ Σa.

40

Master’s Thesis - P. Dai McMaster - Computing and Software

⇒ sσ ∈ L3, by (A.1), and Proposition 2(d).

Part (II) complete.

By Parts (I) and (II), we have (A.2) ⇔ (A.3), as required.

¤

4.2 Interface Consistency

In the original interface consistency definition, we first defined the serial interface

consistency definition for the serial system consisting of DES G′
H , GL, and GI .

2

We then used the concept of serial system extractions to extend the serial definition

to the parallel case. We will first define some notation for the serial case, restate

the original definitions, and then finally we will show that the original interface

consistency definition is equivalent to the new one.

We assume that the alphabet partition for a serial system is specified by

Σ′ := Σ′
H ∪̇ΣL ∪̇ΣR ∪̇ΣA, and then we introduce the following event sets, nat-

ural projections, and useful languages:

ΣI := ΣR∪̇ΣA, PIH′ : Σ′∗ → Σ∗
IH′

ΣIH′ := Σ′
H∪̇ΣR∪̇ΣA, PIL : Σ′∗ → Σ∗

IL

ΣIL := ΣL∪̇ΣR∪̇ΣA, PI : Σ′∗ → Σ∗
I

H′ := P−1
IH′(L(G′

H)), H′m := P−1
IH′(Lm(G′

H)) ⊆ Σ′∗

L := P−1
IL (L(GL)), Lm := P−1

IL (Lm(GL)) ⊆ Σ′∗

I := P−1
I (L(GI)), Im := P−1

I (Lm(GI)) ⊆ Σ′∗

When a system contained only one low level (serial case), we used the serial

interface consistency definition given below.

2Some primes (“′”) have been added to avoid confusion with the definitions in Section 3.3.

41

Master’s Thesis - P. Dai McMaster - Computing and Software

Definition 4.2.1 The system composed of DES G′H , GL and GI , is serial inter-

face consistent with respect to the alphabet partition Σ′ := Σ′
H ∪̇ΣL ∪̇ΣR ∪̇ΣA, if

the following properties hold,

Multi-level Properties

1. The event set of G′H is Σ′
IH , and the event set of GL is ΣIL.

2. GI is a command-pair interface.

High Level Properties

3. (∀s ∈ H′ ∩ I) EligI(s) ∩ ΣA ⊆ EligH′(s)

Low Level Properties

4. (∀s ∈ L ∩ I) EligI(s) ∩ ΣR ⊆ EligL(s)

5. (∀s ∈ Σ′∗.ΣR ∩ L ∩ I)
EligL∩I(sΣ

∗
L) ∩ ΣA = EligI(s) ∩ ΣA where

EligL∩I(sΣ
∗
L) :=

⋃

l∈Σ∗L

EligL∩I(sl)

6. (∀s ∈ L ∩ I)
s ∈ Im ⇒ (∃l ∈ Σ∗

L) sl ∈ Lm ∩ Im

It’s clear that for n = 1 and after appropriate relabeling, the interface consis-

tency definition (Definition 3.4.1) reduces to the serial interface consistency defini-

tion; thus any result (such as in [34]) using the serial interface consistency definition

would be immediately satisfied by Definition 3.4.1, with n = 1.

For the general case (n ≥ 1 low levels), we need to extend our serial case

definitions to the parallel case. As the event set of each low level is disjoint from

the event sets of the other low levels, we can consider the parallel interface system

as n serial interface systems (referred to as serial system extractions) by choosing

42

Master’s Thesis - P. Dai McMaster - Computing and Software

one low level and ignoring the others. This is shown conceptually in Fig. 4.1. The

full definition is given below.

Definition 4.2.2 For the nth degree (n ≥ 1) parallel interface system composed

of DES GH , GL1 , . . . , GLn , GI1 , . . . , GIn, with alphabet partition given by (3.1), the

jth serial system extraction (subsystem form), denoted by system(j), is composed

of the following elements:

G′H(j) := GH ||GI1|| . . . ||GI(j−1)
||GI(j+1)

|| . . . ||GIn

GL(j) := GLj
, GI(j) := GIj

Σ′
H(j) := ∪̇k∈{1, ..., (j−1), (j+1), ..., n}ΣIk

∪̇ΣH

ΣL(j) := ΣLj
, ΣR(j) := ΣRj

, ΣA(j) := ΣAj

Σ′(j) := Σ′
H(j) ∪̇ΣL(j) ∪̇ΣR(j) ∪̇ΣA(j)

= Σ − ∪̇k∈{1, ..., (j−1), (j+1), ..., n}ΣLk

Figure 4.1: The Serial System Extractions

We are now ready to state the original interface consistency definition, for the

parallel case.

43

Master’s Thesis - P. Dai McMaster - Computing and Software

Definition 4.2.3 The nth degree (n ≥ 1) parallel interface system composed of

DES GH , GL1 , . . . , GLn , GI1 , . . . , GIn, is interface consistent (ORIG) with respect

to alphabet partition given by (3.1), if for all j ∈ {1, . . . , n}, the jth serial system

extraction of the system is serial interface consistent.

Our next step is to introduce an intermediate form of the interface consistency

definition, created from unrolling the interface consistency (ORIG) definition by

applying the serial system extraction. This new form is easily obtainable from

Definition 4.2.3 and has the same structure as Definition 3.4.1. This will make

it easier to show that the two definitions are equivalent. To construct this new

form of the definition, we will equate the components of a serial extraction system

with the components of a serial system, and then interpret the notation of a serial

interface system in the obvious way.

Definition 4.2.4 The nth degree (n ≥ 1) parallel interface system composed of

DES GH ,GI1 , GL1 , . . . ,GIn ,GLn, is interface consistent (IntmORIG) with respect

to the alphabet partition given by (3.1), if for all j ∈ {1, . . . , n}, the following

conditions are satisfied:

Multi-level Properties

1. The event set of G′
H(j) is ΣIH , and the event set of GLj

is ΣILj
.

2. GIj
is a command-pair interface.

High Level Property

3. (∀s ∈ H′(j) ∩ I(j)) EligI(j)(s) ∩ ΣAj
⊆ EligH′(j)(s)

Low Level Properties

4. (∀s ∈ L(j) ∩ I(j)) EligI(j)(s) ∩ ΣRj
⊆ EligL(j)(s)

44

Master’s Thesis - P. Dai McMaster - Computing and Software

5. (∀s ∈ Σ∗.ΣRj
∩ L(j) ∩ I(j))

EligL(j)∩I(j)(sΣ
∗
Lj

) ∩ ΣAj
= EligI(j)(s) ∩ ΣAj

where

EligL(j)∩I(j)(sΣ
∗
Lj

) :=
⋃

l∈Σ∗Lj

EligL(j)∩I(j)(sl)

6. (∀s ∈ L(j) ∩ I(j))
s ∈ Im(j)⇒ (∃l ∈ Σ∗

Lj
) sl ∈ Lm(j) ∩ Im(j).

We will now show that the intermediate form is equivalent to the original form

of the interface consistency definition.

Proposition 4 The nth degree (n ≥ 1) parallel interface system composed of DES

GH , GL1 , . . . , GLn ,GI1 , . . . ,GIn, is interface consistent (IntmORIG) (Definition

4.2.4) with respect to alphabet partition given by (3.1), iff, the system is interface

consistent (ORIG) (Definition 4.2.3) with respect to alphabet partition given by

(3.1).

Proof

We will prove this by starting with Definition 4.2.3 and converting it into the form

of Definition 4.2.4.

If Definition 4.2.3 is satisfied, then for all j ∈ {1, . . . , n}, the jth serial system

extraction (subsystem form), denoted by system(j), is serial interface consistent.

That means for all j ∈ {1, . . . , n}, the following conditions are satisfied: (A.1)

1. The event set of G′H(j) is Σ′
IH(j), and the event set of GL(j) is ΣIL(j).

2. GI(j) is a command-pair interface.

3. (∀s ∈ H′(j) ∩ I(j)) EligI(j)(s) ∩ ΣA(j) ⊆ EligH′(j)(s)

4. (∀s ∈ L(j) ∩ I(j)) EligI(j)(s) ∩ ΣR(j) ⊆ EligL(j)(s)

45

Master’s Thesis - P. Dai McMaster - Computing and Software

5. (∀s ∈ Σ′∗(j).ΣR(j) ∩ L(j) ∩ I(j))
EligL(j)∩I(j)(sΣ

∗
L(j)) ∩ ΣA(j) = EligI(j)(s) ∩ ΣA(j) where

EligL(j)∩I(j)(sΣ
∗
L(j)) :=

⋃

l∈Σ∗L(j)

EligL(j)∩I(j)(sl)

6. (∀s ∈ L(j) ∩ I(j))
s ∈ Im(j)⇒ (∃l ∈ Σ∗

L(j)) sl ∈ Lm(j) ∩ Im(j)

We next note the following facts:

• From Definition 4.2.2, we know thatGL(j) = GLj
, GI(j) = GIj

, ΣL(j) = ΣLj
,

ΣR(j) = ΣRj
, ΣA(j) = ΣAj

, and Σ′(j) = Σ − ∪̇k∈{1, ..., (j−1), (j+1), ..., n}ΣLk

(A.2)

• From Proposition 21 in [34], we know that that GIj
is defined over event set

ΣILj
. (A.3)

• From Proposition 23 in [34], we know that Σ′
IH(j) = ΣIH , and ΣIL(j) = ΣILj

.

(A.4)

• We note that Σ∗.ΣRj
∩L(j)∩I(j)) = Σ′∗(j).ΣRj

∩L(j)∩I(j)) as Σ′∗(j).ΣRj
⊆

Σ∗.ΣRj
, L(j) ⊆ Σ′∗(j) thus (Σ∗.ΣRj

− Σ′∗(j).ΣRj
) ∩ L(j) = ∅. (A.5)

Now, substituting the results of (A.2) - (A.5) into (A.1), we can conclude that,

for all j ∈ {1, . . . , n}, the following conditions are satisfied:

1. The event set of G′
H(j) is ΣIH , and the event set of GLj

is ΣILj
.

2. GIj
is a command-pair interface.

3. (∀s ∈ H′(j) ∩ I(j)) EligI(j)(s) ∩ ΣAj
⊆ EligH′(j)(s)

4. (∀s ∈ L(j) ∩ I(j)) EligI(j)(s) ∩ ΣRj
⊆ EligL(j)(s)

46

Master’s Thesis - P. Dai McMaster - Computing and Software

5. (∀s ∈ Σ∗.ΣRj
∩ L(j) ∩ I(j))

EligL(j)∩I(j)(sΣ
∗
Lj

) ∩ ΣAj
= EligI(j)(s) ∩ ΣAj

where

EligL(j)∩I(j)(sΣ
∗
Lj

) :=
⋃

l∈Σ∗Lj

EligL(j)∩I(j)(sl)

6. (∀s ∈ L(j) ∩ I(j))
s ∈ Im(j)⇒ (∃l ∈ Σ∗

Lj
) sl ∈ Lm(j) ∩ Im(j).

which is exactly equal to Definition 4.2.4, as required.

¤

We conclude this section by presenting our theorem that shows that our new

definition of interface consistency is equivalent to the original.

Theorem 3 The nth degree (n ≥ 1) parallel interface system composed of DES

GH ,GL1 , . . . , GLn ,GI1 , . . . ,GIn, is interface consistent (Definition 3.4.1) with

respect to alphabet partition given by (3.1), iff, the system is interface consistent

(ORIG) (Definition 4.2.3) with respect to alphabet partition given by (3.1).

Proof

We first note that as Definition 4.2.4 is equivalent to Definition 4.2.3 by Proposition

4, it is sufficient to show:

Definition 3.4.1⇔ Definition 4.2.4

As the two definitions are almost exactly of the same form, we will prove this point

by point, for each of the six points of the two definitions.

1. For point (1), the two definitions are almost the same already, thus we only

have to account for the difference.

a) Assume Definition 4.2.4 is satisfied.

47

Master’s Thesis - P. Dai McMaster - Computing and Software

From Proposition 21 in [34], we can immediately conclude that the event set

of GH is ΣIH .

b) Assume Definition 3.4.1 is satisfied.

Must show this implies the event set of G′
H(j) is ΣIH .

By definition, G′
H(j) = GH ||GI1|| . . . ||GI(j−1)

||GI(j+1)
|| . . . ||GIn .

From point (1) of Definition 3.4.1, we know that the event set of GH is ΣIH .

From the command-pair interface definition, and point (1) of Definition

3.4.1, we know that the event set of GIk
is ΣIk

(k = 1, . . . j − 1, j + 1, . . . n).

We thus have the event set of G′
H(j) is:

ΣG′
H(j) = ∪k∈{1, ..., (j−1), (j+1), ..., n}ΣIk

∪ ΣIH = ΣIH

2. Point (2) is automatic.

3. For Point (3), we need to show:

(Definition 4.2.4) (∀s ∈ H′(j) ∩ I(j)) EligI(j)(s) ∩ ΣAj
⊆

EligH′(j)(s) ⇔ (A.1)

(Definition 3.4.1) (∀s ∈ H ∩⋂
k=1,...,n Ik) EligIj

(s) ∩ ΣAj
⊆ Elig

H∩ T
k 6= j

Ik

(s)

(A.2)

We will start by massaging (A.1) into the correct form so that we can apply

Proposition 3.

We first note that by Proposition 1, the languages H and Ik (k = 1, . . . , n)

are Pj-invariant. That means that we can apply Proposition 2 to them.

48

Master’s Thesis - P. Dai McMaster - Computing and Software

From Proposition 23 of [34], we have:

H′(j) = Pj(H) ∩
⋂

k=1,...,(j−1),(j+1),...,n

Pj(Ik)

= Pj(H) ∩
⋂

k 6=j

Pj(Ik)

= Pj(H ∩
⋂

k 6=j

Ik), by Proposition 2(b) (A.3)

I(j) = Pj(Ij) (A.4)

H′(j) ∩ I(j)) = Pj(H) ∩
⋂

k 6=j

Pj(Ik) ∩ Pj(Ij)

= Pj(H ∩
⋂

k=1,...,n

Ik), by Proposition 2(b) (A.5)

Substituting from (A.3)-(A.5) into (A.1), we have:

(∀s ∈ Pj(H∩
⋂

k=1,...,n

Ik) EligPj(Ij)
(s) ∩ΣAj

⊆ EligPj(H∩
T

k 6=j Ik)(s) (A.6)

By Proposition 1 and Proposition 2(c), we have:

P−1
j (Pj(H∩

⋂
k=1,...,n Ik)) = H∩⋂

k=1,...,n Ik and P−1
j (Pj(H∩

⋂
k 6=j Ik)) =

H ∩⋂
k 6=j Ik

In other words, languages H∩⋂
k=1,...,n Ik and H∩⋂

k 6=j Ik are Pj-invariant.

(A.7)

We next note that, by Proposition 1, we have P−1
j (Pj(Ij)) = Ij, and by

definition, we have ΣAj
⊆ Σ′∗(j).

We now take Σb = ΣAj
, Σa = Σ′∗(j), P = Pj, L1 = H∩⋂

k=1,...,n Ik, L2 = Ij,

L3 = H ∩⋂
k 6=j Ik, and we can conclude by Proposition 3, and (A.7) that:

(∀s ∈ Pj(H ∩
⋂

k∈{1,...,n}
Ik)) EligPj(Ij)

(s) ∩ ΣAj
⊆ EligPj(H∩

T
k 6=j Ik)(s)

⇔ (∀s ∈ H ∩
⋂

k=1,...,n

Ik) EligIj
(s) ∩ ΣAj

⊆ EligH∩Tk 6=j Ik
(s)

We can now conclude by (A.6), that (A.1)⇔ (A.2), as required.

49

Master’s Thesis - P. Dai McMaster - Computing and Software

4. For Point (4), we need to show:

(Definition 4.2.4) (∀s ∈ L(j)∩I(j)) EligI(j)(s) ∩ ΣRj
⊆ EligL(j)(s) ⇔

(A.8)

(Definition 3.4.1) (∀s ∈ Lj ∩ Ij) EligIj
(s) ∩ ΣRj

⊆ EligLj
(s) (A.9)

From Proposition 23 of [34], we have I(j) = Pj(Ij), and L(j) = Pj(Lj). We

also note that by Proposition 1, Lj and Ij are Pj-invariant. (A.10)

⇒ Pj(Lj) ∩ Pj(Ij) = Pj(Lj ∩ Ij)), by Proposition 2(b).

Substituting this and (A.10) into (A.8), we get:

(∀s ∈ Pj(Lj ∩ Ij)) EligPj(Ij)
(s) ∩ ΣRj

⊆ EligPj(Lj)
(s) (A.11)

By Proposition 1 and Proposition 2(c), we have:

P−1
j (Pj(Lj ∩ Ij)) = Lj ∩ Ij

In other words, the language Lj ∩ Ij is Pj-invariant. (A.12)

We next note that, by definition, ΣRj
⊆ Σ′∗(j).

We now take Σb = ΣRj
, Σa = Σ′∗(j), L1 = Lj ∩ Ij, L2 = Ij, L3 = Lj, and

we can conclude by Proposition 3, (A.10), and (A.12) that:

(∀s ∈ Pj(Lj ∩ Ij)) EligPj(Ij)
(s) ∩ ΣRj

⊆ EligPj(Lj)
(s)

⇔ (∀s ∈ Lj ∩ Ij) EligIj
(s) ∩ ΣRj

⊆ EligLj
(s)

We can now conclude by (A.11), that (A.8)⇔ (A.9), as required.

5. For Point (5), we need to show:

(Definition 4.2.4)

(∀s ∈ Σ∗.ΣRj
∩ L(j) ∩ I(j)) EligL(j)∩I(j)(sΣ

∗
Lj

) ∩ ΣAj
= EligI(j)(s) ∩ ΣAj

50

Master’s Thesis - P. Dai McMaster - Computing and Software

⇔ (A.13)

where EligL(j)∩I(j)(sΣ
∗
Lj

) :=
⋃

l∈Σ∗Lj

EligL(j)∩I(j)(sl)

(Definition 3.4.1) (∀s ∈ Σ∗.ΣRj
∩Lj∩Ij) EligLj ∩Ij

(sΣ∗
Lj

) ∩ ΣAj
= EligIj

(s) ∩

ΣAj
(A.14)

where EligLj∩Ij
(sΣ∗

Lj
) :=

⋃

l∈Σ∗Lj

EligLj∩Ij
(sl)

From Proposition 23 of [34], we have I(j) = Pj(Ij), and L(j) = Pj(Lj). We

also note that by Proposition 1, Lj and Ij are Pj-invariant. (A.15)

Substituting into (A.13), we get:

(∀s ∈ Σ∗.ΣRj
∩ Pj(Lj) ∩ Pj(Ij))

EligPj(Lj)∩Pj(Ij)
(sΣ∗

Lj
) ∩ ΣAj

= EligPj(Ij)
(s) ∩ ΣAj

where EligPj(Lj)∩Pj(Ij)
(sΣ∗

Lj
) :=

⋃

l∈Σ∗Lj

EligPj(Lj)∩Pj(Ij)
(sl)

By the definition of Elig() operator, it is sufficient to show:

(∀s ∈ Σ∗.ΣRj
∩ Pj(Lj) ∩ Pj(Ij))(∀α ∈ ΣAj

) (A.16)

[sΣ∗
Lj
α∩Pj(Lj) ∩ Pj(Ij) 6= ∅ ⇔ sα ∈ Pj(Ij)] ⇔

(∀s′ ∈ Σ∗.ΣRj
∩ Lj ∩ Ij)(∀α′ ∈ ΣAj

) [s′Σ∗
Lj
α′ ∩ Lj ∩ Ij 6= ∅ ⇔ s′α′ ∈ Ij]

(A.17)

We first observe that: (A.18)

(∀l ∈ Σ∗
Lj

)Pj(l) = l, as ΣLj
⊆ Σ′(j).

(∀ρ ∈ ΣRj
)Pj(ρ) = ρ, as ΣRj

⊆ Σ′(j).

(∀α ∈ ΣAj
)Pj(α) = α, as ΣAj

⊆ Σ′(j).

In order to prove (A.16)⇔ (A.17), we need to show: (I) (A.16)⇒ (A.17)

and (II) (A.17) ⇒ (A.16)

(I) Show (A.16) ⇒ (A.17).

51

Master’s Thesis - P. Dai McMaster - Computing and Software

Assume (A.16). Must show implies (A.17).

Let s′ ∈ Σ∗.ΣRj
∩ Lj ∩ Ij and α′ ∈ ΣAj

(A.19)

Must show: (I.a) s′Σ∗
Lj
α′ ∩ Lj ∩ Ij 6= ∅ ⇒ s′α′ ∈ Ij and (I.b) s′α′ ∈ Ij ⇒

s′Σ∗
Lj
α′ ∩ Lj ∩ Ij 6= ∅.

We first note that as s′ ∈ Σ∗.ΣRj
∩ Lj ∩ Ij (by (A.19)), it follows that:

Pj(s
′) ∈ Pj(Σ

∗.ΣRj
) ∩ Pj(Lj) ∩ Pj(Ij)

As Pj(Σ
∗.ΣRj

) = Σ′∗(j).ΣRj
(by (A.18) and definition of Pj) and

Σ′∗(j).ΣRj
⊆ Σ∗.ΣRj

(by definition of Σ′∗(j)), we have:

Pj(s
′) ∈ Σ∗.ΣRj

∩ Pj(Lj) ∩ Pj(Ij) (A.20)

(I.a) Show s′Σ∗
Lj
α′ ∩ Lj ∩ Ij 6= ∅ ⇒ s′α′ ∈ Ij

Assume s′Σ∗
Lj
α′ ∩ Lj ∩ Ij 6= ∅ (A.21)

Must show implies s′α′ ∈ Ij

From (A.21), we can conclude:

(∃l ∈ Σ∗
Lj

) s′lα′ ∈ Lj ∩ Ij

⇒ Pj(s
′lα′) ∈ Pj(Lj ∩ Ij)

⇒ Pj(s
′)lα′ ∈ Pj(Lj) ∩ Pj(Ij), by (A.15), (A.18), and Proposition 2(b).

⇒ Pj(s
′)Σ∗

Lj
α′ ∩ Pj(Lj) ∩ Pj(Ij) 6= ∅ (A.22)

By (A.20), (A.19), (A.22), and taking s = Pj(s
′), α = α′, we can apply

(A.16) and conclude:

Pj(s
′)α′ ∈ Pj(Ij).

⇒ Pj(s
′α′) ∈ Pj(Ij), by (A.18)

⇒ s′α′ ∈ Ij, by (A.15), and Proposition 2(d).

52

Master’s Thesis - P. Dai McMaster - Computing and Software

Part (I.a) complete.

(I.b) Show s′α′ ∈ Ij ⇒ s′Σ∗
Lj
α′ ∩ Lj ∩ Ij 6= ∅.

Let s′α′ ∈ Ij. (A.23)

Must show (∃l ∈ Σ∗
Lj

) s′lα′ ∈ Lj ∩ Ij.

From (A.23), we can conclude:

Pj(s
′α′) ∈ Pj(Ij)

⇒ Pj(s
′)α′ ∈ Pj(Ij), by (A.18). (A.24)

By (A.20), (A.19), (A.24), and taking s = Pj(s
′), α = α′, we can apply

(A.16) and conclude:

(∃l ∈ Σ∗
Lj

)Pj(s
′)lα′ ∈ Pj(Lj) ∩ Pj(Ij)

⇒ Pj(s
′lα′) ∈ Pj(Lj ∩ Ij), by (A.18), (A.15), and Proposition 2(b).

⇒ s′lα′ ∈ Lj ∩ Ij, by (A.15), and Proposition 2(c), (d).

Part (I.b) complete.

By Parts (I.a) and (I.b), we have (A.16) ⇒ (A.17).

Part (I) complete.

(II) Show (A.17) ⇒ (A.16).

Assume (A.17). Must show implies (A.16).

Let s ∈ Σ∗.ΣRj
∩ Pj(Lj) ∩ Pj(Ij) and α ∈ ΣAj

. (A.25)

Must show: (II.a) sΣ∗
Lj
α ∩ Pj(Lj) ∩ Pj(Ij) 6= ∅ ⇒ sα ∈ Pj(Ij) and (II.b)

sα ∈ Pj(Ij)⇒ sΣ∗
Lj
α ∩ Pj(Lj) ∩ Pj(Ij) 6= ∅.

53

Master’s Thesis - P. Dai McMaster - Computing and Software

We first note that by (A.25), we have:

s ∈ Pj(Lj) and s ∈ Pj(Ij)

⇒ s ∈ Lj ∩ Ij by (A.15) and Proposition 2(a).

⇒ s ∈ Σ∗.ΣRj
∩ Lj ∩ Ij, by (A.25). (A.26)

(II.a) Show sΣ∗
Lj
α ∩ Pj(Lj) ∩ Pj(Ij) 6= ∅ ⇒ sα ∈ Pj(Ij).

Assume sΣ∗
Lj
α ∩ Pj(Lj) ∩ Pj(Ij) 6= ∅ (A.27)

Must show implies sα ∈ Pj(Ij).

From (A.27), we can conclude:

(∃l ∈ Σ∗
Lj

) slα ∈ Pj(Lj) ∩ Pj(Ij)

⇒ slα ∈ Lj ∩ Ij, by (A.15) and Proposition 2(a).

⇒ sΣ∗
Lj
α ∩ Lj ∩ Ij 6= ∅ (A.28)

By (A.25), (A.26), (A.28), and taking s′ = s and α′ = α, we can apply

(A.17) and conclude:

sα ∈ Ij

⇒ Pj(sα) ∈ Pj(Ij) (A.29)

We first note that by (A.25), we have s ∈ Pj(Lj) ⊆ Σ′∗(j)

⇒ Pj(sα) = sα, by (A.18), and definition of Pj.

⇒ sα ∈ Pj(Ij), by (A.29).

Part (II.a) complete.

(II.b) Show sα ∈ Pj(Ij)⇒ sΣ∗
Lj
α ∩ Pj(Lj) ∩ Pj(Ij) 6= ∅.

Assume sα ∈ Pj(Ij). (A.30)

54

Master’s Thesis - P. Dai McMaster - Computing and Software

Must show (∃l ∈ Σ∗
Lj

) slα ∈ Pj(Lj) ∩ Pj(Ij).

From (A.15), (A.30), and Proposition 2(a), we can conclude: sα ∈ Ij

(A.31)

By (A.26), (A.25), (A.31), and taking s′ = s and α′ = α, we can apply

(A.17) and conclude:

(∃l ∈ Σ∗
Lj

) slα ∈ Lj ∩ Ij (A.32)

⇒ Pj(slα) ∈ Pj(Lj ∩ Ij)

⇒ Pj(slα) ∈ Pj(Lj) ∩ Pj(Ij), by (A.15) and Proposition 2(b).

We next note that by (A.25), we have s ∈ Pj(Lj) ⊆ Σ′∗(j)

⇒ Pj(slα) = slα, by (A.18), (A.32), and definition of Pj.

⇒ slα ∈ Pj(Lj) ∩ Pj(Ij), as required.

Part (II.b) complete.

By Parts (II.a) and (II.b), we have (A.17) ⇒ (A.16).

Part (II) complete.

By Parts (I) and Part (II), we have (A.16) ⇔ (A.17), as required.

6. For Point (6), we need to show:

(Definition 4.2.4)

(∀s ∈ L(j)∩I(j)) s ∈ Im(j)⇒ (∃l ∈ Σ∗
Lj

) sl ∈ Lm(j)∩Im(j) ⇔
(A.33)

(Definition 3.4.1) (∀s′ ∈ Lj ∩ Ij) s
′ ∈ Imj

⇒ (∃l′ ∈ Σ∗
Lj

) s′l′ ∈ Lmj
∩ Imj

(A.34)

55

Master’s Thesis - P. Dai McMaster - Computing and Software

From Proposition 23 of [34], we have I(j) = Pj(Ij), L(j) = Pj(Lj), Im(j) =

Pj(Imj
), and Lm(j) = Pj(Lmj

). We also note that by Proposition 1, Lj, Ij,

Lmj
, and Imj

are Pj-invariant. (A.35)

Substituting into (A.33), we get:

(∀s ∈ Pj(Lj) ∩ Pj(Ij)) s ∈ Pj(Imj
) ⇒ (∃l ∈ Σ∗

Lj
) sl ∈ Pj(Lmj

) ∩ Pj(Imj
)

(A.36)

It is thus sufficient to show (A.36)⇔ (A.34).

To do this, we need to show: (I) (A.36) ⇒ (A.34) and (II) (A.34) ⇒
(A.36).

(I) Show (A.36) ⇒ (A.34).

Assume (A.36). Must show implies (A.34).

Let s′ ∈ Lj ∩ Ij. Assume s′ ∈ Imj
. (A.37)

We must show implies (∃l′ ∈ Σ∗
Lj

) s′l′ ∈ Lmj
∩ Imj

.

From (A.37), we can conclude:

Pj(s
′) ∈ Pj(Lj ∩ Ij) and Pj(s

′) ∈ Pj(Imj
)

⇒ Pj(s
′) ∈ Pj(Lj)∩Pj(Ij)) and Pj(s

′) ∈ Pj(Imj
) by (A.35), and Proposition

2(b).

We can now apply (A.36) by taking s = Pj(s
′), and conclude:

(∃l′ ∈ Σ∗
Lj

) Pj(s
′)l′ ∈ Pj(Lmj

) ∩ Pj(Imj
).

As Σ∗
Lj
⊆ Σ′(j), and by (A.35), Proposition 2(b), and definition of Pj, we

can conclude:

Pj(s
′l′) ∈ Pj(Lmj

∩ Imj
).

56

Master’s Thesis - P. Dai McMaster - Computing and Software

We can now conclude by (A.35), and Proposition 2(c), (d):

s′l′ ∈ Lmj
∩ Imj

, as required.

Part (I) complete.

(II) Show (A.34) ⇒ (A.36).

Assume (A.34). Must show implies (A.36).

Let s ∈ Pj(Lj) ∩ Pj(Ij), and assume s ∈ Pj(Imj
). (A.38)

We must show implies (∃l ∈ Σ∗
Lj

) sl ∈ Pj(Lmj
) ∩ Pj(Imj

).

From (A.38), we can conclude:

s ∈ Pj(Lj), s ∈ Pj(Ij), and s ∈ Pj(Imj
)

⇒ s ∈ Lj ∩ Ij and s ∈ Imj
, by (A.35), and Proposition 2(a).

We can now apply (A.34) by taking s′ = s, and conclude:

(∃l ∈ Σ∗
Lj

) sl ∈ Lmj
∩ Imj

⇒ Pj(sl) ∈ Pj(Lmj
∩ Imj

)

⇒ Pj(sl) ∈ Pj(Lmj
) ∩ Pj(Imj

), by (A.35), and Proposition 2(b).

We next note that by (A.38), we have s ∈ Pj(Lj) ⊆ Σ′∗(j).

We thus have Pj(sl) = sl as Σ∗
Lj
⊆ Σ′∗(j), and by definition of Pj.

⇒ sl ∈ Pj(Lmj
) ∩ Pj(Imj

), as required.

Part (II) complete.

By Parts (I) and (II), we have (A.36) ⇔ (A.34), as required.

We have now shown that all six points of the two definitions are equivalent, and we

57

Master’s Thesis - P. Dai McMaster - Computing and Software

can thus conclude that the parallel system satisfies Definition 3.4.1 iff it satisfies

Definition 4.2.3.

¤

4.3 Level-wise Nonblocking

In the original level-wise nonblocking definition, we first defined the serial level-

wise nonblocking definition for the serial system consisting of DES G′
H , GL, and

GI . We then used the concept of serial system extractions (Definition 4.2.2) to

extend the serial definition to the parallel case.

We now restate the serial level-wise nonblocking definition below. It’s clear that

for n = 1 and after appropriate relabeling, the level-wise nonblocking definition

(Definition 3.5.1) reduces to the serial level-wise nonblocking definition; thus any

result (such as in [34]) using the serial level-wise nonblocking definition would be

immediately satisfied by Definition 3.5.1, with n = 1.

Definition 4.3.1 The system composed of DES G′H , GL, and GI , is said to

be serial level-wise nonblocking with respect to the alphabet partition Σ′ :=

Σ′
H ∪̇ΣL ∪̇ΣR ∪̇ΣA, if the following conditions are satisfied:

(I) H′m ∩ Im = H′ ∩ I

(II) Lm ∩ Im = L ∩ I

We now define the original level-wise nonblocking definition by extending the

serial level-wise nonblocking definition to the parallel case, using Definition 4.2.2.

Definition 4.3.2 The nth degree (n ≥ 1) parallel interface system composed of

DES GH , GL1 , . . . , GLn , GI1 , . . . , GIn, is level-wise nonblocking (ORIG) with re-

spect to the alphabet partition given by (3.1), if for all j ∈ {1, . . . , n}, the jth

serial system extraction of the system is serial level-wise nonblocking.

58

Master’s Thesis - P. Dai McMaster - Computing and Software

Before we can prove the equivalence of our new level-wise nonblocking defini-

tion, we first need a useful corollary. In Section 4.2, we made extensive use of

Proposition 23 in [34]. However, this proposition required that the parallel system

be interface consistent (ORIG). However, for the parts of Proposition 23 in [34]

we need for our next theorem, a weaker condition is sufficient. The restriction on

the alphabet of the DES belonging to the parallel system that we use has always

been implicit in the level-wise nonblocking definitions; we are only make it explicit

so we can use it in the corollary below.

Corollary 1 If the nth degree (n ≥ 1) parallel interface system composed of DES

GH , GL1 , . . . , GLn , GI1 , . . . , GIn with alphabet partition given by (3.1), is as defined

in Section 3.3 with respect to the alphabets of the given DES, then for the jth serial

system extraction, system(j), the following is true:

(i) The following event sets are: ΣI(j) = ΣIj
, ΣIH′(j) = ΣIH , and ΣIL(j) =

ΣILj

(ii) The following inverse natural projections are: PIH′(j)−1 = Pj · P−1
IH ,

PIL(j)−1 = Pj · P−1
ILj

, and PI(j)
−1 = Pj · P−1

Ij

(iii) The indicated languages satisfy the following statements:

H′(j) = Pj (H) ∩ [∩k∈{1, ..., (j−1), (j+1), ..., n}Pj (Ik)]

H′m(j) = Pj (Hm) ∩ [∩k∈{1, ..., (j−1), (j+1), ..., n}Pj (Imk
)]

L(j) = Pj (Lj)

Lm(j) = Pj (Lmj
)

I(j) = Pj (Ij)

Im(j) = Pj (Imj
)

Proof Results follow immediately from the proofs of the corresponding parts of

Proposition 23 in [34].

¤

59

Master’s Thesis - P. Dai McMaster - Computing and Software

We conclude this section by presenting our theorem that shows that our new

definition of level-wise nonblocking is equivalent to the original.

Theorem 4 The nth degree (n ≥ 1) parallel interface system composed of DES

GH ,GL1 , . . . , GLn ,GI1 , . . . ,GIn as defined in Section 3.3 with respect to the alpha-

bets of the given DES, is level-wise nonblocking (Definition 3.5.1) with respect to

alphabet partition given by (3.1), iff, the system is level-wise nonblocking (ORIG)

(Definition 4.3.2) with respect to alphabet partition given by (3.1).

Proof

Assume that the nth degree (n ≥ 1) parallel interface system composed of DES

GH ,GL1 , . . . ,GLn ,GI1 , . . . ,GIn is defined as in Section 3.3 with respect to the

alphabets of the given DES. (A.1)

We start by converting Definition 4.3.2 into a more useful form.

If Definition 4.3.2 is satisfied, then for all j ∈ {1, . . . , n}, the jth serial system

extraction (subsystem form), denoted by system(j), is serial level-wise nonblocking.

We thus have Definition 4.3.2 is equivalent to:

(∀j ∈ {1, . . . , n}), system(j) satisfies: (A.2)

(I) H′m(j) ∩ Im(j) = H′(j) ∩ I(j)

(II) Lm(j) ∩ Im(j) = L(j) ∩ I(j)

We can now apply Corollary 1 and conclude that H′(j) =

Pj (H) ∩ [∩k∈{1, ..., (j−1), (j+1), ..., n}Pj (Ik)], H′m(j) = Pj (Hm) ∩
[∩k∈{1, ..., (j−1), (j+1), ..., n}Pj (Imk

)], L(j) = Pj (Lj), Lm(j) = Pj (Lmj
),

I(j) = Pj (Ij), and Im(j) = Pj (Imj
).

Substituting into (A.2) and simplifying, we find that Definition 4.3.2 is equivalent

to: (A.3)

60

Master’s Thesis - P. Dai McMaster - Computing and Software

(I) for all j ∈ {1, . . . , n}, Pj (Hm) ∩⋂
k=1,...,n Pj (Imk

) = Pj (H) ∩
⋂

k=1,...,n Pj (Ik)

(II) for all j ∈ {1, . . . , n}, Pj (Lmj
) ∩ Pj (Imj

) = Pj (Lj) ∩ Pj (Ij)

In order to prove the system satisfies Definition 4.3.2 iff it satisfies Definition 3.5.1,

it is thus sufficient to show (A.3) iff Definition 3.5.1.

As (A.3) and Definition 3.5.1 are of the same form, we will prove equivalence point

by point.

We first note that for all j ∈ {1, . . . , n}, the languages H, Hm, Ik, Imk
(k ∈

{1 . . . n}), Lj, and Lmj
are Pj-invariant, by Proposition 1. (A.4)

(I) For Point I, we need to show:

(A.3) ∀j ∈ {1, . . . , n}, Pj (Hm) ∩⋂
k=1,...,n Pj (Imk

) = Pj (H) ∩ ⋂
k=1,...,n Pj (Ik)

⇔ (A.5)

(Definition 3.5.1) Hm ∩
⋂

k=1,...,n Imk
= H ∩⋂

k=1,...,n Ik (A.6)

To do this, we need to show: (I.a) (A.5) ⇒ (A.6) and (I.b) (A.6) ⇒ (A.5).

(I.a) Show (A.5) ⇒ (A.6).

Assume (A.5). Must show implies (A.6).

As Hm ∩
⋂

k=1,...,n Imk
⊆ H ∩⋂

k∈{1...n} Ik is automatic, we only need to show:

H ∩⋂
k=1,...,n Ik ⊆ Hm ∩

⋂
k=1,...,n Imk

.

Let s ∈ H ∩⋂
k=1,...,n Ik (A.7)

Must show implies s ∈ Hm ∩
⋂

k=1,...,n Imk
.

Assume j ∈ {1, . . . , n}. From (A.7), we can conclude:

Pj(s) ∈ Pj(H ∩
⋂

k=1,...,n Ik)

61

Master’s Thesis - P. Dai McMaster - Computing and Software

By (A.4) and Proposition 2(b), we have:

Pj(s) ∈ Pj(H) ∩⋂
k=1,...,n Pj(Ik)

By (A.5), we can conclude:

Pj(s) ∈ Pj(Hm) ∩⋂
k=1,...,n Pj(Imk

)

⇒ (∃s′ ∈ Σ′(j)∗)Pj(s)s
′ ∈ Pj(Hm) ∩⋂

k=1,...,n Pj(Imk
)

As s′ ∈ Σ′(j)∗, we thus have Pj(s
′) = s′, by definition of Pj.

⇒ Pj(ss
′) ∈ Pj(Hm) ∩⋂

k=1,...,n Pj(Imk
), as Pj is catenative.

By (A.4) and Proposition 2(b), we have:

Pj(ss
′) ∈ Pj(Hm ∩

⋂
k=1,...,n Imk

)

⇒ ss′ ∈ Hm ∩
⋂

k=1,...,n Imk
, by (A.4), and Proposition 2(c),(d).

⇒ s ∈ Hm ∩
⋂

k=1,...,n Imk
, as required.

Part (I.a) complete.

(I.b) Show (A.6) ⇒ (A.5).

Assume (A.6). Must show implies (A.5).

Let j ∈ {1, . . . , n}. As Pj(Hm) ∩⋂
k=1,...,n Pj(Imk

) ⊆ Pj(H) ∩ ⋂
k=1,...,n Pj(Ik) is

automatic, we only need to show:

Pj(H) ∩⋂
k=1,...,n Pj(Ik) ⊆ Pj(Hm) ∩⋂

k=1,...,n Pj(Imk
)

Let s ∈ Pj(H) ∩⋂
k=1,...,n Pj(Ik) (A.8)

Must show implies s ∈ Pj(Hm) ∩⋂
k=1,...,n Pj(Imk

).

From (A.4), (A.8), and Proposition 2(b), we can conclude:

s ∈ Pj(H ∩
⋂

k=1,...,n Ik)

62

Master’s Thesis - P. Dai McMaster - Computing and Software

⇒ s ∈ H ∩⋂
k=1,...,n Ik, by (A.4), and Proposition 2(c),(a).

By (A.6), we can conclude:

s ∈ Hm ∩
⋂

k=1,...,n Imk

⇒ (∃s′ ∈ Σ∗) ss′ ∈ Hm ∩
⋂

k=1,...,n Imk

⇒ Pj(ss
′) ∈ Pj(Hm ∩

⋂
k=1,...,n Imk

)

⇒ Pj(ss
′) ∈ Pj(Hm) ∩⋂

k=1,...,n Pj(Imk
), by (A.4), and Proposition 2(b).

⇒ Pj(s)Pj(s
′) ∈ Pj(Hm) ∩⋂

k=1,...,n Pj(Imk
), as Pj is catenative.

As s ∈ Pj(H) ⊆ Σ′(j)∗ (by (A.8)), we have Pj(s) = s (by definition of Pj).

⇒ sPj(s
′) ∈ Pj(Hm) ∩⋂

k=1,...,n Pj(Imk
)

s ∈ Pj(Hm) ∩⋂
k=1,...,n Pj(Imk

), as required.

Part (I.b) complete.

By Parts (I.a) and (I.b), we have (A.5) ⇔ (A.6), as required.

(II) For Point II, and letting j ∈ {1, . . . , n}, we need to show:

(A.3) Pj(Lmj
) ∩ Pj(Imj

) = Pj(Lj) ∩ Pj(Ij) ⇔ (A.9)

(Definition 3.5.1) Lmj
∩ Imj

= Lj ∩ Ij (A.10)

The proof here is identical to Part I, after appropriate relabelling.

By Parts I and II, we can conclude (A.3) iff Definition 3.5.1, as required.

¤

63

Master’s Thesis - P. Dai McMaster - Computing and Software

4.4 Level-wise Controllability

In the original level-wise controllability definition, we first defined the serial level-

wise controllability definition for the serial system consisting of plant components

Gp
H
′, Gp

L, supervisors S′H , SL, and interface GI . We then used the concept of

serial system extractions (Definition 4.4.2 below) to extend the serial definition to

the parallel case.

We assume that the alphabet partition for a serial system is specified by Σ′ :=

Σ′
H ∪̇ΣL ∪̇ΣR ∪̇ΣA, and then we introduce the following useful languages:

Hp′ := P−1
IHL(Gp

H
′), S ′H := P−1

IHL(S′H), ⊆ Σ∗

Lp := P−1
IL L(GL), SL := P−1

IL L(SL), ⊆ Σ∗

We now restate the serial level-wise controllability definition below. It’s clear

that for n = 1 and after appropriate relabelling, the level-wise controllability

definition (Definition 3.6.1) reduces to the serial level-wise controllability definition;

thus any result (such as in [34]) using the serial level-wise controllability definition

would be immediately satisfied by Definition 3.6.1, with n = 1.

Definition 4.4.1 The system composed of plant components Gp
H
′, Gp

L, supervi-

sors S′H , SL, and interface GI , is said to be serial level-wise controllable with

respect to the alphabet partition Σ′ := Σ′
H ∪̇ΣL ∪̇ΣR ∪̇ΣA, if the following condi-

tions are satisfied:

(I) The alphabet of Gp
H
′ and S′H is ΣIH , the alphabet of Gp

L and SL is ΣIL,

and the alphabet of GI is ΣI .

(II) (∀s ∈ Lp ∩ SL ∩ I) EligLp(s) ∩ Σu ⊆ EligSL∩I(s)

(III) (∀s ∈ Hp′ ∩ I ∩ S ′H) EligHp′∩I(s) ∩ Σu ⊆ EligS′H (s)

64

Master’s Thesis - P. Dai McMaster - Computing and Software

We now restate the general form of the serial system extraction needed for the

controllability definition. We simply refer to the jth serial system extraction, as

the type of the parallel system (general form or subsystem form) will make clear

which definition is intended.

Definition 4.4.2 For the nth degree (n ≥ 1) parallel interface system composed

of DES Gp
H , Gp

L1
, . . . , Gp

Ln
, SH , SL1 , . . . ,SLn , GI1 , . . . ,GIn, with alphabet parti-

tion given by (3.1), the jth serial system extraction (general form), denoted by

system(j), is composed of the following elements:

Gp
H
′(j) := Gp

H ||GI1|| . . . ||GI(j−1)
||GI(j+1)

|| . . . ||GIn

S′H(j) := SH , Gp
L(j) := Gp

Lj
, SL(j) := SLj

, GI(j) := GIj

Σ′
H(j) := ∪̇k∈{1, ..., (j−1), (j+1), ..., n}ΣIk

∪̇ΣH

ΣL(j) := ΣLj
, ΣR(j) := ΣRj

, ΣA(j) := ΣAj

Σ′(j) := Σ′
H(j) ∪̇ΣL(j) ∪̇ΣR(j) ∪̇ΣA(j)

= Σ − ∪̇k∈{1, ..., (j−1), (j+1), ..., n}ΣLk

We are now ready to state the original level-wise controllability definition, for

the parallel case.

Definition 4.4.3 The nth degree (n ≥ 1) parallel interface system composed of

DES Gp
H ,G

p
L1
, . . . ,Gp

Ln
, SH , SL1 , . . . ,SLn , GI1 , . . . ,GIn, is level-wise controllable

(ORIG) with respect to alphabet partition given by (3.1), if for all j ∈ {1, . . . , n},
the jth serial system extraction of the system is serial level-wise controllable.

We now need to provide a counterpart to Proposition 1 for languages of a

general form system. For j ∈ {1, . . . , n}, the proposition below essentially states

that the indicated languages are Pj-invariant.

Proposition 5 With Hp, SH , Lp
j , and SLj

as defined in Section 3.6, we have:

65

Master’s Thesis - P. Dai McMaster - Computing and Software

(a) P−1
j (Pj(Hp)) = Hp

(b) P−1
j (Pj(SH) = SH

(c) P−1
j (Pj(Lp

j)) = Lp
j

(d) P−1
j (Pj(SLj

)) = SLj

Proof

Point (a)-(d) Proofs are identical to Point (a) of Proposition 1 after appropriate

substitutions.

¤

We conclude this section by presenting our theorem that shows that our new

definition of level-wise controllability is equivalent to the original.

Theorem 5 The nth degree (n ≥ 1) parallel interface system composed of

DES Gp
H ,G

p
L1
, . . . ,Gp

Ln
, SH , SL1 , . . . ,SLn , GI1 , . . . ,GIn, is level-wise controllable

(Definition 3.6.1) with respect to alphabet partition given by (3.1), iff, the system is

level-wise controllable (ORIG) (Definition 4.4.3) with respect to alphabet partition

given by (3.1).

Proof

We start by converting Definition 4.4.3 into a more useful form.

If Definition 4.4.3 is satisfied, then for all j ∈ {1, . . . , n}, the jth serial system

extraction (general form), denoted by system(j), is serial level-wise controllable.

We thus have Definition 4.4.3 is equivalent to:

(∀j ∈ {1, . . . , n}), system(j) satisfies: (A.1)

(I) The alphabet of Gp
H
′(j) and S′H(j) is ΣIH(j), the alphabet of Gp

L(j) and

SL(j) is ΣIL(j), and the alphabet of GI(j) is ΣI(j).

66

Master’s Thesis - P. Dai McMaster - Computing and Software

(II) (∀s ∈ Lp(j) ∩ SL(j) ∩ I(j)) EligLp(j)(s) ∩ Σu ⊆ EligSL(j)∩I(j)(s)

(III) (∀s ∈ Hp′(j) ∩ I(j) ∩ S ′H(j)) EligHp′(j)∩I(j)(s) ∩ Σu ⊆ EligS′H(j)(s)

It is thus sufficient to show that system satisfies (A.1) iff it satisfies Definition

3.6.1.

As (A.1) and Definition 3.6.1 are of the same form, we will prove equivalence point

by point.

(I) For Point I, we must show:

(A.1) (∀j ∈ {1, . . . , n}) the alphabet of Gp
H
′(j) and S′H(j) is ΣIH(j), the (A.2)

alphabet of Gp
L(j) and SL(j) is ΣIL(j), and the alphabet of GI(j) is ΣI(j)

⇔

(Defn. 3.6.1) (∀j ∈ {1, . . . , n}) the alphabet of Gp
H and SH is ΣIH , the alphabet

of (A.3)

Gp
Lj

and SLj
is ΣILj

, and the alphabet of GIj
is ΣIj

(I.a) Show (A.2) ⇒ (A.3)

Assume (A.2). Must show implies (A.3).

This follows immediately from Proposition 28 of [34].

(I.b) Show (A.3) ⇒ (A.2)

Assume (A.3). Must show implies (A.2).

By definition, Gp
H
′(j) = Gp

H ||GI1|| . . . ||GI(j−1)
||GI(j+1)

|| . . . ||GIn , S′H(j) = SH ,

Gp
L(j) = Gp

Lj
, SL(j) = SLj

, and GI(j) := GIj
. (A.4)

From Proposition 30 of [34], we can conclude:

ΣIH(j) = ΣIH , ΣIL(j) = ΣILj
, and ΣI(j) = ΣIj

.

67

Master’s Thesis - P. Dai McMaster - Computing and Software

Combining with (A.4) and substituting into (A.2), we can conclude that it is

sufficient to show that:

(∀j ∈ {1, . . . , n}) the alphabet of Gp
H ||GI1|| . . . ||GI(j−1)

||GI(j+1)
|| . . . ||GIn and

SH is ΣIH , the alphabet of Gp
Lj

and SLj
is ΣILj

, and the alphabet of GIj
is ΣIj

(A.5)

All of this follows immediately from (A.3), except showing that the alphabet of

Gp
H
′(j) = Gp

H ||GI1|| . . . ||GI(j−1)
||GI(j+1)

|| . . . ||GIn is ΣIH .

From the definition of the synchronous product and (A.3), we can conclude that

the alphabet of Gp
H
′(j) is:

ΣGp
H
′
(j) = ∪k∈{1, ..., (j−1), (j+1), ..., n}ΣIk

∪ ΣIH = ΣIH

Part I.b complete.

By Parts I.a and I.b, we can conclude (A.2) ⇔ (A.3), as required.

(II) For Point II, and j ∈ {1, . . . , n}, we must show:

(A.1) (∀s ∈ Lp(j) ∩ SL(j) ∩ I(j)) EligLp(j)(s) ∩ Σu ⊆ EligSL(j)∩I(j)(s) ⇔
(A.6)

(Defn. 3.6.1) (∀s ∈ Lp
j ∩ SLj

∩ Ij) EligLp
j
(s) ∩ Σu ⊆ EligSLj

∩Ij
(s) (A.7)

We start by converting (A.6) into a more useful form.

From Proposition 30 of [34], we can conclude:

Lp(j) = Pj(Lp
j), SL(j) = Pj(SLj

), I(j) = Pj(Ij)

Substituting into (A.6), we find that (A.6) is equivalent to:

(∀s ∈ Pj(Lp
j) ∩ Pj(SLj

) ∩ Pj(Ij)) EligPj(Lp
j)(s)∩Σu ⊆ EligPj(SLj

)∩Pj(Ij)
(s) (A.8)

It is thus sufficient to show (A.8) ⇔ (A.7).

68

Master’s Thesis - P. Dai McMaster - Computing and Software

We first note that, by Propositions 1 and 5, languages Lp
j , SLj

, and Ij are Pj-

invariant. (A.9)

⇒ Lp
j ∩ SLj

∩ Ij and SLj
∩ Ij are Pj-invariant, by Proposition 2(c). (A.10)

By (A.9) and Proposition 2(b), we can also conclude:

Pj(Lp
j ∩ SLj

∩ Ij) = Pj(Lp
j)∩Pj(SLj

)∩Pj(Ij) and Pj(SLj
∩Ij) = Pj(SLj

)∩Pj(Ij)

(A.11)

We next note that (A.7) and (A.8) are almost in the correct form to apply

Proposition 3. The only problem is that Σu is not necessarily a subset of Σ′(j).

Claim 1:

(∀s ∈ Pj(Lp
j) ∩ Pj(SLj

) ∩ Pj(Ij)) (†)
EligPj(Lp

j)(s) ∩ Σu ⊆ EligPj(SLj
)∩Pj(Ij)

(s) ⇔ EligPj(Lp
j)(s) ∩ (Σu ∩ Σ′(j)) ⊆

EligPj(SLj
)∩Pj(Ij)

(s)

Let s ∈ Pj(Lp
j) ∩ Pj(SLj

) ∩ Pj(Ij)

We first note that Pj(Lp
j) ⊆ Σ′(j), by definition of Pj.

⇒ EligPj(Lp
j)(s) ⊆ Σ′(j), by definition of the Elig operator.

⇒ EligPj(Lp
j)(s) ∩ Σ′(j) = EligPj(Lp

j)(s)

The result follows immediately, thus (dagger) holds. Claim 1 complete.

Claim 2:

(∀s ∈ Lp
j ∩ SLj

∩ Ij) (‡)
EligLp

j
(s) ∩ Σu ⊆ EligSLj

∩Ij
(s) ⇔ EligLp

j
(s) ∩ (Σu ∩ Σ′(j)) ⊆ EligSLj

∩Ij
(s)

69

Master’s Thesis - P. Dai McMaster - Computing and Software

Let s ∈ Lp
j ∩ SLj

∩ Ij (A.12)

(2.a) Show EligLp
j
(s) ∩ Σu ⊆ EligSLj

∩Ij
(s) ⇒ EligLp

j
(s) ∩ (Σu ∩ Σ′(j)) ⊆

EligSLj
∩Ij

(s)

This is automatic as EligLp
j
(s) ∩ (Σu ∩ Σ′(j)) ⊆ EligLp

j
(s) ∩ Σu

(2.b) Show EligLp
j
(s) ∩ (Σu ∩ Σ′(j)) ⊆ EligSLj

∩Ij
(s) ⇒ EligLp

j
(s) ∩ Σu ⊆

EligSLj
∩Ij

(s)

Assume EligLp
j
(s) ∩ (Σu ∩ Σ′(j)) ⊆ EligSLj

∩Ij
(s) (A.13)

Let σ ∈ EligLp
j
(s) ∩ Σu. (A.14)

Must show that implies σ ∈ EligSLj
∩Ij

(s).

Sufficient to show that sσ ∈ SLj
∩ Ij, by definition of Elig operator.

From (A.14), we have two possibilities: σ ∈ Σ′(j) ∩ Σu or σ ∈ Σu − Σ′(j)

For case σ ∈ Σ′(j) ∩ Σu, the results follow immediately from (A.13).

For case σ ∈ Σu − Σ′(j), we start by noting that this implies that Pj(σ) = ε, by

definition of Pj (A.15)

We next note that s ∈ SLj
∩ Ij (by (A.12)) implies that:

Pj(s) ∈ Pj(SLj
∩ Ij)

⇒ Pj(s)Pj(σ) ∈ Pj(SLj
∩ Ij), by (A.15).

⇒ Pj(sσ) ∈ Pj(SLj
∩ Ij), as Pj is catenative.

⇒ sσ ∈ SLj
∩ Ij, by (A.10) and Proposition 2(d).

Part 2.b complete.

70

Master’s Thesis - P. Dai McMaster - Computing and Software

By Parts 2.a and 2.b, we can conclude that (‡) holds. Claim 2 complete.

By (A.11), Claims 1 and 2, we see that to prove (A.8) ⇔ (A.7), it is sufficient

to prove:

(∀s ∈ Pj(Lp
j ∩ SLj

∩ Ij))EligPj(Lp
j)(s) ∩ (Σu ∩ Σ′(j)) ⊆ EligPj(SLj

∩Ij)
(s) ⇔

(A.16)

(∀s ∈ Lp
j ∩ SLj

∩ Ij) EligLp
j
(s) ∩ (Σu ∩ Σ′(j)) ⊆ EligSLj

∩Ij
(s) (A.17)

We can now take Σa = Σ′(j), Σb = Σu ∩ Σ′(j), P = Pj, L1 = Lp
j ∩ SLj

∩ Ij,

L2 = Lp
j , L3 = SLj

∩ Ij, and conclude by (A.9), (A.10), and Proposition 3 that:

(A.16) ⇔ (A.17)

Part II complete.

(III) For Point III, we must show:

(A.1) (∀s ∈ Hp′(j) ∩ I(j) ∩ S ′H(j)) EligHp′(j)∩I(j)(s) ∩ Σu ⊆ EligS′H(j)(s) ⇔
(A.18)

(Defn. 3.6.1) (∀s ∈ Hp ∩ [∩k∈{1,...,n}Ik] ∩ SH) EligHp∩[∩k∈{1,...,n}Ik](s) ∩ Σu ⊆
EligSH

(s) (A.19)

We start by converting (A.18) into a more useful form.

From Proposition 30 of [34], we can conclude:

Hp′(j) = Pj(Hp) ∩ [∩k∈{1, ..., (j−1), (j+1), ..., n}Pj (Ik)], S ′H(j) = Pj(SH), I(j) =

Pj(Ij)

Substituting into (A.18), we find that (A.18) is equivalent to:

(∀s ∈ Pj(Hp) ∩ [∩k∈{1,...,n}Pj (Ik)] ∩ Pj(SH))

EligPj(Hp)∩[∩k∈{1,...,n}Pj (Ik)](s) ∩ Σu ⊆ EligPj(SH)(s) (A.20)

71

Master’s Thesis - P. Dai McMaster - Computing and Software

It is thus sufficient to show (A.20) ⇔ (A.19).

We first note that, by Propositions 1 and 5, languagesHp, SH , and Ik (k = 1, . . . , n)

are Pj-invariant. (A.21)

⇒ Hp ∩ [∩k∈{1,...,n}Ik] ∩ SH and Hp ∩ [∩k∈{1,...,n}Ik are Pj-invariant (Proposition

2(c)). (A.22)

By (A.21) and Proposition 2(b), we can also conclude:

Pj(Hp∩ [∩k∈{1,...,n}Ik]∩SH) = Pj(Hp)∩ [∩k∈{1,...,n}Pj (Ik)]∩Pj(SH) and Pj(Hp∩
[∩k∈{1,...,n}Ik)

= Pj(Hp) ∩ [∩k∈{1,...,n}Pj (Ik)] (A.23)

The remainder of the proof is identical to Part II, after suitable relabelling.

Part III complete.

We thus conclude by Points I, II, and III, that Definition 3.6.1 is equivalent to

Definition 4.4.3, as required.

¤

4.5 Main Nonblocking and Controllability Re-

sults

Now that we have shown that our new HISC definitions are equivalent to the

original ones from [34], we can apply the results from [34] to systems that satisfy

our new definitions.

We are now ready to present our nonblocking theorem for parallel interface

systems. It basically states that if the system is level-wise nonblocking and interface

consistent, then the flat system will be nonblocking.

72

Master’s Thesis - P. Dai McMaster - Computing and Software

Theorem 6 If the nth degree (n ≥ 1) parallel interface system composed of DES

GH ,GI1 , GL1 , . . . ,GIn ,GLn, is level-wise nonblocking (Definition 3.5.1) and in-

terface consistent (Definition 3.4.1) with respect to the alphabet partition given by

(3.1), then Lm(G) = L(G), where G = GH ||GI1||GL1|| . . . ||GIn||GLn.

Proof Results follow immediately from Theorem 3 from [34], and Theorems 3,

and 4. ¤

We now present a sufficient condition for controllability of parallel interface sys-

tems. It states that if the system is level-wise controllable, then the flat supervisor

is controllable for the flat plant.3

Theorem 7 If the nth degree (n ≥ 1) parallel interface system composed of

plant components Gp
H , G

p
L1
, . . . ,Gp

Ln
, supervisors SH , SL1 , . . . ,SLn, and interfaces

GI1 , . . . ,GIn, is level-wise controllable (Definition 3.6.1) with respect to the alpha-

bet partition given by (3.1), then

(∀s ∈ L(Plant) ∩ L(Sup)) EligL(Plant)(s) ∩ Σu ⊆ EligL(Sup)(s)

Proof Results follow immediately from Theorem 4 from [34], and Theorem 5. ¤

3At first glance, the controllability definition used below might seem slightly different than
the one given in Section 2.3, but this can be easily reconciled by noting that for Theorem 7,
ΣG = ΣS = Σ.

73

Master’s Thesis - P. Dai McMaster - Computing and Software

Chapter 5

HISC Synthesis Method

In Chapter 3, we describe a nth degree (n ≥ 1) interface system composed of plant

DES, supervisor DES , and interface DES. For this system, we showed how the

properties of interface consistency, level-wise nonblocking, and level-wise control-

lable could be used to verify that the flat system is nonblocking, and that the flat

supervisor is controllable for the flat plant. However, if the system fails one of

these conditions, we need a way to automatically modify the system so that it will

satisfy all three of the above conditions. We need a synthesis method that will

respect the HISC structure and provide a similar level of scalability.

5.1 Synthesis Setting

In Chapter 3, we referred to a system composed of plant DES Gp
H , Gp

L1
, . . . ,

Gp
Ln

, supervisor DES SH , SL1 , . . . ,SLn , and interface DES GI1 , . . . ,GIn as a nth

degree interface system. When we specify a nth degree interface system and give

supervisors (as opposed to specifications), we will refer to such a system as a nth

degree supervisor interface system.

For a nth degree supervisor interface system, we assume that we are given a

74

Master’s Thesis - P. Dai McMaster - Computing and Software

supervisor for the high-level, and one for each of the n low-levels, and that we are

verifying that the interface system satisfies the interface conditions. For synthesis,

we will assume that we are instead given a specification for each component. Our

goal will then be to synthesize a supervisor for each component that will satisfy

the corresponding HISC conditions by design, and will be maximally permissive

for its component.

For synthesis, we will replace supervisor SH by specification DES EH (defined

over ΣIH), and for j ∈ {1, . . . , n}, we will replace supervisor SLj
by specification

DES ELj
(defined over ΣILj

). We will refer to the system composed of plant

DES Gp
H , G

p
L1
, . . . , Gp

Ln
, specification DES EH , EL1 , . . . ,ELn , and interface DES

GI1 , . . . ,GIn as a nth degree specification interface system.

As a starting point for synthesis, we need to make sure that our specification

interface system meets certain basic requirements. These are portions of the HISC

conditions that we will not be able to correct for as part of our synthesis procedure.

Definition 5.1.1 The nth degree specification interface system composed of plant

DES Gp
H , G

p
L1
, . . . , Gp

Ln
, specification DES EH , EL1 , . . . ,ELn, and interface DES

GI1 , . . . ,GIn is HISC-valid with respect to alphabet partition given by (3.1), if for

all j ∈ {1, . . . , n}, the following conditions are satisfied:

1. The event set of Gp
H and EH is ΣIH , and the event set of Gp

Lj
and ELj

is

ΣILj
.

2. GIj
is a command-pair interface.

For the rest of this chapter, we will use Φ to stand for the nth degree HISC-

valid specification interface system that respects the alphabet partition given

by (3.1) and is composed of plant DES Gp
H , Gp

L1
, . . . , Gp

Ln
, specification DES

EH , EL1 , . . . ,ELn , and interface DES GI1 , . . . ,GIn , that we are considering. We

will also take j to be an index in the range {1, . . . , n}.

75

Master’s Thesis - P. Dai McMaster - Computing and Software

In Chapter 3, we introduced the languages Hp, Lp
j , Ij, and Imj

. We now

introduce a few more useful languages.

Hp
m = P−1

IH (Lm(Gp
H))

EH = P−1
IH (L(EH))

EHm = P−1
IH (Lm(EH))

Lp
mj

= P−1
ILj

(Lm(Gp
Lj

))

ELj
= P−1

ILj
(L(ELj

))

ELj,m
= P−1

ILj
(Lm(ELj

))

To simplify proofs in the following chapters, we define languages1

I =
⋂

k∈{1,...,n}
Ik

Im =
⋂

k∈{1,...,n}
Imk

We will refer to the DES that represents the high level of Φ as:

GHL = Gp
H ||EH ||GI1|| . . . ||GIn

We can now define the languages for GHL over Σ∗ as follows:

ZH = P−1
IH (L(GHL)) = Hp ∩ EH ∩ I

ZHm = P−1
IH (Lm(GHL)) = Hp

m ∩ EHm ∩ Im

We will refer to the DES that represents the jth low level of Φ as:

GLLj
= Gp

Lj
||ELj

||GIj

We can now define the languages for GLLj
over Σ∗ as follows:

ZLj
= P−1

ILj
(L(GLLj

)) = Lp
j ∩ ELj

∩ Ij

ZLj,m
= P−1

ILj
(Lm(GLLj

)) = Lp
mj
∩ ELj,m

∩ Imj

1We also used I and Im in Chapter 4 to represent languages in the serial case. This should
not cause any confusion as when n = 1 (the serial case), they become equivalent.

76

Master’s Thesis - P. Dai McMaster - Computing and Software

5.2 High Level Synthesis

We start by examining how, give system Φ, we can synthesize a supervisor for the

high level. Our first step is to capture the HISC properties that the supervisor’s

marked language must satisfy.

Definition 5.2.1 Let Z ⊆ Σ∗. For system Φ, language Z is high level interface

controllable (HIC) if for all s ∈ Hp ∩ I ∩ Z, the following conditions are satisfied:

1. EligHp∩I(s) ∩ Σu ⊆ EligZ(s)

2. (∀j ∈ {1, . . . , n}) EligIj
(s) ∩ ΣAj

⊆ Elig
Hp∩Z∩ T

k 6= j
Ik

(s)

These conditions are essentially point 3 of Definition 3.6.1 and point 3 of Def-

inition 3.4.2, where we have substituted Z for any reference of the high level su-

pervisor’s closed behavior, SH , and we have used the identity GH := Gp
H ||SH for

the high level subsystem.

For an arbitrary language E ⊆ Σ∗, we now define the set of all sublanguages

of E that are high level interface controllable with respect to Φ as

CH(E) := {Z ⊆ E|Z is HIC with respect to Φ}

It is easy to see that (CH(E),⊆) is a poset. We will now show that the set

CH(E) is nonempty, and that the supremum always exists.

Proposition 6 Let E ⊆ Σ∗. For system Φ, CH(E) is nonempty and is closed

under arbitrary union. In particular, CH(E) contains a (unique) supremal element

that we will denote supCH(E).

Proof

Let E ⊆ Σ∗.

77

Master’s Thesis - P. Dai McMaster - Computing and Software

We will break the proof into three parts: 1) show CH(E) is nonempty, 2) show

CH(E) is closed under arbitrary union. 3) show CH(E) contains a (unique) supremal

element.

1) Show CH(E) is nonempty.

Clearly, ∅ ⊆ E and the empty set is HIC with respect to system Φ and is thus in

CH(E).

2) Show CH(E) is closed under arbitrary union.

Let Zβ ∈ CH(E) for all β ∈ B, where B is an index set. Let Z = ∪{Zβ| β ∈ B}.

Sufficient to show that Z ∈ CH(E).

Clearly, Z ⊆ E. All we still need to show is that Z is HIC with respect to system

Φ.

This means showing that for all s ∈ Hp ∩ I ∩ Z, the following conditions are

satisfied:

1. EligHp∩I(s) ∩ Σu ⊆ EligZ(s)

2. (∀j ∈ {1, . . . , n}) EligIj
(s) ∩ ΣAj

⊆ Elig
Hp∩Z∩ T

k 6= j
Ik

(s)

Let s ∈ Hp ∩ I ∩ Z. (1)

We first note that this gives us s ∈ Z

⇒ (∃s′ ∈ Σ∗) ss′ ∈ Z

⇒ (∃β ∈ B) ss′ ∈ Zβ, by definition of Z.

⇒ s ∈ Zβ

78

Master’s Thesis - P. Dai McMaster - Computing and Software

We thus have: s ∈ Hp ∩ I ∩ Zβ, by (1). (2)

a) Show EligHp∩I(s) ∩ Σu ⊆ EligZ(s)

Sufficient to show (∀σ ∈ Σu) sσ ∈ Hp ∩ I ⇒ sσ ∈ Z

Let σ ∈ Σu. (3)

Assume sσ ∈ Hp ∩ I (4)

Will now show this implies sσ ∈ Z.

We immediately have: s ∈ Hp ∩I ∩Zβ, σ ∈ Σu, and sσ ∈ Hp ∩I by (2), (3), and

(4).

As Zβ ∈ CH(E) by definition and is thus HIC for Φ, we can conclude:

sσ ∈ Zβ

⇒ (∃s′′ ∈ Σ∗) sσs′′ ∈ Zβ

⇒ sσs′′ ∈ Z, by definition of Z.

⇒ sσ ∈ Z, as required.

Part a complete.

b) Show (∀j ∈ {1, . . . , n}) EligIj
(s) ∩ ΣAj

⊆ Elig
Hp∩Z∩ T

k 6= j
Ik

(s) Let j ∈

{1, . . . , n}.

Sufficient to show: (∀α ∈ ΣAj
) sα ∈ Ij ⇒ sα ∈ Hp ∩ Z ∩ T

k 6= j
Ik

Let α ∈ ΣAj
(5)

Assume sα ∈ Ij (6)

79

Master’s Thesis - P. Dai McMaster - Computing and Software

Will now show implies sα ∈ Hp ∩ Z ∩ T
k 6= j
Ik

We immediately have: s ∈ Hp ∩ I ∩ Zβ, α ∈ ΣAj
, and sα ∈ Ij by (2), (5), and

(6).

As Zβ ∈ CH(E) by definition and is thus HIC for Φ, we can conclude:

sα ∈ Hp ∩ Zβ ∩ T
k 6= j
Ik (7)

⇒ sα ∈ Zβ

⇒ (∃u ∈ Σ∗) sαu ∈ Zβ

⇒ sαu ∈ Z, by definition of Z.

⇒ sα ∈ Z

Combining with (7), we have sα ∈ Hp ∩ Z ∩ T
k 6= j
Ik, as required.

Part b complete.

From Parts a and b, we can conclude that Z is HIC with respect to system Φ.

We can thus conclude that Z ∈ CH(E), as required.

Part 2 complete.

3) Show CH(E) contains a (unique) supremal element.

Sufficient to show that supremal element exists, as uniqueness would thus follow.

Let supCH(E) = ∪{Z|Z ∈ CH(E)}

Claim: supCH(E) is the supremal element.

From Part 2, we have: supCH(E) ∈ CH(E)

80

Master’s Thesis - P. Dai McMaster - Computing and Software

Clearly, (∀Z ∈ CH(E))Z ⊆ supCH(E), thus supCH(E) is an upper bound for

CH(E).

All that remains is to show:

(∀Z ′ ∈ CH(E)) ((∀Z ∈ CH(E)) Z ⊆ Z ′)⇒ supCH(E) ⊆ Z ′

Let Z ′ ∈ CH(E).

Assume (∀Z ∈ CH(E)) Z ⊆ Z ′ (8)

Must show implies supCH(E) ⊆ Z ′

Let s ∈ supCH(E). Must show implies s ∈ Z ′.

s ∈ supCH(E)⇒ (∃Z ∈ CH(E)) s ∈ Z, by definition of supCH(E).

⇒ s ∈ Z ′, by (8)

We thus conclude that supCH(E) is the supremal element.

Part 3 complete.

¤

We now note that if we take language E = ZHm , we can conclude that

supCH(ZHm) = supCH(Hp
m ∩ EHm ∩ Im) exists. As supCH(ZHm) ⊆ ZHm by def-

inition, it follows that supCH(ZHm) ∩ ZHm = supCH(ZHm). This implies that

supCH(ZHm) ⊆ ZH as ZHm ⊆ ZH and ZH is closed. This means that if we take

supCH(ZHm) as the marked language of our high level supervisor, and supCH(ZHm)

as the supervisor’s closed behavior, then the supervisor will represent the closed

loop behavior of the high level. It will thus follow that the high level will be

nonblocking, and thus point 1 of Definition 3.5.1 will automatically be satisfied.

81

Master’s Thesis - P. Dai McMaster - Computing and Software

5.2.1 High Level Fixpoint Operator

Now that we have shown that supCH(ZHm) exists, we need a means to construct

it. We will do so by defining a fixpoint operator ΩH , and show that our supremal

element is the greatest fixpoint of the operator. To do this, we need to first define

functions ΩHNB and ΩHIC.

Definition 5.2.2 For system Φ, we define the high level nonblocking operator,

ΩHNB : Pwr(Σ∗)→ Pwr(Σ∗), for arbitrary Z ∈ Pwr(Σ∗) as follows:

ΩHNB(Z) := Z ∩ ZHm

The way we will be using ΩHNB, we would have Z ⊆ ZH and closed, thus ΩHNB(Z)

would be the marked strings of the high level that remain in Z. Clearly, operator

ΩHNB is monotone.

Definition 5.2.3 For system Φ, we define the high level interface controllable

operator, ΩHIC : Pwr(Σ∗)→ Pwr(Σ∗), for arbitrary Z ∈ Pwr(Σ∗) as follows:

ΩHIC(Z) := Z − ExtZ(FailHIC(Z))

where

FailHIC(Z) := {s ∈ Hp ∩ I ∩ Z| ¬[EligHp∩I(s) ∩ Σu ⊆ EligZ(s)] ∨ [(∃j ∈ {1, . . . , n})
¬(EligIj

(s) ∩ ΣAj
⊆ Elig

Hp∩Z∩ T
k 6= j

Ik

(s))]}

We first note that FailHIC(Z) ⊆ Z and thus FailHIC(Z) ⊆ ExtZ(FailHIC(Z)) as

s ≤ s, for all s ∈ Σ∗. The way we will be using ΩHIC(Z), we would have Z ⊆ ZHm

and thus we would be removing from Z any string that has a prefix that would

cause Z to fail the HIC definition. The reason we also remove the extensions of

failing strings, is to ensure that we get a prefix closed language.

We first prove a proposition with a useful result.

82

Master’s Thesis - P. Dai McMaster - Computing and Software

Proposition 7 Let Z ∈ Pwr(Σ∗). For all X ⊆ Z, it is true that

Z − ExtZ(X) = Z − ExtZ(X)

Proof

Let (X ⊆ Z)

As Z − ExtZ(X) ⊇ Z − ExtZ(X) is automatic, we only need to show ⊆.

Let s ∈ Z − ExtZ(X) (1)

We will now show this implies: s ∈ Z − ExtZ(X)

From (1), we have: (∃s′ ∈ Σ∗)ss′ ∈ Z − ExtZ(X)

⇒ ss′ ∈ Z ∧ ss′ /∈ ExtZ(X) (2)

⇒ ss′ 6∈ {t ∈ Z| t′ ≤ t for some t′ ∈ X}, by definition of the Ext operator.

Clearly ss′ /∈ ExtZ(X)⇒ s /∈ ExtZ(X) or we would have a contradiction.

⇒ s ∈ Z ∧ s /∈ ExtZ(X) by (2) and fact that Z is closed.

⇒ s ∈ Z − ExtZ(X)

¤

Lemma 2 Let Z ∈ Pwr(Σ∗). For system Φ, the operator ΩHIC always produces

a prefix closed language. ie. ΩHIC(Z) = ΩHIC(Z)

Proof

We first note that by definition, we have: ΩHIC(Z) = Z − ExtZ(FailHIC(Z))

It is thus sufficient to show that:

Z − ExtZ(FailHIC(Z)) = Z − ExtZ(FailHIC(Z))

83

Master’s Thesis - P. Dai McMaster - Computing and Software

We have FailHIC(Z) ⊆ Z by definition, so we can now apply Proposition 7 and

conclude: Z − ExtZ(FailHIC(Z)) = Z − ExtZ(FailHIC(Z))

¤

We now show that operator ΩHIC is monotone.

Lemma 3 For system Φ, the operator ΩHIC is monotone. ie.

(∀Z,Z ′ ∈ Pwr(Σ∗))Z ⊆ Z ′ ⇒ ΩHIC(Z) ⊆ ΩHIC(Z ′)

Proof

Let Z,Z ′ ∈ Pwr(Σ∗)

Assume Z ⊆ Z ′ (1)

Let s ∈ ΩHIC(Z). (2)

We will now show this implies: s ∈ ΩHIC(Z ′)

By Definition of ΩHIC operator, it is sufficient to show:

s ∈ Z ′ − ExtZ′(FailHIC(Z ′))

From (2), we have: s ∈ ΩHIC(Z)

⇒ s ∈ Z − ExtZ(FailHIC(Z)), by definition of ΩHIC.

⇒ s ∈ Z ∧ s 6∈ ExtZ(FailHIC(Z)) (3)

⇒ s ∈ Z

⇒ s ∈ Z ′ as Z ⊆ Z ′ (by (1)), and fact prefix closure preserves ordering. (4)

All that remains now is to show that: s 6∈ ExtZ′(FailHIC(Z ′))

This means showing: s 6∈ {t ∈ Z ′| t′ ≤ t for some t′ ∈ FailHIC(Z ′)}, by definition

of the Ext operator.

84

Master’s Thesis - P. Dai McMaster - Computing and Software

Thus sufficient to show that: (∀s′ ≤ s) s′ 6∈ FailHIC(Z ′)

Substituting for FailHIC(Z ′), we see we must show:

(∀s′ ≤ s) s′ 6∈ {t ∈ Hp ∩ I ∩ Z ′| ¬[EligHp∩I(t) ∩ Σu ⊆ EligZ′(t)] ∨
[(∃j ∈ {1, . . . , n})¬(EligIj

(t) ∩ ΣAj
⊆ Elig

Hp∩Z′∩ T
k 6= j

Ik

(t))]}

Which means it’s sufficient to show:

(∀s′ ≤ s) s′ ∈ Hp ∩ I ∩ Z ′ ⇒ [EligHp∩I(s
′) ∩ Σu ⊆ EligZ′(s

′)] ∧
[(∀j ∈ {1, . . . , n})(EligIj

(s′) ∩ ΣAj
⊆ Elig

Hp∩Z′∩ T
k 6= j

Ik

(s′))]

Let s′ ≤ s (6)

Assume s′ ∈ Hp ∩ I ∩ Z ′ (7)

We will now show this implies:

[EligHp∩I(s
′) ∩ Σu ⊆ EligZ′(s

′)] ∧
[(∀j ∈ {1, . . . , n})(EligIj

(s′) ∩ ΣAj
⊆ Elig

Hp∩Z′∩ T
k 6= j

Ik

(s′))] †

We next note that we have s 6∈ ExtZ(FailHIC(Z)) by (3).

⇒ (∀s′′ ≤ s) s′′ ∈ Hp ∩ I ∩ Z ⇒ [EligHp∩I(s
′′) ∩ Σu ⊆ EligZ(s′′)] ∧

[(∀j ∈ {1, . . . , n})(EligIj
(s′′) ∩ ΣAj

⊆ Elig
Hp∩Z∩ T

k 6= j
Ik

(s′′))] (8)

We now note that as s′ ≤ s by (6), and s ∈ Z by (3), it follows that s′ ∈ Z as Z

is closed.

⇒ s′ ∈ Hp ∩ I ∩ Z, by (7).

Using (8), we can now conclude:

[EligHp∩I(s
′) ∩ Σu ⊆ EligZ(s′)] ∧

85

Master’s Thesis - P. Dai McMaster - Computing and Software

[(∀j ∈ {1, . . . , n})(EligIj
(s′) ∩ ΣAj

⊆ Elig
Hp∩Z∩ T

k 6= j
Ik

(s′))] (9)

We next note that we have Z ⊆ Z ′, as Z ⊆ Z ′ (by (1)) and fact prefix closure

preserves ordering. (10)

We will now show that † is satisfied in two parts.

A) Show EligHp∩I(s
′) ∩ Σu ⊆ EligZ′(s

′)

Sufficient to show: (∀σ ∈ Σu) s
′σ ∈ Hp ∩ I ⇒ s′σ ∈ Z ′

Let σ ∈ Σu and assume s′σ ∈ Hp ∩ I.

s′σ ∈ Z ′ follows immediately from (9) and (10).

B) Show (∀j ∈ {1, . . . , n})(EligIj
(s′) ∩ ΣAj

⊆ Elig
Hp∩Z′∩ T

k 6= j
Ik

(s′))

Sufficient to show: (∀j ∈ {1, . . . , n})(∀α ∈ ΣAj
) s′α ∈ Ij ⇒ s′α ∈ Hp ∩ Z ′ ∩ T

k 6= j
Ik

Let j ∈ {1, . . . , n}, α ∈ ΣAj
, and assume s′α ∈ Ij.

s′α ∈ Hp ∩ Z ′ ∩ T
k 6= j
Ik follows immediately from (9) and (10).

By Part A and Part B, we can now conclude that † is satisfied.

¤

We now are ready to define our fixpoint operator ΩH .

Definition 5.2.4 For system Φ, we define the high level fixpoint operator, ΩH :

Pwr(Σ∗)→ Pwr(Σ∗), for arbitrary Z ∈ Pwr(Σ∗) as follows:

ΩH(Z) := ΩHNB(ΩHIC(Z))

86

Master’s Thesis - P. Dai McMaster - Computing and Software

As operators ΩHIC and ΩHNB are monotone, it is easy to show that ΩH so defined

is also monotone.

We next present two useful propositions before we give our main result for this

section.

Proposition 8 Let Z,Z ′ ⊆ Σ∗ be arbitrary languages. For system Φ, the follow

properties are true:

1. Z ⊆ Z ′ ⇒ (∀i ∈ {0, 1, 2, . . .}) Ωi
H(Z) ⊆ Ωi

H(Z ′)

2. ΩH(Z) = Z ⇒ Z ∈ CH(ZHm)

3. The sequence {Ωi
H(ZH), i = 0, 1, 2, . . .} is monotonically decreasing. ie.

Ωi+1
H (ZH) ⊆ Ωi

H(ZH)

Proof

1. Show Z ⊆ Z ′ ⇒ (∀i ∈ {0, 1, 2, . . .}) Ωi
H(Z) ⊆ Ωi

H(Z ′)

Assume Z ⊆ Z ′. (1)

We now present a proof by induction.

Base Case: i = 0

By definition, we get Ω0
H(Z) = Z and Ω0

H(Z ′) = Z ′.

⇒ Ω0
H(Z) ⊆ Ω0

H(Z ′) by (1).

Inductive step: Let i ∈ {0, 1, 2, . . .}

Assume Ωi
H(Z) ⊆ Ωi

H(Z ′) (2)

We will now show this implies Ωi+1
H (Z) ⊆ Ωi+1

H (Z ′)

As ΩH is monotone, it follows from (2) that:

ΩH(Ωi
H(Z)) ⊆ ΩH(Ωi

H(Z ′))

87

Master’s Thesis - P. Dai McMaster - Computing and Software

⇒ Ωi+1
H (Z) ⊆ Ωi+1

H (Z ′), as required.

We can now conclude by induction that:

(∀i ∈ {0, 1, 2, . . .}) Ωi
H(Z) ⊆ Ωi

H(Z ′).

2. Show ΩH(Z) = Z ⇒ Z ∈ CH(ZHm).

Assume ΩH(Z) = Z. (3)

We will show this implies Z ∈ CH(ZHm)

By definition of CH , it is sufficient to show that Z ⊆ ZHm and that Z is HIC with

respect to Φ.

By (3) and the definition of ΩH , we have: Z = ΩHNB(ΩHIC(Z))

⇒ Z = (Z − ExtZ(FailHIC(Z))) ∩ ZHm

Which implies Z ⊆ ZHm and Z ⊆ (Z − ExtZ(FailHIC(Z))). (4)

All that remains is to show that Z is HIC with respect to Φ.

To do this, we first need to show that FailHIC(Z) = ∅. We will do this using proof

by contradiction:

Assume FailHIC(Z) 6= ∅.

⇒ ∃s ∈ FailHIC(Z) (5)

As FailHIC(Z) ⊆ Z by definition, we can conclude s ∈ Z. (6)

⇒ (∃s′ ∈ Σ∗) ss′ ∈ Z (7)

We can also conclude by (5) and the definition of the Ext operator that:

s ∈ ExtZ(FailHIC(Z))

88

Master’s Thesis - P. Dai McMaster - Computing and Software

However, we have by (7) and (4) that:

ss′ ∈ Z − ExtZ(FailHIC(Z))

⇒ ss′ 6∈ ExtZ(FailHIC(Z)) ∧ ss′ ∈ Z

⇒ (∀s′′ ∈ FailHIC(Z))¬(s′′ ≤ ss′)

Which contradicts (5).

We thus conclude that FailHIC(Z) = ∅.

⇒ (∀t ∈ Hp ∩ I ∩ Z) [EligHp∩I(t) ∩ Σu ⊆ EligZ(t)] ∧
[(∀j ∈ {1, . . . , n})(EligIj

(t) ∩ ΣAj
⊆ Elig

Hp∩Z∩ T
k 6= j

Ik

(t))]

Which implies by Definition 5.2.1 that Z is HIC with respect to Φ.

We thus have Z ∈ CH(ZHm), as required.

3. Show Ωi+1
H (ZH) ⊆ Ωi

H(ZH), for i = 0, 1, 2,

We will first show that Ω1
H(ZH) ⊆ Ω0

H(ZH), i.e., ΩH(ZH) ⊆ ZH .

By definition of ΩH , we have:

ΩH(ZH) = ΩHNB(ΩHIC(ZH)) = ΩHIC(ZH) ∩ ZHm ⊆ ZHm ⊆ ZH

We thus have ΩH(ZH) ⊆ ZH .

This means we can take Z = ΩH(ZH), and Z ′ = ZH , and apply point 1.

We thus take i ∈ {0, 1, 2, . . .} and can conclude:

Ωi
H(ΩH(ZH)) ⊆ Ωi

H(ZH)

⇒ Ωi+1
H (ZH) ⊆ Ωi

H(ZH), as required.

¤

89

Master’s Thesis - P. Dai McMaster - Computing and Software

Proposition 9 For system Φ, supCH(ZHm) is the greatest fixpoint of ΩH .

Proof

To prove that supCH(ZHm) is the greatest fixpoint of ΩH , we need to show:

1. supCH(ZHm) = ΩH(supCH(ZHm))

2. (∀Z ∈ Pwr(Σ∗))Z = ΩH(Z)⇒ Z ⊆ supCH(ZHm)

The second part follows from Point 2 of Proposition 8. As every fixpoint is in

CH(ZHm), it follows that the fixpoint is ⊆ supCH(ZHm) since supCH(ZHm) is the

supremal element of CH(ZHm).

All that is left to show is that supCH(ZHm) is a fixpoint of ΩH .

We first note that by definition of ΩH we have:

ΩH(supCH(ZHm)) = ΩHIC(supCH(ZHm)) ∩ ZHm (1)

By definition of ΩHIC we have: (2)

ΩH(supCH(ZHm)) = (supCH(ZHm) − ExtsupCH(ZHm)(FailHIC(supCH(ZHm)))) ∩
ZHm

We now note that as supCH(ZHm) is HIC with respect to Φ, by definition.

By Definition 5.2.1, it thus follows that: FailHIC(supCH(ZHm)) = ∅

⇒ ΩHIC(supCH(ZHm)) = supCH(ZHm)−∅ = supCH(ZHm), by definition of the Ext

operator.

⇒ ΩH(supCH(ZHm)) = supCH(ZHm) ∩ ZHm , by (1). (3)

We are now ready to show supCH(ZHm) = ΩH(supCH(ZHm)).

(I) Show supCH(ZHm) ⊆ ΩH(supCH(ZHm))

90

Master’s Thesis - P. Dai McMaster - Computing and Software

By (3), is its sufficient to show that supCH(ZHm) ⊆ supCH(ZHm) ∩ ZHm

We first note that supCH(ZHm) ⊆ supCH(ZHm), by definition of prefix closure.

Also as supCH(ZHm) is in CH(ZHm), we have supCH(ZHm) ⊆ ZHm .

⇒ supCH(ZHm) ⊆ supCH(ZHm) ∩ ZHm

Part (I) complete.

(II) Show ΩH(supCH(ZHm)) ⊆ supCH(ZHm)

Let s ∈ ΩH(supCH(ZHm)). (4)

We will now show this implies s ∈ supCH(ZHm)

From (4) and (2), we can conclude that:

s ∈ (supCH(ZHm)− ExtsupCH(ZHm)(FailHIC(supCH(ZHm)))) ∩ ZHm (5)

⇒ [s ∈ supCH(ZHm)] ∧ [s 6∈ ExtsupCH(ZHm)(FailHIC(supCH(ZHm)))] (6)

⇒ (∀s′ ≤ s)s′ /∈ FailHIC(supCH(ZHm)) by definition of the Ext operator.

⇒ (∀s′ ∈ {s}) s′ /∈ FailHIC(supCH(ZHm)) (7)

We next note that s ∈ supCH(ZHm) (by (6)) implies that s ∈ ZH as ZH is closed

and supCH(ZHm) ⊆ ZHm ⊆ ZH , thus supCH(ZHm) ⊆ ZHm ⊆ ZH as prefix closure

respects ordering.

We thus have s ∈ Hp ∩ I by definition of ZH .

⇒ s ∈ Hp ∩ I ∩ supCH(ZHm)

⇒ (∀s′ ∈ {s}) s′ ∈ Hp ∩ I ∩ supCH(ZHm) as all three languages are closed.

Combining with (7), we can conclude that for all s′ ∈ {s}, the following is true:

91

Master’s Thesis - P. Dai McMaster - Computing and Software

1. s′ ∈ Hp ∩ I ∩ supCH(ZHm)

2. EligHp∩I(s
′) ∩ Σu ⊆ EligsupCH(ZHm)(s

′) (8)

3. (∀j ∈ {1, . . . , n}) EligIj
(s′) ∩ ΣAj

⊆ Elig
Hp∩supCH(ZHm)∩ T

k 6= j
Ik

(s′) (9)

Let Z = supCH(ZHm) ∪ {s} (10)

We will now show that Z is in CH(ZHm), which will imply Z ⊆ supCH(ZHm), giving

us the needed result.

We first note that by (10), we have:

supCH(ZHm) ⊆ Z

⇒ supCH(ZHm) ⊆ Z, as prefix closure preserves ordering. (11)

We next note that we have supCH(ZHm) ⊆ ZHm by definition and by (5), we have

s ∈ ZHm

We thus have Z ⊆ ZHm .

To show that Z is in CH(ZHm), all that now remains is to demonstrate that Z is

HIC with respect to system Φ.

Let t ∈ Hp ∩ I ∩ Z (12)

We will now show that the following conditions are satisfied:

1. EligHp∩I(t) ∩ Σu ⊆ EligZ(t)

2. (∀j ∈ {1, . . . , n}) EligIj
(t) ∩ ΣAj

⊆ Elig
Hp∩Z∩ T

k 6= j
Ik

(t)

1) Show EligHp∩I(t) ∩ Σu ⊆ EligZ(t)

92

Master’s Thesis - P. Dai McMaster - Computing and Software

Let σ ∈ Σu, and tσ ∈ Hp ∩ I.

Sufficient to show implies tσ ∈ Z.

If t ∈ Z − {s}, we have t ∈ supCH(ZHm).

As supCH(ZHm) is HIC for Φ, it follows that tσ ∈ supCH(ZHm).

⇒ tσ ∈ Z, by (11).

If t ∈ {s}, it follows directly from (8) and (11).

2) Show (∀j ∈ {1, . . . , n}) EligIj
(t) ∩ ΣAj

⊆ Elig
Hp∩Z∩ T

k 6= j
Ik

(t)

Let j ∈ {1, . . . , n}, and α ∈ ΣAj
.

Assume tα ∈ Ij.

Sufficient to show implies tα ∈ Hp ∩ Z ∩ T
k 6= j
Ik

If t ∈ Z − {s}, we have t ∈ supCH(ZHm).

As supCH(ZHm) is HIC for Φ, it follows that tα ∈ Hp ∩ supCH(ZHm) ∩ T
k 6= j
Ik

⇒ tσ ∈ Hp ∩ Z ∩ T
k 6= j
Ik, by (11).

If t ∈ {s}, it follows directly from (9) and (11).

By 1) and 2), Z is HIC with respect to system Φ .

⇒ Z ⊆ supCH(ZHm), as supCH(ZHm) is the supremal element for CH(ZHm)

⇒ s ∈ supCH(ZHm) (by (10)) , as required.

Part (II) complete.

93

Master’s Thesis - P. Dai McMaster - Computing and Software

By (I) and (II), we get supCH(ZHm) = ΩH(supCH(ZHm)) as required.

We thus conclude that supCH(ZHm) is the greatest fixpoint point of ΩH .

¤

We will now show that if ΩH(ZH) reaches a fixpoint after a finite number of

steps, then that fixpoint is our supremal element. In Chapter 6, we will give an

automata based algorithm that implements ΩH(ZH). As the algorithm operates

by removing one or more states of GHL which is assumed to have a finite state

space, we know it will complete in a finite number of steps (ie. it must stop when

we have no more states left to remove).

Theorem 8 For system Φ, if there exists i ∈ {0, 1, 2, . . .} such that Ωi
H(ZH) is a

fixpoint, then Ωi
H(ZH) = supCH(ZHm).

Proof

Assume ∃i ∈ {0, 1, 2, . . .}, such that ΩH(Ωi
H(ZH)) = Ωi

H(ZH) (1)

We first note that we have: supCH(ZHm) ⊆ ZHm ⊆ ZH

This allows us to apply Point 1 of Proposition 8 and conclude:

Ωi
H(supCH(ZHm)) ⊆ Ωi

H(ZH) (3)

By Proposition 9, we know that supCH(ZHm) is the greatest fixpoint of ΩH . (4)

⇒ Ωi
H(supCH(ZHm)) = supCH(ZHm)

Combine this with (3), and we can conclude:

supCH(ZHm) ⊆ Ωi
H(ZH) (5)

As supCH(ZHm) is the greatest fixpoint of ΩH (by (4)) and Ωi
H(ZH) is a fixpoint,

it thus follows: Ωi
H(ZH) ⊆ supCH(ZHm)

94

Master’s Thesis - P. Dai McMaster - Computing and Software

By (5), we thus have Ωi
H(ZH) = supCH(ZHm) as required.

¤

We now show that we can use supCH(ZHm) for our high level supervisor and

satisfy the relevant interface conditions. We will use SHm ⊆ Σ∗ to stand for the

marked language of the high level supervisor.

Corollary 2 For system Φ, if there exists i ∈ {0, 1, 2, . . .} such that Ωi
H(ZH) is

a fixpoint, then system Φ with SHm = Ωi
H(ZH) and SH = SHm satisfies Point 3 of

Definition 3.4.2, Point I of Definition 3.5.1 and Point III of Definition 3.6.1.

Proof

Assume ∃i ∈ {0, 1, 2, . . .}, such that ΩH(Ωi
H(ZH)) = Ωi

H(ZH). (1)

Let SHm = Ωi
H(ZH) and SH = SHm .

By Theorem 8, SHm = supCH(ZHm) is HIC with respect to Φ. (2)

By Definition 5.2.1 and using the fact that SHm = SH , we have for all s in Hp ∩
SH ∩ I

1. EligHp∩I(s) ∩ Σu ⊆ EligSH
(s) (3)

2. (∀j ∈ {1, . . . , n}) EligIj
(s) ∩ ΣAj

⊆ Elig
Hp∩SH∩

T
k 6= j

Ik

(s) (4)

We note that Point (III) of Definition 3.6.1 follows immediately from (3).

Using the fact that H = Hp ∩ SH , we can substitute into (4) and get for all s in

H ∩ I
(∀j ∈ {1, . . . , n}) EligIj

(s) ∩ ΣAj
⊆ Elig

H∩ T
k 6= j

Ik

(s)

Point 3 of Definition 3.4.2 immediately follows.

95

Master’s Thesis - P. Dai McMaster - Computing and Software

All that remains is to show that Point I of Definition 3.5.1 is satisfied.

This means showing that Hm ∩ Im = H ∩ I.

By (2), we have SHm = supCH(ZHm).

⇒ SHm ⊆ ZHm , as supCH(ZHm) ⊆ ZHm by definition. (5)

⇒ SHm ⊆ ZH , as ZHm ⊆ ZH

⇒ SHm ⊆ ZH , as ZH is closed and prefix closure preserves ordering.

⇒ SH ⊆ ZH , by definition of SH . (6)

Substituting for ZHm in (5), we get SHm ⊆ Hp
m ∩ EHm ∩ Im. (7)

Substituting for ZH in (6), we get SH ⊆ Hp ∩ EH ∩ I. (8)

Using the fact that Hm = Hp
m ∩ SHm , we get Hm ∩ Im = Hp

m ∩ SHm ∩ Im.

⇒ Hm ∩ Im = SHm , by (7). (9)

Using the fact that H = Hp ∩ SH , we get H ∩ I = Hp ∩ SH ∩ I.

⇒ H∩ I = SH , by (8).

As SH = SHm , by definition, it follows from (9) that Hm ∩ Im = H ∩ I, as

required.

¤

5.3 Low Level Synthesis

We now exam how, given system Φ, we can synthesize a supervisor for the jth low

level. Our first step is to capture the HISC properties that the supervisor’s marked

96

Master’s Thesis - P. Dai McMaster - Computing and Software

language must satisfy.

Definition 5.3.1 Let Z ⊆ Σ∗. For system Φ, language Z is jth low level interface

controllable (LICj) if for all s ∈ Lp
j ∩Ij ∩Z, the following conditions are satisfied:

1. EligLp
j
(s) ∩ Σu ⊆ EligZ∩Ij

(s)

2. EligIj
(s) ∩ ΣRj

⊆ EligLp
j∩Z(s)

3. (∀ρ ∈ ΣRj
)(∀α ∈ ΣAj

)

sρα ∈ Ij ⇒ (∃l ∈ Σ∗
Lj

) sρlα ∈ Lp
j ∩ Z ∩ Ij

4. s ∈ Imj
⇒ (∃l ∈ Σ∗

Lj
) sl ∈ Lp

mj
∩ Z ∩ Imj

These conditions are essentially point 2 of Definition 3.6.1, and points 4-6 of

Definition 3.4.2, where we have substituted Z for any reference of the jth low level

supervisor’s closed behavior (SLj
), Z for any reference of the supervisor’s marked

language, and we have used the identity GLj
:= Gp

Lj
||SLj

for the jth low level

subsystem.

For an arbitrary language E ⊆ Σ∗, we now define the set of all sublanguages

of E that are jth low level interface controllable with respect to Φ as

CLj
(E) := {Z ⊆ E|Z is LICj with respect to Φ}

It is easy to see that (CLj
(E),⊆) is a poset. We will now show that the set

CLj
(E) is nonempty, and that the supremum always exists.

Proposition 10 Let E ⊆ Σ∗. For system Φ, CLj
(E) is nonempty and is closed

under arbitrary union. In particular, CLj
(E) contains a (unique) supremal element

that we will denote supCLj
(E).

Proof

Let E ⊆ Σ∗.

97

Master’s Thesis - P. Dai McMaster - Computing and Software

We will break the proof into three parts: 1) show CLj
(E) is nonempty, 2) show

CLj
(E) is closed under arbitrary union. 3) show CLj

(E) contains a (unique) supre-

mal element.

1) Show CLj
(E) is nonempty.

Clearly, ∅ ⊆ E and the empty set is LICj with respect to system Φ and is thus in

CLj
(E).

2) Show CLj
(E) is closed under arbitrary union.

Let Zβ ∈ CLj
(E) for all β ∈ B, where B is an index set. Let Z = ∪{Zβ| β ∈ B}.

Clearly Zβ ⊆ Z for each β ∈ B.

⇒ (∀β ∈ B)Zβ ⊆ Z as prefix closure preserves ordering. (1)

Sufficient to show that Z ∈ CLj
(E).

Clearly, Z ⊆ E. All we still need to show is that Z is LICj with respect to system

Φ.

This means showing that for all s ∈ Lp
j ∩ Ij ∩ Z, the following conditions are

satisfied:

1. EligLp
j
(s) ∩ Σu ⊆ EligZ∩Ij

(s)

2. EligIj
(s) ∩ ΣRj

⊆ EligLp
j∩Z(s)

3. (∀ρ ∈ ΣRj
)(∀α ∈ ΣAj

)

sρα ∈ Ij ⇒ (∃l ∈ Σ∗
Lj

) sρlα ∈ Lp
j ∩ Z ∩ Ij

4. s ∈ Imj
⇒ (∃l ∈ Σ∗

Lj
) sl ∈ Lp

mj
∩ Z ∩ Imj

Let s ∈ Lp
j ∩ Ij ∩ Z. (2)

98

Master’s Thesis - P. Dai McMaster - Computing and Software

We first note that this gives us s ∈ Z

⇒ (∃s′ ∈ Σ∗) ss′ ∈ Z

⇒ (∃β ∈ B) ss′ ∈ Zβ, by definition of Z.

⇒ s ∈ Zβ

We thus have: s ∈ Lp
j ∩ Ij ∩ Zβ, by (2). (3)

a) Show EligLp
j
(s) ∩ Σu ⊆ EligZ∩Ij

(s)

Sufficient to show (∀σ ∈ Σu) sσ ∈ Lp
j ⇒ sσ ∈ Z ∩ Ij

Let σ ∈ Σu. (4)

Assume sσ ∈ Lp
j (5)

Will now show this implies sσ ∈ Z ∩ Ij.

We immediately have: s ∈ Lp
j ∩ Ij ∩ Zβ, σ ∈ Σu, and sσ ∈ Lp

j by (3), (4), and

(5).

As Zβ ∈ CLj
(E) by definition and is thus LICj for Φ, we can conclude:

sσ ∈ Zβ ∩ Ij

⇒ sσ ∈ Z ∩ Ij (by(1)), as required.

Part a complete.

b) Show EligIj
(s) ∩ ΣRj

⊆ EligLp
j∩Z(s)

Sufficient to show (∀ρ ∈ ΣRj
) sρ ∈ Ij ⇒ sρ ∈ Lp

j ∩ Z

Let ρ ∈ ΣRj
. (6)

Assume sρ ∈ Ij (7)

99

Master’s Thesis - P. Dai McMaster - Computing and Software

Will now show this implies sρ ∈ Lp
j ∩ Z.

We immediately have: s ∈ Lp
j ∩ Ij ∩ Zβ, ρ ∈ ΣRj

, and sρ ∈ Ij by (3), (6), and

(7).

As Zβ ∈ CLj
(E) by definition and is thus LICj for Φ, we can conclude:

sσ ∈ Lp
j ∩ Zβ

⇒ sσ ∈ Lp
j ∩ Z (by(1)), as required.

Part b complete.

c) Show (∀ρ ∈ ΣRj
)(∀α ∈ ΣAj

) sρα ∈ Ij ⇒ (∃l ∈ Σ∗
Lj

) sρlα ∈ Lp
j ∩ Z ∩ Ij

Let ρ ∈ ΣRj
, α ∈ ΣAj

. (8)

Assume sρα ∈ Ij (9)

We will now show this implies (∃l ∈ Σ∗
Lj

) sρlα ∈ Lp
j ∩ Z ∩ Ij

We immediately have: s ∈ Lp
j ∩ Ij ∩ Zβ, ρ ∈ ΣRj

, α ∈ ΣAj
, and sρα ∈ Ij by (3),

(8), and (9).

As Zβ ∈ CLj
(E) by definition and is thus LICj for Φ, we can conclude:

(∃l ∈ Σ∗
Lj

) sρlα ∈ Lp
j ∩ Zβ ∩ Ij

⇒ sρlα ∈ Lp
j ∩ Z ∩ Ij (by(1)), as required.

Part c complete.

d) Show s ∈ Imj
⇒ (∃l ∈ Σ∗

Lj
) sl ∈ Lp

mj
∩ Z ∩ Imj

Assume s ∈ Imj
(10)

We will now show this implies (∃l ∈ Σ∗
Lj

) sl ∈ Lp
mj
∩ Z ∩ Imj

We immediately have: s ∈ Lp
j ∩ Ij ∩ Zβ and s ∈ Imj

by (3) and (10).

100

Master’s Thesis - P. Dai McMaster - Computing and Software

As Zβ ∈ CLj
(E) by definition and is thus LICj for Φ, we can conclude:

(∃l ∈ Σ∗
Lj

) sl ∈ Lp
mj
∩ Zβ ∩ Imj

⇒ sl ∈ Lp
mj
∩ Z ∩ Imj

(by definition of Z), as required.

Part d complete.

From Parts a, b, c and d, we can conclude that Z is LICj with respect to system

Φ.

We can thus conclude that Z ∈ CLj
(E), as required.

Part 2 complete.

3) Show CLj
(E) contains a (unique) supremal element.

Sufficient to show that supremal element exists, as uniqueness would thus follow.

Let supCLj
(E) = ∪{Z|Z ∈ CLj

(E)}

Claim: supCLj
(E) is the supremal element.

From Part 2, we have: supCLj
(E) ∈ CLj

(E)

Clearly, (∀Z ∈ CLj
(E))Z ⊆ supCLj

(E), thus supCLj
(E) is an upper bound for

CLj
(E).

All that remains is to show:

(∀Z ′ ∈ CLj
(E)) ((∀Z ∈ CLj

(E)) Z ⊆ Z ′)⇒ supCLj
(E) ⊆ Z ′

Let Z ′ ∈ CLj
(E).

Assume (∀Z ∈ CLj
(E)) Z ⊆ Z ′ (11)

Must show implies supCLj
(E) ⊆ Z ′

Let s ∈ supCLj
(E). Must show implies s ∈ Z ′.

101

Master’s Thesis - P. Dai McMaster - Computing and Software

s ∈ supCLj
(E)⇒ (∃Z ∈ CLj

(E)) s ∈ Z, by definition of supCLj
(E).

⇒ s ∈ Z ′, by (11)

We thus conclude that supCLj
(E) is the supremal element.

Part 3 complete.

¤

We now note that if we take language E = ZLj,m
, we can conclude that

supCLj
(ZLj,m

) = supCLj
(Lp

mj
∩ ELj,m

∩ Imj
) exists. As supCLj

(ZLj,m
) ⊆ ZLj,m

by definition, it follows that supCLj
(ZLj,m

) ∩ ZLj,m
= supCLj

(ZLj,m
). This implies

that supCLj
(ZLj,m

) ⊆ ZLj
as ZLj,m

⊆ ZLj
, and ZLj

is closed. This means that if

we take supCLj
(ZLj,m

) as the marked language of our jth low level supervisor, and

supCLj
(ZLj,m

) as the supervisor’s closed behavior, then the supervisor will repre-

sent the closed loop behavior of the jth low level. It will thus follow that the jth low

level will be nonblocking, and thus point 2 of Definition 3.5.1 will automatically

be satisfied for this j.

5.3.1 The jth Low Level Fixpoint Operator

Now that we have shown that supCLj
(ZLj,m

) exists, we need a means to construct

it. We will do so by defining a fixpoint operator ΩLj
, and show that our supremal

element is the greatest fixpoint of the operator. To do this, we need to first define

functions ΩLNBj
and ΩLICj

.

Definition 5.3.2 For system Φ, we define the jth low level nonblocking operator,

ΩLNBj
: Pwr(Σ∗)→ Pwr(Σ∗), for arbitrary Z ∈ Pwr(Σ∗) as follows:

ΩLNBj
(Z) := Z ∩ ZLj,m

The way we will be using ΩLNBj
, we would have Z ⊆ ZLj

and closed, thus ΩLNBj
(Z)

would be the marked strings of the jth low level that remain in Z. Clearly, operator

102

Master’s Thesis - P. Dai McMaster - Computing and Software

ΩLNBj
is monotone.

Definition 5.3.3 For system Φ, we define the jth low level interface controllable

operator, ΩLICj
: Pwr(Σ∗)→ Pwr(Σ∗), for arbitrary Z ∈ Pwr(Σ∗) as follows:

ΩLICj
(Z) := Z − ExtZ(FailLICj(Z))

where

FailLICj(Z) := {s ∈ Lp
j ∩ Ij ∩ Z| ¬[EligLp

j
(s) ∩ Σu ⊆ EligZ∩Ij

(s)]

∨ ¬[EligIj
(s) ∩ ΣRj

⊆ EligLp
j∩Z(s)]

∨ ¬[(∀ρ ∈ ΣRj
)(∀α ∈ ΣAj

) sρα ∈ Ij ⇒ (∃l ∈ Σ∗
Lj

) sρlα ∈ Lp
j ∩ Z ∩ Ij]

∨ ¬[s ∈ Imj
⇒ (∃l ∈ Σ∗

Lj
) sl ∈ Lp

mj
∩ Z ∩ Imj

]}

We first note that FailLICj(Z) ⊆ Z and thus FailLICj(Z) ⊆ ExtZ(FailLICj(Z)) as

s ≤ s, for all s ∈ Σ∗. The way we will be using ΩLICj
(Z), we would have Z ⊆ ZLj,m

and thus we would be removing from Z any string that has a prefix that would

cause Z to fail the LICj definition. The reason we also remove the extensions of

failing strings, is to ensure that we get a prefix closed language.

Lemma 4 Let Z ∈ Pwr(Σ∗). For system Φ, the operator ΩLICj
always produces

a prefix closed language. ie. ΩLICj
(Z) = ΩLICj

(Z)

Proof

We first note that by definition, we have: ΩLICj
(Z) = Z − ExtZ(FailLICj(Z))

It is thus sufficient to show that:

Z − ExtZ(FailLICj(Z)) = Z − ExtZ(FailLICj(Z))

We have FailLICj(Z) ⊆ Z by definition, so we can now apply Proposition 7 and

conclude: Z − ExtZ(FailLICj(Z)) = Z − ExtZ(FailLICj(Z))

¤

103

Master’s Thesis - P. Dai McMaster - Computing and Software

We now show that operator ΩLICj
is monotone.

Lemma 5 For system Φ, the operator ΩLICj
is monotone. ie.

(∀Z,Z ′ ∈ Pwr(Σ∗))Z ⊆ Z ′ ⇒ ΩLICj
(Z) ⊆ ΩLICj

(Z ′)

Proof

Let Z,Z ′ ∈ Pwr(Σ∗)

Assume Z ⊆ Z ′ (1)

Let s ∈ ΩLICj
(Z). (2)

We will now show this implies: s ∈ ΩLICj
(Z ′).

By Definition of ΩLICj
operator, it is sufficient to show:

s ∈ Z ′ − ExtZ′(FailLICj(Z ′))

From (2), we have: s ∈ ΩLICj
(Z)

⇒ s ∈ Z − ExtZ(FailLICj(Z)), by definition of ΩLICj
.

⇒ s ∈ Z ∧ s 6∈ ExtZ(FailLICj(Z)) (3)

⇒ s ∈ Z

⇒ s ∈ Z ′ as Z ⊆ Z ′ (by (1)), and fact prefix closure preserves ordering. (4)

All that remains now is to show that: s 6∈ ExtZ′(FailLICj(Z ′))

This means showing: s 6∈ {t ∈ Z ′| t′ ≤ t for some t′ ∈ FailLICj(Z ′)}, by definition

of the Ext operator.

Thus sufficient to show that: (∀s′ ≤ s) s′ 6∈ FailLICj(Z ′)

104

Master’s Thesis - P. Dai McMaster - Computing and Software

Substituting for FailHIC(Z ′), we see we must show:

(∀s′ ≤ s) s′ 6∈ {t ∈ Lp
j ∩ Ij ∩ Z ′| ¬[EligLp

j
(t) ∩ Σu ⊆ EligZ′∩Ij

(t)]

∨ ¬[EligIj
(t) ∩ ΣRj

⊆ EligLp
j∩Z′(t)]

∨ ¬[(∀ρ ∈ ΣRj
)(∀α ∈ ΣAj

) tρα ∈ Ij ⇒ (∃l ∈ Σ∗
Lj

) tρlα ∈ Lp
j ∩ Z ′ ∩ Ij]

∨ ¬[t ∈ Imj
⇒ (∃l ∈ Σ∗

Lj
) tl ∈ Lp

mj
∩ Z ′ ∩ Imj

]}

Which means it’s sufficient to show:

(∀s′ ≤ s) s′ ∈ Lp
j ∩ Ij ∩ Z ′ ⇒ [EligLp

j
(s′) ∩ Σu ⊆ EligZ′∩Ij

(s′)]

∧ [EligIj
(s′) ∩ ΣRj

⊆ EligLp
j∩Z′(s

′)]

∧ [(∀ρ ∈ ΣRj
)(∀α ∈ ΣAj

) s′ρα ∈ Ij ⇒ (∃l ∈ Σ∗
Lj

) s′ρlα ∈ Lp
j ∩ Z ′ ∩ Ij]

∧ [s′ ∈ Imj
⇒ (∃l ∈ Σ∗

Lj
) s′l ∈ Lp

mj
∩ Z ′ ∩ Imj

]

Let s′ ≤ s (6)

Assume s′ ∈ Lp
j ∩ Ij ∩ Z ′ (7)

We will now show this implies:

[EligLp
j
(s′) ∩ Σu ⊆ EligZ′∩Ij

(s′)] ∧ [EligIj
(s′) ∩ ΣRj

⊆ EligLp
j∩Z′(s

′)]

∧ [(∀ρ ∈ ΣRj
)(∀α ∈ ΣAj

) s′ρα ∈ Ij ⇒ (∃l ∈ Σ∗
Lj

) s′ρlα ∈ Lp
j ∩ Z ′ ∩ Ij]

∧ [s′ ∈ Imj
⇒ (∃l ∈ Σ∗

Lj
) s′l ∈ Lp

mj
∩ Z ′ ∩ Imj

] †

We next note that we have s 6∈ ExtZ(FailLICj(Z)) by (3).

⇒ (∀s′′ ≤ s) s′′ ∈ Lp
j ∩ Ij ∩ Z ⇒ [EligLp

j
(s′′) ∩ Σu ⊆ EligZ∩Ij

(s′′)]

∧ [EligIj
(s′′) ∩ ΣRj

⊆ EligLp
j∩Z(s′′)]

∧ [(∀ρ ∈ ΣRj
)(∀α ∈ ΣAj

) s′′ρα ∈ Ij ⇒ (∃l ∈ Σ∗
Lj

) s′′ρlα ∈ Lp
j ∩ Z ∩ Ij]

∧ [s′′ ∈ Imj
⇒ (∃l ∈ Σ∗

Lj
) s′′l ∈ Lp

mj
∩ Z ∩ Imj

] (8)

We now note that as s′ ≤ s by (6), and s ∈ Z by (3), it follows that s′ ∈ Z as Z

is closed.

⇒ s′ ∈ Lp
j ∩ Ij ∩ Z, by (7).

105

Master’s Thesis - P. Dai McMaster - Computing and Software

Using (8), we can now conclude:

[EligLp
j
(s′) ∩ Σu ⊆ EligZ∩Ij

(s′′)] ∧ [EligIj
(s′) ∩ ΣRj

⊆ EligLp
j∩Z(s′)]

∧ [(∀ρ ∈ ΣRj
)(∀α ∈ ΣAj

) s′ρα ∈ Ij ⇒ (∃l ∈ Σ∗
Lj

) s′ρlα ∈ Lp
j ∩ Z ∩ Ij]

∧ [s′ ∈ Imj
⇒ (∃l ∈ Σ∗

Lj
) s′l ∈ Lp

mj
∩ Z ∩ Imj

] (9)

We next note that we have Z ⊆ Z ′, as Z ⊆ Z ′ (by (1)) and fact prefix closure

preserves ordering. (10)

We will now show that † is satisfied in four parts.

A) Show EligLp
j
(s′) ∩ Σu ⊆ EligZ′∩Ij

(s′)

Sufficient to show: (∀σ ∈ Σu) s
′σ ∈ Lp

j ⇒ sσ ∈ Z ′ ∩ Ij

Let σ ∈ Σu and assume s′σ ∈ Lp
j .

s′σ ∈ Z ′ ∩ Ij follows immediately from (9) and (10).

B) Show EligIj
(s′) ∩ ΣRj

⊆ EligLp
j∩Z′(s

′)

Sufficient to show: (∀ρ ∈ ΣRj
) s′ρ ∈ Ij ⇒ s′ρ ∈ Lp

j ∩ Z ′

Let ρ ∈ ΣRj
and assume s′ρ ∈ Ij.

s′ρ ∈ Lp
j ∩ Z ′ follows immediately from (9) and (10).

C) Show (∀ρ ∈ ΣRj
)(∀α ∈ ΣAj

) s′ρα ∈ Ij ⇒ (∃l ∈ Σ∗
Lj

) s′ρlα ∈ Lp
j ∩ Z ′ ∩ Ij

Let ρ ∈ ΣRj
, α ∈ ΣAj

and assume s′ρα ∈ Ij

(∃l ∈ Σ∗
Lj

) s′ρlα ∈ Lp
j ∩ Z ′ ∩ Ij follows immediately from (9) and (10).

D) Show s′ ∈ Imj
⇒ (∃l ∈ Σ∗

Lj
) s′l ∈ Lp

mj
∩ Z ′ ∩ Imj

Assume s′ ∈ Imj

106

Master’s Thesis - P. Dai McMaster - Computing and Software

(∃l ∈ Σ∗
Lj

) s′l ∈ Lp
mj
∩ Z ′ ∩ Imj

follows immediately from (1) and (9).

By Parts A-D, we can now conclude that † is satisfied.

¤

We now are ready to define our fixpoint operator ΩLj
.

Definition 5.3.4 For system Φ, we define the jth low level fixpoint operator,

ΩLj
: Pwr(Σ∗)→ Pwr(Σ∗), for arbitrary Z ∈ Pwr(Σ∗) as follows:

ΩLj
(Z) := ΩLNBj

(ΩLICj
(Z))

As operators ΩLICj
and ΩLNBj

are monotone, it is easy to show that ΩLj
so defined

is also monotone.

We next present two useful propositions before we give our main result for this

section.

Proposition 11 Let Z,Z ′ ⊆ Σ∗ be arbitrary languages. For system Φ, the follow

properties are true:

1. Z ⊆ Z ′ ⇒ (∀i ∈ {0, 1, 2, . . .}) Ωi
Lj

(Z) ⊆ Ωi
Lj

(Z ′)

2. ΩLj
(Z) = Z ⇒ Z ∈ CLj

(ZLj,m
)

3. The sequence {Ωi
Lj

(ZLj
), i = 0, 1, 2, . . .} is monotonically decreasing. ie.

Ωi+1
Lj

(ZLj
) ⊆ Ωi

Lj
(ZLj

)

Proof

1. Show Z ⊆ Z ′ ⇒ (∀i ∈ {0, 1, 2, . . .}) Ωi
Lj

(Z) ⊆ Ωi
Lj

(Z ′)

Proof identical to the proof in part 1 of Proposition 8, after relabelling.

2. Show ΩLj
(Z) = Z ⇒ Z ∈ CLj

(ZLj,m
)

107

Master’s Thesis - P. Dai McMaster - Computing and Software

Assume ΩLj
(Z) = Z. (3)

We will show this implies Z ∈ CLj
(ZLj,m

)

By definition of CLj
, it is sufficient to show that Z ⊆ ZLj,m

and that Z is LICj

with respect to Φ.

By (3) and the definition of ΩLj
, we have: Z = ΩLNBj

(ΩLICj
(Z))

⇒ Z = [Z − ExtZ(FailLICj(Z))] ∩ ZLj,m

Which implies Z ⊆ ZLj,m
and Z ⊆ [Z − ExtZ(FailLICj(Z))]. (4)

All that remains is to show that Z is LICj with respect to Φ.

To do this, we first need to show that FailLICj(Z) = ∅. We will do this using proof

by contradiction:

Assume FailLICj(Z) 6= ∅.

⇒ ∃s ∈ FailLICj(Z) (5)

As FailLICj(Z) ⊆ Z by definition, we can conclude s ∈ Z. (6)

⇒ (∃s′ ∈ Σ∗) ss′ ∈ Z (7)

We can also conclude by (5) and the definition of the Ext operator that:

s ∈ ExtZ(FailLICj(Z))

However, we have by (7) and (4) that:

ss′ ∈ Z − ExtZ(FailLICj(Z))

⇒ ss′ 6∈ ExtZ(FailLICj(Z)) ∧ ss′ ∈ Z

⇒ (∀s′′ ∈ FailLICj(Z))¬(s′′ ≤ ss′)

Which contradicts (5).

108

Master’s Thesis - P. Dai McMaster - Computing and Software

We thus conclude that FailLICj(Z) = ∅.

⇒ (∀t ∈ Lp
j ∩ Ij ∩ Z) [EligLp

j
(t) ∩ Σu ⊆ EligZ∩Ij

(t)]

∧ [EligIj
(t) ∩ ΣRj

⊆ EligLp
j∩Z(t)]

∧ [(∀ρ ∈ ΣRj
)(∀α ∈ ΣAj

) tρα ∈ Ij ⇒ (∃l ∈ Σ∗
Lj

) tρlα ∈ Lp
j ∩ Z ∩ Ij]

∧ [t ∈ Imj
⇒ (∃l ∈ Σ∗

Lj
) tl ∈ Lp

mj
∩ Z ∩ Imj

]

Which implies by Definition 5.3.1 that Z is LICj with respect to Φ.

We thus have Z ∈ CLj
(ZLj,m

), as required.

3. Show Ωi+1
Lj

(ZLj
) ⊆ Ωi

Lj
(ZLj

), for i = 0, 1, 2,

We will first show that Ω1
Lj

(ZLj
) ⊆ Ω0

Lj
(ZLj

), i.e., ΩLj
(ZLj

) ⊆ ZLj
.

By definition of ΩLj
, we have:

ΩLj
(ZLj

) = ΩLNBj
(ΩLICj

(ZLj
)) = ΩLICj

(ZLj
) ∩ ZLj,m

⊆ ZLj,m
⊆ ZLj

We thus have ΩLj
(ZLj

) ⊆ ZLj
.

This means we can take Z = ΩLj
(ZLj

), and Z ′ = ZLj
, and apply point 1.

We thus take i ∈ {0, 1, 2, . . .} and can conclude:

Ωi
Lj

(ΩLj
(ZLj

)) ⊆ Ωi
Lj

(ZLj
)

⇒ Ωi+1
Lj

(ZLj
) ⊆ Ωi

Lj
(ZLj

), as required.

¤

Proposition 12 For system Φ, supCLj
(ZLj,m

) is the greatest fixpoint of ΩLj
.

Proof

To prove that supCLj
(ZLj,m

) is the greatest fixpoint of ΩLj
, we need to show:

1. supCLj
(ZLj,m

) = ΩLj
(supCLj

(ZLj,m
))

109

Master’s Thesis - P. Dai McMaster - Computing and Software

2. (∀Z ∈ Pwr(Σ∗))Z = ΩLj
(Z)⇒ Z ⊆ supCLj

(ZLj,m
)

The second part follows from Point 2 of Proposition 11. As every fixpoint is in

CLj
(ZLj,m

), it follows that the fixpoint is ⊆ supCLj
(ZLj,m

) since supCLj
(ZLj,m

) is

the supremal element of CLj
(ZLj,m

).

All that is left to show is that supCLj
(ZLj,m

) is a fixpoint of ΩLj
.

We first note that by definition of ΩLj
we have:

ΩLj
(supCLj

(ZLj,m
)) = ΩLICj

(supCLj
(ZLj,m

)) ∩ ZLj,m
(1)

By definition of ΩHIC we have: (2)

ΩLj
(supCLj

(ZLj,m
)) = [supCLj

(ZLj,m
)−ExtsupCLj

(ZLj,m
)(FailLICj(supCLj

(ZLj,m
)))]∩ZLj,m

We now note that as supCLj
(ZLj,m

) is LICj with respect to Φ, by definition.

By Definition 5.3.1, it thus follows that: FailLICj(supCLj
(ZLj,m

)) = ∅

⇒ ΩLICj
(supCLj

(ZLj,m
)) = supCLj

(ZLj,m
)−∅ = supCLj

(ZLj,m
), by definition of the

Ext operator.

⇒ ΩLj
(supCLj

(ZLj,m
)) = supCLj

(ZLj,m
) ∩ ZLj,m

, by (1). (3)

We are now ready to show supCLj
(ZLj,m

) = ΩLj
(supCLj

(ZLj,m
)).

(I) Show supCLj
(ZLj,m

) ⊆ ΩLj
(supCLj

(ZLj,m
))

By (3), is its sufficient to show that supCLj
(ZLj,m

) ⊆ supCLj
(ZLj,m

) ∩ ZLj,m

We first note that supCLj
(ZLj,m

) ⊆ supCLj
(ZLj,m

), by definition of prefix closure.

Also as supCLj
(ZLj,m

) is in CLj
(ZLj,m

), we have supCLj
(ZLj,m

) ⊆ ZLj,m
.

⇒ supCLj
(ZLj,m

) ⊆ supCLj
(ZLj,m

) ∩ ZLj,m

110

Master’s Thesis - P. Dai McMaster - Computing and Software

Part (I) complete.

(II) Show ΩLj
(supCLj

(ZLj,m
)) ⊆ supCLj

(ZLj,m
)

Let s ∈ ΩLj
(supCLj

(ZLj,m
)). (4)

We will now show this implies s ∈ supCLj
(ZLj,m

)

From (4) and (2), we can conclude that:

s ∈ [supCLj
(ZLj,m

)− ExtsupCLj
(ZLj,m

)(FailLICj(supCLj
(ZLj,m

)))] ∩ ZLj,m
(5)

⇒ [s ∈ supCLj
(ZLj,m

)] ∧ [s 6∈ ExtsupCLj
(ZLj,m

)(FailLICj(supCLj
(ZLj,m

)))] (6)

⇒ (∀s′ ≤ s)s′ /∈ FailLICj(supCLj
(ZLj,m

)) by definition of the Ext operator.

⇒ (∀s′ ∈ {s}) s′ /∈ FailLICj(supCLj
(ZLj,m

)) (7)

We next note that s ∈ supCLj
(ZLj,m

) (by (6)) implies that s ∈ ZLj
as ZLj

is closed

and supCLj
(ZLj,m

) ⊆ ZLj,m
⊆ ZLj

, thus supCLj
(ZLj,m

) ⊆ ZLj,m
⊆ ZLj

as prefix

closure respects ordering.

We thus have s ∈ Lp
j ∩ Ij by definition of ZLj

.

⇒ s ∈ Lp
j ∩ Ij ∩ supCLj

(ZLj,m
)

⇒ (∀s′ ∈ {s}) s′ ∈ Lp
j ∩ Ij ∩ supCLj

(ZLj,m
), as all three languages are closed.

Combining with (7), we can conclude that for all s′ ∈ {s}, the following: (8)

1. s′ ∈ Lp
j ∩ Ij ∩ supCLj

(ZLj,m
)

2. EligLp
j
(s′) ∩ Σu ⊆ EligsupCLj

(ZLj,m
)∩Ij

(s′)

3. EligIj
(s′) ∩ ΣRj

⊆ EligLp
j∩supCLj

(ZLj,m
)(s

′)

4. (∀ρ ∈ ΣRj
)(∀α ∈ ΣAj

) s′ρα ∈ Ij ⇒ (∃l ∈ Σ∗
Lj

) s′ρlα ∈ Lp
j∩supCLj

(ZLj,m
)∩Ij

5. s′ ∈ Imj
⇒ (∃l ∈ Σ∗

Lj
) s′l ∈ Lp

mj
∩ supCLj

(ZLj,m
) ∩ Imj

111

Master’s Thesis - P. Dai McMaster - Computing and Software

Let Z = supCLj
(ZLj,m

) ∪ {s} (9)

We will now show that Z is in CLj
(ZLj,m

), which will imply Z ⊆ supCLj
(ZLj,m

),

giving us the needed result.

We first note that by (9), we have:

supCLj
(ZLj,m

) ⊆ Z

⇒ supCLj
(ZLj,m

) ⊆ Z, as prefix closure preserves ordering. (10)

We next note that we have supCLj
(ZLj,m

) ⊆ ZLj,m
by definition, and by (5) we

have s ∈ ZLj,m

We thus have Z ⊆ ZLj,m
.

To show that Z is in CLj
(ZLj,m

), all that now remains is to demonstrate that Z is

LICj with respect to system Φ.

Let t ∈ Lp
j ∩ Ij ∩ Z (11)

We will now show that the following conditions are satisfied:

1. EligLp
j
(t) ∩ Σu ⊆ EligZ∩Ij

(t)

2. EligIj
(t) ∩ ΣRj

⊆ EligLp
j∩Z(t)

3. (∀ρ ∈ ΣRj
)(∀α ∈ ΣAj

) tρα ∈ Ij ⇒ (∃l ∈ Σ∗
Lj

) tρlα ∈ Lp
j ∩ Z ∩ Ij

4. t ∈ Imj
⇒ (∃l ∈ Σ∗

Lj
) tl ∈ Lp

mj
∩ Z ∩ Imj

1) Show EligLp
j
(t) ∩ Σu ⊆ EligZ∩Ij

(t)

Let σ ∈ Σu, and tσ ∈ Lp
j .

Sufficient to show implies tσ ∈ Z ∩ Ij.

If t ∈ Z − {s}, we have t ∈ supCLj
(ZLj,m

).

112

Master’s Thesis - P. Dai McMaster - Computing and Software

As supCLj
(ZLj,m

) is LICj for Φ, it follows that tσ ∈ supCLj
(ZLj,m

) ∩ Ij.

⇒ tσ ∈ Z ∩ Ij, by (10).

If t ∈ {s}, it follows directly from (8) and (10).

2) Show EligIj
(t) ∩ ΣRj

⊆ EligLp
j∩Z(t)

Let ρ ∈ ΣRj
and tρ ∈ Ij

Sufficient to show implies tρ ∈ Lp
j ∩ Z.

If t ∈ Z − {s}, we have t ∈ supCLj
(ZLj,m

).

As supCLj
(ZLj,m

) is LICj for Φ, it follows that tρ ∈ Lp
j ∩ supCLj

(ZLj,m
).

⇒ tρ ∈ Lp
j ∩ Z, by (10).

If t ∈ {s}, it follows directly from (8) and (10).

3) Show (∀ρ ∈ ΣRj
)(∀α ∈ ΣAj

) tρα ∈ Ij ⇒ (∃l ∈ Σ∗
Lj

) tρlα ∈ Lp
j ∩ Z ∩ Ij

Let ρ ∈ ΣRj
, α ∈ ΣAj

, and tρα ∈ Ij.

We will now show this implies (∃l ∈ Σ∗
Lj

) tρlα ∈ Lp
j ∩ Z ∩ Ij

If t ∈ Z − {s}, we have t ∈ supCLj
(ZLj,m

).

As supCLj
(ZLj,m

) is LICj for Φ, it follows that:

(∃l ∈ Σ∗
Lj

) tρlα ∈ Lp
j ∩ supCLj

(ZLj,m
) ∩ Ij.

⇒ tρlα ∈ Lp
j ∩ Z ∩ Ij, by (10).

If t ∈ {s}, it follows directly from (8) and (10).

4) Show t ∈ Imj
⇒ (∃l ∈ Σ∗

Lj
) tl ∈ Lp

mj
∩ Z ∩ Imj

113

Master’s Thesis - P. Dai McMaster - Computing and Software

Assume t ∈ Imj
.

We will now show this implies (∃l ∈ Σ∗
Lj

) tl ∈ Lp
mj
∩ Z ∩ Imj

If t ∈ Z − {s}, we have t ∈ supCLj
(ZLj,m

).

As supCLj
(ZLj,m

) is LICj for Φ, it follows that:

(∃l ∈ Σ∗
Lj

) tl ∈ Lp
mj
∩ supCLj

(ZLj,m
) ∩ Imj

.

⇒ tl ∈ Lp
mj
∩ Z ∩ Imj

, by (9).

If t ∈ {s}, it follows directly from (8) and (10).

We can now conclude by points 1-4 that Z is LICj with respect to system Φ.

⇒ Z ⊆ supCLj
(ZLj,m

), as supCLj
(ZLj,m

) is the supremal element for CLj
(ZLj,m

)

⇒ s ∈ supCH(ZHm) (by (9)) , as required.

Part (II) complete.

By (I) and (II), we get supCLj
(ZLj,m

) = ΩLj
(supCLj

(ZLj,m
)) as required.

We thus conclude that supCLj
(ZLj,m

) is the greatest fixpoint of ΩLj
.

¤

We will now show that if ΩLj
(ZLj

) reaches a fixpoint after a finite number of

steps, then that fixpoint is our supremal element. In Chapter 6, we will give an

automata based algorithm that implements ΩLj
(ZLj

). As the algorithm operates

by removing one or more states of GLLj
which is assumed to have a finite state

space, we know it will complete in a finite number of steps (ie. it must stop when

we have no more states left to remove).

Theorem 9 For system Φ, if there exists i ∈ {0, 1, 2, . . .} such that Ωi
Lj

(ZLj
) is

a fixpoint, then Ωi
Lj

(ZLj
) = supCLj

(ZLj,m
).

114

Master’s Thesis - P. Dai McMaster - Computing and Software

Proof

Assume ∃i ∈ {0, 1, 2, . . .}, such that ΩLj
(Ωi

Lj
(ZLj

)) = Ωi
Lj

(ZLj
) (1)

We first note that we have: supCLj
(ZLj,m

) ⊆ ZLj,m
⊆ ZLj

This allows us to apply Point 1 of Proposition 11 and conclude:

Ωi
Lj

(supCLj
(ZLj,m

)) ⊆ Ωi
Lj

(ZLj
) (3)

By Proposition 12, we know that supCLj
(ZLj,m

) is the greatest fixpoint of ΩLj
. (4)

⇒ Ωi
Lj

(supCLj
(ZLj,m

)) = supCLj
(ZLj,m

)

Combine this with (3), and we can conclude:

supCLj
(ZLj,m

) ⊆ Ωi
Lj

(ZLj
) (5)

As supCLj
(ZLj,m

) is the greatest fixpoint of ΩLj
(by (4)) and Ωi

Lj
(ZLj

) is a fixpoint,

it thus follows: Ωi
Lj

(ZLj
) ⊆ supCLj

(ZLj,m
)

By (5), we thus have Ωi
Lj

(ZLj
) = supCLj

(ZLj,m
) as required.

¤

We now show that we can use supCLj
(ZLj,m

) for our jth low level supervisor

and satisfy the relevant interface conditions. We will use SLj,m
⊆ Σ∗ to stand for

the marked language of the jth low level supervisor.

Corollary 3 For system Φ, if there exists i ∈ {0, 1, 2, . . .} such that Ωi
Lj

(ZLj
) is

a fixpoint, then system Φ with SLj,m
= Ωi

Lj
(ZLj

) and SLj
= SLj,m

satisfies Points 4,

5, and 6 of Definition 3.4.2, Point II of Definition 3.5.1 and Point II of Definition

3.6.1.

Proof

Assume ∃i ∈ {0, 1, 2, . . .}, such that ΩLj
(Ωi

Lj
(ZLj

)) = Ωi
Lj

(ZLj
). (1)

115

Master’s Thesis - P. Dai McMaster - Computing and Software

Let SLj,m
= Ωi

Lj
(ZLj

) and SLj
= SLj,m

.

By Theorem 9, SLj,m
= supCLj

(ZLj,m
) is LICj with respect to Φ. (2)

By Definition 5.3.1 and using the fact that SLj
= SLj,m

, we have for all s ∈
Lp

j ∩ Ij ∩ SLj

1. EligLp
j
(s) ∩ Σu ⊆ EligSLj

∩Ij
(s) (3)

2. EligIj
(s) ∩ ΣRj

⊆ EligLp
j∩SLj

(s) (4)

3. (∀ρ ∈ ΣRj
)(∀α ∈ ΣAj

)

sρα ∈ Ij ⇒ (∃l ∈ Σ∗
Lj

) sρlα ∈ Lp
j ∩ SLj

∩ Ij (5)

4. s ∈ Imj
⇒ (∃l ∈ Σ∗

Lj
) sl ∈ Lp

mj
∩ SLj,m

∩ Imj
(6)

We immediately note that Point II of Definition 3.6.1 follows immediately from

(3).

We next note that we can use the fact that Lj = Lp
j ∩ SLj

, and Lmj
= Lp

mj
∩ SLj,m

to rewrite (3)-(6) as for all s ∈ Lj ∩ Ij

1. EligIj
(s) ∩ ΣRj

⊆ EligLj
(s) (7)

2. (∀ρ ∈ ΣRj
)(∀α ∈ ΣAj

)

sρα ∈ Ij ⇒ (∃l ∈ Σ∗
Lj

) sρlα ∈ Lj ∩ Ij (8)

3. s ∈ Imj
⇒ (∃l ∈ Σ∗

Lj
) sl ∈ Lmj

∩ Imj
(9)

We now note that Points 4, 5, and 6 of Definition 3.4.2 follow immediately from

(7)-(9), respectively.

All that remains is to show that Point I of Definition 3.5.1 is satisfied.

This means showing that Lmj
∩ Imj

= Lj ∩ Ij

116

Master’s Thesis - P. Dai McMaster - Computing and Software

By (2), we have SLj,m
= supCLj

(ZLj,m
).

⇒ SLj,m
⊆ ZLj,m

, as supCLj
(ZLj,m

) ⊆ ZLj,m
by definition. (10)

⇒ SLj,m
⊆ ZLj

, as ZLj,m
⊆ ZLj

⇒ SLj,m
⊆ ZLj

, as ZLj
is closed and prefix closure preserves ordering.

⇒ SLj
⊆ ZLj

, by definition of SH . (11)

Substituting for ZLj,m
in (10), we get SLj,m

⊆ Lp
mj
∩ ELj,m

∩ Imj
. (12)

Substituting for ZLj
in (11), we get SLj

⊆ Lp
j ∩ ELj

∩ Ij. (13)

Using the fact that Lmj
= Lp

mj
∩ SLj,m

, we get Lmj
∩ Imj

= Lp
mj
∩ SLj,m

∩ Imj
.

⇒ Lmj
∩ Imj

= SLj,m
, by (12). (14)

Using the fact that Lj = Lp
j ∩ SLj

, we get Lj ∩ Ij = Lp
j ∩ SLj

∩ Ij.

⇒ Lj ∩ Ij = SLj
, by (13).

As SLj
= SLj,m

, by definition, it follows from (9) that Lmj
∩ Imj

= Lj ∩ Ij, as

required.

¤

We have now shown that supCH(ZHm) exists and for all j ∈ {1, . . . , n},
supCLj

(ZLj,m
) exists. We have also given fixpoint operators for each that allow us

to construct them. In Chapter 6, we will present out automata based algorithms

that implements our fixpoint operators. We will then tie everything together and

present our overall synthesis results for system Φ.

117

Master’s Thesis - P. Dai McMaster - Computing and Software

Chapter 6

Algorithms

Our goal is to construct a supervisor for the high level, and one for each low level

based on a set of specifications for each level, such that the supervisor will satisfy

the corresponding HISC conditions by design, and will be maximally permissive

for its level.

We will first give a few common data structures and algorithms used in this

chapter and then present our algorithms. We give an algorithm to verify whether

a given interface is a command-pair interface or not, an algorithm to check that

a given parallel system satisfies the interface consistency condition, and finally,

a set of algorithms to construct a HIC supervisor for the high level, and a LICj

supervisor for each low level. We first give pseudo code to present the algorithms

and then we provide a time complexity analysis.

6.1 Common Data Structures and Algorithms

Before bringing in algorithms for the interface system, we first discuss a few data

structures and algorithms that will be commonly used in the algorithms given in

the following sections.

118

Master’s Thesis - P. Dai McMaster - Computing and Software

6.1.1 DES

The data structure of a DES is designed to handle all elements of a DES, with

access functions provided for the data members. The DES data structure has the

following member structures:

• states : all states of the DES. states can be implemented as an array or

linked list. Since we are building a DES with the number of states unknown

at the beginning, a linked list is used. A traversal of the whole state space

takes linear time.

• marker states : all marker states of the DES. It is implemented as a linked

list in our algorithms.

• initial state : the initial state of the DES. Since the initial state is important,

we have a pointer to it for fast access.

• events : A linked list off all events that belong to the event set of the DES.

A state consists of:

• index : integer starting from 1 as the unique key to identify a state. Since

each state has a unique integer index, it’s very easy to construct an array of

states and get fast access to each state and their properties.

• trans : transition list, including all transitions starting from this state. This

is a linked list. A transition consists of an event and a state, and is always

associated with its source state (the state that transition starts from).

• inverseTrans : inverse transition list, including all transitions ending with

the state. It consists of the event, and the source state. This is designed

to provide fast lookup for synthesis and while checking properties such as

nonblocking. It is implemented as a linked list.

119

Master’s Thesis - P. Dai McMaster - Computing and Software

An event consists of a unique index, starting from 1. An event has a property

event type that carries the value A or R if the event is an answer or request event,

or value N otherwise. Checking the event type of an event takes constant time.

An event also has a boolean flag isControl which is true if an event is controllable.

As a result, checking if an event is in Σu or Σc takes constant time.

Transitions are frequently accessed to determine if an event is defined at a

state when doing a synthesis or checking conditions. For fast access, we create

a transition matrix. The matrix is a three dimension array, where a location

is determined by an index for the DES, its states and the possible events. We

can determine if a DES has a transition at a given state for a given event by

checking the corresponding location in the array. If the value stored is zero, then

the transition is undefined. Otherwise, the index of the target state (the state the

transition takes us to) is stored at this location; thus getting the next state of a

transition or checking whether a transition is defined takes constant time.

6.1.2 Functions

In this section we list functions that are used in our algorithms and access functions

to our data structures.

• bxc
The function floor(x) (bxc) gets the largest integer that’s smaller than the

given number x. The function takes constant time.

• pop
Is similar to a stack ’pop’ function. In our algorithms we used it on our

pending list and some other linked lists.1 It takes an element from the list as

output and removes that element from the list. The function takes constant

time.

1the pending list used in our algorithms is defined in Section 6.1.3.

120

Master’s Thesis - P. Dai McMaster - Computing and Software

• push
Is similar to a stack ’push’ function. It appends an element to the given list.

The function takes constant time.

• addState
A DES object can call the addState function to add a state to its state list.

It also adds the state to the marker states list if the state is marked. Both

state list and marker states are linked lists and this function takes constant

time.

• addInverseTrans
Given a source state and an event, the function adds a new inverse transition

to the calling state’s inverse transition list (inverseTrans). This means there

exists a transition from the source state, labeled by the event, leading to the

calling state. Since inverseTrans is a linked list structure, this function

takes constant time.

• removeInverseTrans
It removes a transition from a state’s inverseTrans list. This function takes

O(nΣnX), where nΣ is the number of events of the DES, and nX is the number

of states. We note that nΣnX is actually the upper bound for the number

of reverse transitions for the entire DES (ie. if we added up the reverse

transitions for each state, they can’t exceed this number for a deterministic

DES). Where it is possible that we can have this many reverse transitions at

a given state, it would mean there would be none at all the other states! In

particular, if we were looping through all nX states, and examining all reverse

transitions, it would appear we would have nΣn
2
X steps, when in actually this

can not exceed nΣnX .

• addTrans
Given a source state and an event, add a new transition for the calling state’s

121

Master’s Thesis - P. Dai McMaster - Computing and Software

transition list (trans). This means there exists a transition from the calling

state, labeled by the event, leading to the source state. The transition list is

a linked list structure, this function takes constant time.

• removeTrans
Same as removeInverseTrans, this function takes linear time, O(nΣ).

6.1.3 Pending and Found List

When applying a synthesis algorithm to a subsystem consisting of m DES, we start

from the synchronous product of the m DES, then trim off states that don’t satisfy

certain properties such as controllability.

Let ni be the state size of the ith component DES, i = 1, 2, . . .m; let NX be

the upper bound of all ni (ie. ni ≤ NX for each i). When we do a synchronous

product, the state space is worst case exponential in the size of an individual DES

(i.e. O(Nm
X)).

While constructing the synchronous product or verifying certain properties, we

often need to maintain a pending list. This list contains items remaining to be

processed. We also usually need to maintain a found list which contains items

already added to the pending list. Note: the found list contains items already

encountered, but they may not still been in the pending list if they have already

been processed.

The pending list operates like a work pool. We we need a new item to process,

we take it from this list. When we encounter a new item which is not in the found

list, we add it to the pool and to our found list. The order of the items in the

pending list doesn’t matter to the final result, so we can thus use either a stack or

a queue as an implementation. In either case, adding or removing items from the

pending list can be done in constant time.

122

Master’s Thesis - P. Dai McMaster - Computing and Software

We next discuss the found list. When constructing the synchronous product,

we are essentially doing a traversal of all reachable states in the cross product of

the DES. When we encounter a state, which is a tuple of m component states from

our m DES, we need to search the found list to check whether we have encountered

the tuple already. If the tuple hasn’t been “found” yet, we add it to our found

list, and define a state variable for the tuple. Operations like insert and search are

thus frequently required. To provide good performance in these operations and

to store the tuple information efficiently, we adapt the trie structure to store the

found list. A trie is a multi-branch tree with certain properties that we will define

below. See Figure 6.1 for an example.

X1:State

Name: char *
...

getName(): char *
...

X2:State

Name: char *
...

getName(): char *
...

X3:State

Name: char *
...

getName(): char *
...

X4:State

Name: char *
...

getName(): char *
...

X5:State

Name: char *
...

getName(): char *
...

X7:State

Name: char *
...

getName(): char *
...

X6:State

Name: char *
...

getName(): char *
...

Figure 6.1: Trie Illustration

Since a state in a synchronous product is based on the component states from

123

Master’s Thesis - P. Dai McMaster - Computing and Software

the m component DES, we represent it as a m-tuple such as (x1, x2, ..., xm). When

we have m component DES, we will use a trie of height m. Each level represents

a DES, with DES 1 represented by the root node, DES 2 by the level below the

root node, and so on. In other words, the nodes at level i− 1 represent DES i.

The nodes at a level i of the trie consist of an array of pointers. The size of the

array is ni+1, the state size of DES i+1. This means that such a node can have ni+1

children. For nodes at level other than m − 1, the elements of the array point to

the next level of the trie, or contain the NULL pointer depending on which tuples

have been stored already. We will make this clearer in a moment by discussing an

example. For nodes at level m − 1, the array elements contain either pointers to

state variables, or the NULL pointer depending on which tuples have been stored

in the trie already.

For example, assume we have a subsystem with m = 3 DES: G1, G2 and G3.

We will also assume they have state spaces of size 4 (ie. states 1, 2, 3, 4, and 5),

5 and 3, respectively. Figure 6.1 contains a trie that could correspond to such a

system. Say we encountered state tuple (1, 2, 2) and we wanted to determine if it

was already present in the trie. We would first check position one of the array at

the root node. If it is the NULL pointer, then that means no tuples with a “1”

in the first position have yet been added to the trie. In Figure 6.1, it so happens

that we have a pointer at position one that leads us to a node at level one. We

next check position two of this node, and again find a pointer to the next level.

We follow the pointer to the node at level two, and check position to of the array.

If the tuple has already been added, we will find a pointer to the state variable

that represents the tuple. For our example, we find the NULL pointer meaning

the tuple is not present in the trie. Given a state in the synchronous product, we

can thus look it up in the trie in O(m) steps, where m is the number of DES in

the subsystem.

If a tuple has not already been added to the trie, we allocate the missing nodes

124

Master’s Thesis - P. Dai McMaster - Computing and Software

and a new state structure, and set the pointers appropriately. This means worst

case allocating memory for m items, setting one pointer at level 0, followed by

setting Σk=2,3,...,mnk ≤ (m− 1)NX) pointers (including initializing unused ones to

NULL). Adding a state is thus O(m+1+(m− 1)NX) = O(m(1+NX)+ 1−NX).

If we take NX as a constant, we get O(m).

The trie structure used for states has a fixed height. We also used a variable

height version of the trie structure to keep track of events. For a detailed discussion

of variable height trie structures, see [32].

6.1.4 Disjoint Union

When checking command-pair interface properties and other conditions, we need

to frequently verify that two or more sets are disjoint. We also often have to verify

whether a set is equal to the disjoint union of two or more sets. In the format

S = S1∪̇S2

We need to check two properties

1. S = S1 ∪ S2

2. S1 ∩ S2 = ∅

For fast processing, we store the sets as arrays. We thus need to make sure there

are no duplicate elements in the array. In the following algorithms, we will use

integer elements for demonstration purposes. In order to check whether two sets

are disjoint or not, we can simply put the two sets together and sort the results.

If the two sets are disjoint, there should be no duplicate elements in the resulting

set. We first present the uMergeSort algorithm in Listing 6.1. The algorithm

is a variation of Merge-Sort [19].

125

Master’s Thesis - P. Dai McMaster - Computing and Software

To present uMergeSort, we first must present the algorithm for uMerge,

which uMergeSort uses. Algorithm uMerge takes four parameters: an input

array A, start and end indexes p and r, and a middle index q. Array A is a place

holder for the input and output arrays. The algorithm takes two sub-arrays from

A (i.e. A[p..q] and A[(q + 1)..r]) and then merges the two sub-arrays into one

array, with the elements in ascending order. We use two array variables, L and R,

to hold the two sub-arrays in the algorithm. We also will use the notation ∞ to

represent a number that is bigger than any possible value in the array.

Algorithm uMergeSort takes three parameters: A as the input array,as well

as b and e as the indices of the first and last elements in the array.

Listing 6.1: Modified Merge sort

1 bool uMerge (A, p , q , r)

2 begin

3 n1← q−p+1;

4 n2← r−q ;

5 L [1 . .n1] ← A[p . . q] ;

6 L [n1+1] ←∞;

7 R[1 . .n2] ← A[(q+1) . . r] ;

8 R[n2+1] ←∞;

9 i ← 1 ;

10 j ← 1 ;

11 for k ← p to r do

12 i f L [i] = R[j] then

13 return f a l s e ;

14 else i f L [i] < R[j] then

15 A[k] ← L [i ++];

16 else

17 A[k] ← R[j ++];

18 end i f

126

Master’s Thesis - P. Dai McMaster - Computing and Software

19 end for

20 return t rue ;

21 end

22

23 bool uMergeSort (A, b , e)

24 begin

25 i f b<e then

26 m← b (b+e)/2 c ;

27 i f uMergeSort (A, b , m) = f a l s e or

28 uMergeSort (A, m+1, e) = f a l s e or

29 uMerge (A, b , m, e) = f a l s e then

30 return f a l s e ;

31 end i f

32 end i f

33 return t rue ;

34 end

We modified Merge-Sort such that when two items are found equal, the algo-

rithm will immediately terminate and return false. The running time of uMerge-

Sort is same as Merge-Sort, i.e., O(nlogn), where n is the total number of

elements in the input array.

The disjoint union checking algorithm is given in Listing 6.2. It takes as input

three sets A1, A2 and S and it checks if S is equal to the disjoint union of A1 and

A2. We use the array variable A0 as temporary storage.

Listing 6.2: Verify disjoint union

1 bool DisjointUnion (A1, A2, S)

2 begin

3 n1← s i z e o f A1;

4 n2← s i z e o f A2;

5 n3← s i z e o f S ;

127

Master’s Thesis - P. Dai McMaster - Computing and Software

6 i f n3 6= n1 + n2 then

7 return f a l s e ;

8 end i f

9 A0 [1 . .n1] ←A1[1 . .n1] ;

10 A0[n1+1. .n3] ←A2[1 . .n2] ;

11 i f uMergeSort (A0 , 1 , n3) = f a l s e or

12 uMergeSort (S , 1 , n3) = f a l s e then

13 return f a l s e ;

14 end i f

15 for i ← 1 to n3 do

16 i f A0[i] 6= S [i] then

17 return f a l s e ;

18 end for

19 return t rue ;

20 end

We first check to make sure that the size of S is equal to the sum of the sizes

of the two member sets (ie. |S| = |A1| + |A2|: lines 3-8). We the copy the two

member sets into a larger set A0 (lines 9-10). This takes linear time. Next, we

call Algorithm 6.1 to check whether the two member sets have duplicate elements

(line 11). We then Perform the same check on S (line 12). These checks each

take O(n3logn3). We then traverse the two sorted sets and check whether each

corresponding element is equal (lines 15-18). This takes linear time. The running

time of this algorithm is thus dominated by uMergeSort, which is O(n3logn3).

6.1.5 Language vs. States

The synthesis process starts with creating a cross product of the component DES.

Based on this new DES, our algorithms trim off states that represent strings that

don’t meet our requirements, such as controllability and interface consistency.

128

Master’s Thesis - P. Dai McMaster - Computing and Software

In Chapter 5, we presented a set of language based fixpoint operators to con-

struct our supremal languages. The algorithms we present in this chapter construct

DES that represent these supremal languages, but they operate by removing states,

instead of strings. In this section, we will show the equivalence of removing states

to removing strings that fail our language based definition.

Let DES Gi := (Qi,Σ, δi, qoi, Qmi), i = 1, 2. A cross product of DES G1,G2

is defined as G1 ×G2 := (Q,Σ, δ, qo, Qm), where Q = Q1 × Q2, δ = δ1 × δ2, qo =

(qo1, qo2), and Qm = Qm1 ×Qm2, with

(δ1 × δ2)((q1, q2), σ) := (δ1(q1, σ), δ2(q2, σ))

whenever δ1(q1, σ)! and δ2(q2, σ)!. The meet of the two DES is the reachable sub-

DES of G1 ×G2 ([79]).

We now extend the cross product definition to multiple DES. Given DES Gi :=

(Qi,Σ, δi, qoi, Qmi), i = 1, 2, . . . , n; a cross product of DES G1,G2, . . . ,Gn is

defined as G1 ×G2 × . . .×Gn := (Q,Σ, δ, qo, Qm), where

Q = Q1 ×Q2 × . . .×Qn

δ = δ1 × δ2 × . . .× δ2
qo = (qo1, qo2), . . . , qon)

Qm = Qm1 ×Qm2 × . . .×Qmn

with

(δ1 × δ2 × . . .× δ2)((q1, q2, . . . , qn), σ) := (δ1(q1, σ), δ2(q2, σ), . . . , δn(qn, σ))

whenever for all i = 1, 2, . . . , n, δi(qi, σ)!. Again, the meet of the n DES is the

reachable sub-DES of G1 ×G2 × . . .×Gn.

In the HISC definitions, we used the synchronous product. The main difference

between the meet and the synchronous product is that all DES combined in the

meet must have the same event set, where in the synchronous product, they each

129

Master’s Thesis - P. Dai McMaster - Computing and Software

can be defined over a different event set. As it’s easier to work with the meet, we

can add appropriate selfloops to each DES so that they are then defined over a

common event set.

We do this as follows. Let DES Gi = (Qi,Σi, δi, qoi, Qmi), Σ =
⋃

j = 1, . . . , n
Σj,

Pi : Σ∗ → Σ∗
i , i = 1, 2, . . . n. We then define new DES G′

i = selfloop(Gi,Σ− Σi).

We thus have L(G′
i) = P−1

i L(Gi) and Lm(G′
i) = P−1

i Lm(Gi). It then follows that

L(meet(G′
1,G

′
2, ...G

′
n)) = L(G1‖G2‖...‖Gn) and Lm(meet(G′

1,G
′
2, ...G

′
n)) =

Lm(G1‖G2‖...‖Gn).

We will now present a useful relationship between the states of G, and the

Nerode equivalence relations for the individual Gi. The proposition below states

that for any two strings that go to the same state in G, then these two strings

also lead to the same state in each of the component DES, and thus they belong

to the same nerode equivalent classes of the component DES’s closed and marked

languages.

Proposition 13 Let DES Gi := (Qi,Σ, δi, qoi, Qmi) (i = 1, 2) and G = G1 ×
G2 × . . .×Gn = (Q,Σ, δ, qo, Qm). It then follows:

(∀i ∈ {1, 2, . . . n})(∀s, t ∈ Σ∗) δ(qo, s) = δ(qo, t) ⇒ s ≡L(Gi) t ∧ s ≡Lm(Gi) t

♦

Proof

Let s, t ∈ Σ∗, and i ∈ {1, 2, . . . n}.

Assume δ(qo, s) = δ(qo, t). (1)

We will now show this implies s ≡L(Gi) t and s ≡Lm(Gi) t.

From (1) we have

(δ1× δ2× . . .× δn)((qo1, qo2, . . . , qon), s) = (δ1× δ2× . . .× δn)((qo1, qo2, . . . , qon), t)

130

Master’s Thesis - P. Dai McMaster - Computing and Software

⇒ (δ1(qo1, s), δ2(qo2, s), . . . , δn(qon, s)) = (δ1(qo1, s), δ2(qo2, s), . . . , δn(qon, t))

⇒ δi(qoi, s) = δi(qoi, t).

⇒ s ≡L(Gi) t ∧ s ≡Lm(Gi) t (from [79]), as required.

¤

We now present an analogous result for the synchronous product of n DES.

Let DES Gi = (Qi,Σi, δi, qoi, Qmi), Σ =
⋃

j = 1, . . . , n
Σj, Pi : Σ∗ → Σ∗

i , i = 1, 2, . . . n.

Define G = G1‖G2‖...‖Gn = (Q,Σ, δ, qo, Qm), Li := P−1
i L(Gi), and Lm,i :=

P−1
i Lm(Gi).

Proposition 14 Let Gi (i = 1, 2, . . . , n), G, Li, and Lm,i be fined as above. It

then follows:

(∀i ∈ {1, 2, . . . , n})(∀s, t ∈ Σ∗) δ(qo, s) = δ(qo, t) ⇒ s ≡Li
t ∧ s ≡Lm,i

t

♦

Proof

Let s, t ∈ Σ∗, and i ∈ {1, 2, . . . , n}.

Assume δ(qo, s) = δ(qo, t). (1)

We will now show this implies s ≡Li
t ∧ s ≡Lm,i

t.

We now define new DES G′
j = selfloop(Gj,Σ− Σj) (j = 1, 2, . . . n).

We thus have L(G′
j) = P−1

j L(Gj) = Lj and Lm(G′
j) = P−1

j Lm(Gj) = Lm,j, for all

j ∈ {1, 2, . . . n}. (2)

We next define G′ = G′
1 ×G′

2 × . . .×G′
n = (Q′,Σ, δ′, qo, Q′m)

We note that as L(G′) = L(G), Lm(G′) = Lm(G), and the fact that the G′
j are

constructed by simply adding selfloops to the original DES, it follows from (1)

131

Master’s Thesis - P. Dai McMaster - Computing and Software

that δ′(qo, s) = δ′(qo, t).

We can now apply Proposition 13 to G′ and the G′
j (j = 1, 2, . . . n) and conclude:

s ≡L(Gi
′) t ∧ s ≡Lm(Gi

′) t

s ≡Li
t ∧ s ≡Lm,i

t, by (2).

¤

We will now use these propositions to prove some useful results related to

the HISC conditions. We first introduce some notation that we will need. Let

I1 ⊆ {1, 2, . . . n} and I2 ⊆ {1, 2, . . . n} be nonempty index sets for our n DES.

Define LI1 = ∩j∈I1Lj and LI2 = ∩k∈I2Lk.

Proposition 15 Let G = G1‖G2‖...‖Gn = (Q,Σ, δ, qo, Qm), Σa ⊆ Σ and I1 and

I2 be nonempty index sets for our n DES. It thus follows that for all s, t ∈ Σ∗, if

δ(qo, s) = δ(qo, t) then

EligLI1
(s) ∩ Σa 6⊆ EligLI2

(s) ⇔ EligLI1
(t) ∩ Σa 6⊆ EligLI2

(t)

♦

Proof

Let s, t ∈ Σ∗.

Assume δ(qo, s) = δ(qo, t) (1)

We will now show that this implies

EligLI1
(s) ∩ Σa 6⊆ EligLI2

(s) ⇔ EligLI1
(t) ∩ Σa 6⊆ EligLI2

(t)

We first note that as s and t are arbitrary and the condition to be proven is

symmetric, it is sufficient to prove

EligLI1
(s) ∩ Σa 6⊆ EligLI2

(s) ⇒ EligLI1
(t) ∩ Σa 6⊆ EligLI2

(t)

132

Master’s Thesis - P. Dai McMaster - Computing and Software

We thus assume EligLI1
(s) ∩ Σa 6⊆ EligLI2

(s). (2)

We will now show this implies EligLI1
(t) ∩ Σa 6⊆ EligLI2

(t). (3)

To prove (3), it is sufficient to show:

(∃σ ∈ Σa) tσ ∈ LI1 ∧ tσ 6∈ LI2

From (2), we can conclude: (∃σ ∈ Σa) sσ ∈ LI1 ∧ sσ 6∈ LI2 (4)

We next note that by (1) we can apply Proposition 14 and can conclude:

(∀i ∈ (I1 ∪ I2))s ≡Li
t

Combining with (4), we can thus conclude:

tσ ∈ ∩j∈I1Lj = LI1 and tσ 6∈ ∩k∈I2Lk = LI2

⇒ tσ ∈ LI1 ∧ tσ 6∈ LI2 , as required.

¤

We now note that if we choose I1, I2, and Σa appropriately, then Proposition

15 can be applied to the level-wise controllability definition, as well as points 3 and

4 of the interface consistency definition. Essentially the proposition states that if

a string fails such a property, then all the strings that lead to the same state in the

synchronous product will fail the same property, thus we need to remove the state.

This is consistent with how our state based algorithms work. We also note that

removing a state not only removes all strings that reach this state from the initial

state, but also removes all defined strings that can leave this state. In other words,

if we remove state q ∈ Q of DES G = (Q,Σ, δ, qo, Qm), we remove from L(G) the

strings Lq := {s ∈ L(G)| δ(qo, s) = q} as well as all strings that have prefixes in

Lq (ie. ExtL(G)(Lq)). This is consistent with how we defined our language based

fixpoint operators in Chapter 5.

We next present a nonblocking result. To show nonblocking for a DES G, we

would need to show L(G) = Lm(G). If G was blocking, then we would have

133

Master’s Thesis - P. Dai McMaster - Computing and Software

L(G) 6⊆ Lm(G). We will now show that if a string was in L(G) but not in Lm(G),

then all the strings that lead to the same state will also fail this condition, thus

we need to remove the state. Clearly this result can be applied to make the high

level, or a given low level nonblocking.

Proposition 16 Let G = (Q,Σ, δ, qo, Qm). It thus follows that for all s, t ∈ Σ∗,

if δ(qo, s) = δ(qo, t) then s 6∈ Lm(G)⇔ t 6∈ Lm(G) ♦

Proof

Let s, t ∈ Σ∗.

Assume δ(qo, s) = δ(qo, t) (1)

We will now show that this implies s 6∈ Lm(G)⇔ t 6∈ Lm(G)

We first note that as s and t are arbitrary and the condition to be proven is

symmetric, it is sufficient to prove: s 6∈ Lm(G)⇒ t 6∈ Lm(G)

Assume s 6∈ Lm(G) (2)

We will now show this implies t 6∈ Lm(G).

We next note that we know from [79] that δ(qo, s) = δ(qo, t) implies that s ≡Lm(G) t

(3)

From (2), we can conclude: (∀u ∈ Σ∗) su 6∈ Lm(G)

⇒ (∀u ∈ Σ∗) tu 6∈ Lm(G), by (3).

⇒ t 6∈ Lm(G), as required.

¤

We now present a set of propositions relevant to the high level interface con-

trollable (HIC) definition, the jth low level interface controllable (LICj) definition,

134

Master’s Thesis - P. Dai McMaster - Computing and Software

as well as for nonblocking.

Let Φ stand for the nth degree HISC-valid specification interface system

that respects the alphabet partition given by (3.1) and is composed of plant

DES Gp
H , G

p
L1
, . . . , Gp

Ln
, specification DES EH , EL1 , . . . ,ELn , and interface DES

GI1 , . . . ,GIn , that we are considering. We will also take j to be an index in the

range {1, . . . , n}. We will also make use of the related natural projections and

languages defined in Section 5.1. We thus have GHL = Gp
H ||EH ||GI1|| . . . ||GIn

and GLLj
= Gp

Lj
||ELj

||GIj
. We now need to define DES G′

HL to be DES GHL with

events Σ − ΣIH selflooped at every state. This is to extend the event set of GHL

to Σ, so that it will be compatible with the languages used in the HIC definition

(i.e. L(G′
HL) = ZH). Similarly, we need to define DES G′

LLj
to be DES GLLj

with

events Σ− ΣILj
selflooped at every state, thus L(G′

LLj
) = ZLj

.

We first present a proposition for the HIC definition.

Proposition 17 For system Φ, let G := G′
HL = (Q,Σ, δ, qo, Qm). It follows that

for all s, t ∈ L(G′
HL), if δ(qo, s) = δ(qo, t) then

1. EligHp∩I(s) ∩ Σu 6⊆ EligL(G′
HL

)(s)⇔ EligHp∩I(t) ∩ Σu 6⊆ EligL(G′
HL

)(t)

2. (∀j ∈ {1, . . . , n}) EligIj
(s) ∩ ΣAj

6⊆ Elig
Hp∩L(G′

HL
)∩ T

k 6= j
Ik

(s)⇔

EligIj
(t) ∩ ΣAj

6⊆ Elig
Hp∩L(G′

HL
)∩ T

k 6= j
Ik

(t)

♦

Proof

Let s, t ∈ L(G′
HL).

Assume δ(qo, s) = δ(qo, t).

1. Show EligHp∩I(s) ∩ Σu 6⊆ EligL(G′
HL

)(s)⇔ EligHp∩I(t) ∩ Σu 6⊆ EligL(G′
HL

)(t)

135

Master’s Thesis - P. Dai McMaster - Computing and Software

This follows from Proposition 15 when we take Σa = Σu, set index I1 to represent

Gp
H , GI1 , . . ., GIn , and set index I2 to represent all of the DES used to construct

DES GHL.

2. Show (∀j ∈ {1, . . . , n}) EligIj
(s) ∩ ΣAj

6⊆ Elig
Hp∩L(G′

HL
)∩ T

k 6= j
Ik

(s)⇔

EligIj
(t) ∩ ΣAj

6⊆ Elig
Hp∩L(G′

HL
)∩ T

k 6= j
Ik

(t)

Let j ∈ {1, . . . , n}.

The result follows from Proposition 15 when we take Σa = ΣAj
, set index I1 to

represent GIj
, and set index I2 to represent all of the DES used to construct

DES GHL. With respect to the definition of I2, we use the fact that L(G′
HL) =

Hp ∩ L(G′
HL) ∩ T

k 6= j
Ik.

¤

We now present a proposition for the LICj definition.

Proposition 18 For system Φ, let G := G′
LLj

= (Q,Σ, δ, qo, Qm). It follows that

for all s, t ∈ L(G′
LLj

), if δ(qo, s) = δ(qo, t) then

1. EligLp
j
(s) ∩ Σu 6⊆ EligL(G′

LLj
)∩Ij

(s)⇔ EligLp
j
(t) ∩ Σu 6⊆ EligL(G′

LLj
)∩Ij

(t)

2. EligIj
(s) ∩ ΣRj

6⊆ EligLp
j∩L(G′

LLj
)(s)⇔ EligIj

(t) ∩ ΣRj
6⊆ EligLp

j∩L(G′
LLj

)(t)

3. (∀ρ ∈ ΣRj
)(∀α ∈ ΣAj

) [sρα ∈ Ij] ∧ [(∀l ∈ Σ∗
Lj

) sρlα 6∈ Lp
j ∩ L(G′

LLj
) ∩ Ij]⇔

[tρα ∈ Ij] ∧ [(∀l ∈ Σ∗
Lj

) tρlα 6∈ Lp
j ∩ L(G′

LLj
) ∩ Ij]

4. [s ∈ Imj
] ∧ [(∀l ∈ Σ∗

Lj
) sl 6∈ Lp

mj
∩ Lm(G′

LLj
) ∩ Imj

]⇔
[t ∈ Imj

] ∧ [(∀l ∈ Σ∗
Lj

) tl 6∈ Lp
mj
∩ Lm(G′

LLj
) ∩ Imj

]

♦

136

Master’s Thesis - P. Dai McMaster - Computing and Software

Proof

Let s, t ∈ L(G′
LLj

).

Assume δ(qo, s) = δ(qo, t). (1)

Using (1), we can apply Proposition 14 and conclude: (2)

s ≡Lp
j
t ∧ s ≡Lp

mj
t

s ≡ELj
t ∧ s ≡ELj,m

t

s ≡Ij
t ∧ s ≡Imj

t

1. Show EligLp
j
(s) ∩ Σu 6⊆ EligL(G′

LLj
)∩Ij

(s)⇔ EligLp
j
(t) ∩ Σu 6⊆ EligL(G′

LLj
)∩Ij

(t)

This follows from Proposition 15 when we take Σa = Σu, set index I1 to represent

Gp
Lj

, and set index I2 to represent all of the DES used to construct DES GLLj
.

2. Show EligIj
(s) ∩ ΣRj

6⊆ EligLp
j∩L(G′

LLj
)(s) ⇔ EligIj

(t) ∩ ΣRj
6⊆

EligLp
j∩L(G′

LLj
)(t)

This follows from Proposition 15 when we take Σa = ΣRj
, set index I1 to represent

GIj
, and set index I2 to represent all of the DES used to construct DES GLLj

.

3. Show (∀ρ ∈ ΣRj
)(∀α ∈ ΣAj

) [sρα ∈ Ij]∧[(∀l ∈ Σ∗
Lj

) sρlα 6∈ Lp
j∩L(G′

LLj
)∩Ij]⇔

[tρα ∈ Ij] ∧ [(∀l ∈ Σ∗
Lj

) tρlα 6∈ Lp
j ∩ L(G′

LLj
) ∩ Ij]

Let ρ ∈ ΣRj
, and α ∈ ΣAj

.

We first note that as s and t are arbitrary and the condition to be proven is

symmetric, it is sufficient to prove:

[sρα ∈ Ij] ∧ [(∀l ∈ Σ∗
Lj

) sρlα 6∈ Lp
j ∩ L(G′

LLj
) ∩ Ij]⇒ [tρα ∈ Ij]∧

[(∀l ∈ Σ∗
Lj

) tρlα 6∈ Lp
j ∩ L(G′

LLj
) ∩ Ij]

137

Master’s Thesis - P. Dai McMaster - Computing and Software

Assume [sρα ∈ Ij] ∧ [(∀l ∈ Σ∗
Lj

) sρlα 6∈ Lp
j ∩ L(G′

LLj
) ∩ Ij]. (3)

We will now show this implies

[tρα ∈ Ij] ∧ [(∀l ∈ Σ∗
Lj

) tρlα 6∈ Lp
j ∩ L(G′

LLj
) ∩ Ij]

From (2), (3), and fact that by definition L(G′
LLj

) = Lp
j∩ELj

∩Ij, we can conclude

[tρα ∈ Ij] ∧ [(∀l ∈ Σ∗
Lj

) tρlα 6∈ Lp
j ∩ ELj

∩ Ij

⇒ [tρα ∈ Ij] ∧ [(∀l ∈ Σ∗
Lj

) tρlα 6∈ Lp
j ∩ L(G′

LLj
) ∩ Ij], as required.

4. Show [s ∈ Imj
] ∧ [(∀l ∈ Σ∗

Lj
) sl 6∈ Lp

mj
∩ Lm(G′

LLj
) ∩ Imj

]⇔
[t ∈ Imj

] ∧ [(∀l ∈ Σ∗
Lj

) tl 6∈ Lp
mj
∩ Lm(G′

LLj
) ∩ Imj

]

We first note that as s and t are arbitrary and the condition to be proven is

symmetric, it is sufficient to prove:

[s ∈ Imj
] ∧ [(∀l ∈ Σ∗

Lj
) sl 6∈ Lp

mj
∩ Lm(G′

LLj
) ∩ Imj

]⇒
[t ∈ Imj

] ∧ [(∀l ∈ Σ∗
Lj

) tl 6∈ Lp
mj
∩ Lm(G′

LLj
) ∩ Imj

]

Assume [s ∈ Imj
] ∧ [(∀l ∈ Σ∗

Lj
) sl 6∈ Lp

mj
∩ Lm(G′

LLj
) ∩ Imj

] (4)

We will now show this implies

[t ∈ Imj
] ∧ [(∀l ∈ Σ∗

Lj
) tl 6∈ Lp

mj
∩ Lm(G′

LLj
) ∩ Imj

]

From (2), (4), and fact that by definition Lm(G′
LLj

) = Lp
mj
∩ ELj,m

∩ Imj
, we can

conclude: [t ∈ Imj
] ∧ [(∀l ∈ Σ∗

Lj
) tl 6∈ Lp

mj
∩ ELj,m

∩ Imj
].

⇒ [t ∈ Imj
] ∧ [(∀l ∈ Σ∗

Lj
) tl 6∈ Lp

mj
∩ Lm(G′

LLj
) ∩ Imj

], as required.

¤

138

Master’s Thesis - P. Dai McMaster - Computing and Software

6.2 Verify Command-pair Interfaces

A DES must satisfy the properties given in Definition 3.2.1 to be a command-

pair interface. As this definition is given in terms of the languages L(GI) and

Lm(GI), we would prefer a state-based definition that would be easier to verify

using automata. We present below such a definition, and then show that it is

equivalent to Definition 3.2.1.

Definition 6.2.1 A DES GI = (X,ΣR ∪̇ΣA, ξ, x0, Xm), with Xrch ⊆ X its set of

reachable states and Xrm ⊆ Xm its set of reachable marked states, is a command-

pair interface if the following properties are satisfied:

1. x0 ∈ Xrm

2. (∀x ∈ Xrm)(∀σ ∈ ΣR ∪̇ΣA) ξ(x, σ)!⇒ σ ∈ ΣR ∧ ξ(x, σ) ∈ Xrch −Xrm

3. (∀x ∈ Xrch −Xrm)(∀σ ∈ ΣR ∪̇ΣA) ξ(x, σ)!⇒ σ ∈ ΣA ∧ ξ(x, σ) ∈ Xrm ♦

We now show that our new definition for command-pair interfaces is is equiv-

alent to the original definition given in Chapter 3.

Proposition 19 Definition 3.2.1 and 6.2.1 are equivalent. ♦

Proof

Let GI = (X,ΣR ∪̇ΣA, ξ, x0, Xm), and let Xrch ⊆ X be its set of reachable states

and Xrm ⊆ Xm its set of reachable marked states.

We will now show that GI satisfies Definition 3.2.1 if and only if it satisfies Defi-

nition 6.2.1.

I) Assume GI satisfies Definition 6.2.1.

139

Master’s Thesis - P. Dai McMaster - Computing and Software

We will now show that this implies GI satisfies Definition 3.2.1.

To do this we need to show that GI satisfies points A and B of Definition 3.2.1.

I.A) To show point A, we need to show: L(GI) ⊆ (ΣR.ΣA)∗

This essentially says that a string in L(GI) can be either the empty string, ε, or it

must start with a request event and then alternate answer and then request events

from then on.

This is equivalent to saying: †

(∀s ∈ L(GI))(∃k ∈ {0, 1, 2, 3, . . .})(∃σ1, σ2, . . . , σk ∈ ΣR ∪̇ΣA) σ1σ2 . . . σk = s

where k = 0 means s = ε, and for 1 ≥ i ≥ k

σi ∈ ΣR if i is an odd number, and σi ∈ ΣA if i is an even number

From point 1 of Definition 6.2.1, we know that x0 is a marked state, and from point

2 we know that at all reachable marked states only request events are allowed, and

they always take us to a non marked state. From point 3, we know that at all

reachable non marked state, only answer events are allowed, and they always take

us to a marked state.

Clearly, this implies that for a string t ∈ L(GI), either t = ε or t starts with a

request event, and then alternates answer-request event from then on. In other

words, L(GI) satisfies †.

I.B) To show point B, we need to show: Lm(GI) = (ΣR.ΣA)∗ ∩ L(GI)

We thus need to show Lm(GI) ⊆ (ΣR.ΣA)∗ ∩ L(GI) and (ΣR.ΣA)∗ ∩ L(GI) ⊆
Lm(GI).

I.B.i) Assume s ∈ (ΣR.ΣA)∗ ∩ L(GI).

140

Master’s Thesis - P. Dai McMaster - Computing and Software

Must show this implies s ∈ Lm(GI)

We first note that s ∈ (ΣR.ΣA)∗ implies s = ε or s ∈ (ΣR ∪̇ΣA)∗.ΣA

From point 1 of Definition 6.2.1, we know that x0 is a marked state, thus ε ∈
Lm(GI).

If s ∈ (ΣR ∪̇ΣA)∗.ΣA we can conclude:

(∃s′ ∈ (ΣR ∪̇ΣA)∗)(∃α ∈ ΣA) s′α = s

As s ∈ L(GI)), it follows that s′ ∈ L(GI)) as L(GI)) is closed.

We thus have ξ(x0, s
′) ∈ Xrch and ξ(x0, s

′α) ∈ Xrch.

By point 2 of Definition 6.2.1, we can thus conclude ξ(x0, s
′) ∈ Xrch − Xrm as

answer events are not permitted at states in Xrm.

We can thus conclude by point 3 that ξ(x0, s
′α) ∈ Xrm.

We thus have s ∈ Lm(GI) (as s = s′α), as required.

I.B.ii) Assume s ∈ Lm(GI)

As Lm(GI) ⊆ L(GI), we immediately have s ∈ L(GI).

It is thus sufficient to show s ∈ (ΣR.ΣA)∗

From Part I.A, we have L(GI) ⊆ (ΣR.ΣA)∗.

As Lm(GI) ⊆ L(GI), we thus have Lm(GI) ⊆ (ΣR.ΣA)∗.

In other words, strings in Lm(GI) can be either the empty string, or it must start

with a request event and then alternate answer and then request events from then

on.

If s = ε, we would have s ∈ (ΣR.ΣA)∗.

141

Master’s Thesis - P. Dai McMaster - Computing and Software

We now examine the case that s starts with a request event and then alternates

answer and then request events.

This means that it is sufficient to show that s ∈ (ΣR ∪̇ΣA)∗.ΣA.

As s ∈ Lm(GI), it follows that ξ(x0, s) ∈ Xrm.

From points 2 and 3 of Definition 6.2.1, it follows that ξ(x0, s) can only be reached

by an answer event transition, thus s ∈ (ΣR ∪̇ΣA)∗.ΣA, as required.

From Part I.B.i and I.B.ii, we have Lm(GI) = (ΣR.ΣA)∗ ∩ L(GI), as required.

From Part I.A and I.B, we have that GI satisfies Definition 3.2.1.

II) Assume GI satisfies Definition 3.2.1.

We will now show that this implies GI satisfies Definition 6.2.1.

We first not that by point A of Definition 3.2.1, we know that L(GI) satisfies †.
(1)

II.1) Show that x0 ∈ Xrm

By point B of Definition 3.2.1, we have ε ∈ Lm(GI). It immediately follows that

x0 ∈ Xrm from the definition of Lm(GI).

II.2) Show that (∀x ∈ Xrm)(∀σ ∈ ΣR ∪̇ΣA) ξ(x, σ)!⇒ σ ∈ ΣR ∧ ξ(x, σ) ∈ Xrch −
Xrm

Let x ∈ Xrm and σ ∈ ΣR ∪̇ΣA.

Assume ξ(x, σ)!. Must show implies σ ∈ ΣR ∧ ξ(x, σ) ∈ Xrch −Xrm

From Part II.1, we know we have two choices: x = x0 or x 6= x0

142

Master’s Thesis - P. Dai McMaster - Computing and Software

If x = x0, we know that σ ∈ ΣR as every string in L(GI) must start with a request

event, by (1).

By point B of Definition 3.2.1, we can conclude that σ 6∈ Lm(GI).

We can thus conclude that ξ(x, σ) ∈ Xrch −Xrm.

We now consider the case x 6= x0.

As x is reachable by assumption, we can conclude ∃s ∈ L(GI) such that ξ(x0, s) =

x.

From (1), we can conclude that s starts with a request event, then alternates

answer then request event.

As x ∈ Xrm by assumption, we thus have s ∈ Lm(GI).

⇒ s ∈ (ΣR ∪̇ΣA)∗.ΣA, by point B of Definition 3.2.1 and fact x 6= x0.

By (1), we can thus conclude σ ∈ ΣR. (2)

As ξ(x, σ)! by assumption and fact x is reachable, we thus have sσ ∈ L(GI).

⇒ sσ 6∈ Lm(GI) by (2) and point B of Definition 3.2.1.

x ∈ Xrch −Xrm, as required.

II.3) Show that (∀x ∈ Xrch −Xrm)(∀σ ∈ ΣR ∪̇ΣA) ξ(x, σ)! ⇒ σ ∈ ΣA ∧ ξ(x, σ) ∈
Xrm

Let x ∈ Xrch −Xrm and σ ∈ ΣR ∪̇ΣA.

Assume ξ(x, σ)!. Must show implies σ ∈ ΣA ∧ ξ(x, σ) ∈ Xrm

As x is reachable, we can conclude ∃s ∈ L(GI) such that ξ(x0, σ) = x.

143

Master’s Thesis - P. Dai McMaster - Computing and Software

As x ∈ Xrch −Xrm, we know that s 6∈ Lm(GI). (3)

This also allows us to conclude x 6= x0 by Part II.1.

We can thus conclude by (1) that s begins with a request event and then alternates

answer then request event. (4)

From (3) and point B of Definition 3.2.1, we can conclude s 6∈ (ΣR ∪̇ΣA)∗.ΣA.

⇒ s ∈ (ΣR ∪̇ΣA)∗.ΣR, by (4).

⇒ σ ∈ ΣA, by (4). (5)

As ξ(x, σ)! by assumption and fact x is reachable, we thus have sσ ∈ L(GI).

⇒ sσ ∈ Lm(GI), by (5) and points A B of Definition 3.2.1.

⇒ ξ(x, σ) ∈ Xrm, as required.

From Parts II.1-3, we have that GI satisfies Definition 6.2.1.

From Parts I and II, we can now conclude that GI satisfies Definition 3.2.1 if and

only if it satisfies Definition 6.2.1.

¤

We will now present an algorithm that checks whether a given DES is a com-

mand pair interface according to Definition 6.2.1. All the properties will be verified

in one traversal over the DES.

When an interface DES is designed and read into memory, we require that

every state starting from the initial state, is given an index number starting from

1, which can be used as a keyword to identify a unique state. We reserve 0 for

later use to mark an undefined state or a state with special meaning. Similarly,

we index events starting from 1.

144

Master’s Thesis - P. Dai McMaster - Computing and Software

Given a DES GI = (X,ΣI , ξ, x0, Xm) and event sets ΣR, ΣA, we need to check

that GI satisfies the properties listed in Definition 6.2.1.

Listing 6.3: Checking Command-pair interface

1 bool CommandPair (GI)

2 begin

3 i f DisjointUnion(ΣR, ΣA, ΣI)=f a l s e then

4 return f a l s e ;

5 end i f

6 i f GI = EMPTY then

7 return f a l s e ;

8 end i f

9 i f x0 /∈Xm then

10 return f a l s e ; // po int 1

11 end i f

12 XFound ← {x0} ;
13 XPend ← {x0} ;
14 while XPend 6= ∅ do

15 x ← pop XPend ;

16 i f x ∈ Xm then

17 for each σ ∈ ΣI do

18 i f ξ (x , σ) ! then

19 x’← ξ (x , σ) ;

20 i f σ /∈ΣR OR x’ ∈Xm then

21 return f a l s e ; // po int 2

22 else

23 i f x’ /∈ XFound then

24 push XFound , x’;

25 push XPend , x’;

26 end i f

27 end i f

145

Master’s Thesis - P. Dai McMaster - Computing and Software

28 end i f

29 end for

30 else //x /∈ Xm

31 for each σ ∈ ΣI do

32 i f ξ (x , σ) ! then

33 x’← ξ (x , σ) ;

34 i f σ /∈ΣA OR x’ /∈Xm then

35 return f a l s e ; // po int 3

36 else

37 i f x’ /∈ XFound then

38 push XFound , x’;

39 push XPend , x’;

40 end i f

41 end i f

42 end i f

43 end for

44 end i f

45 end while

46 return t rue ;

47 end

Let nx = |X|, ns = |ΣI | be the number of states and events. Lines 3-5 calls

Algorithm 6.2 to check if ΣI is a disjoint union of ΣR and ΣA, it takes O(ns · logns).

Lines 6-8 checks if the DES is empty. This takes constant time. Lines 9-11 make

sure that the initial state is marked. Lines 12-13 initialize the following state sets:

XFOUND: states found/processed; XPend: a set of states waiting to be processed.

The initialization takes constant time.

Lines 17-29 check that, for any given state in Xrm, only request events occur

and they lead to states in Xrch−Xrm (Point 2). Similarly Lines 31-43 check Point

3.

146

Master’s Thesis - P. Dai McMaster - Computing and Software

The while block, lines 14-45, runs nx times worst case. The for blocks in lines

17-29 and lines 31-43 run ns times. Checking event type (such as on line 20) takes

constant time. Since we know the size of the state space, we can use an array to

store flags to mark whether a state is found or not. Checking of whether a state

is found or not, as done on line 23, thus takes constant time. Operations (Push

and pop) on XPend take constant time. So the while block, Line 14-45, takes

O(nx · ns) running time. We conclude that the running time for Algorithm 6.3 is

O(ns · logns + nx · ns).

6.3 Level-wise Nonblocking and Controllable

Since our synthesis method constructs supervisors for each subsystem and makes

sure the resulting supervisor is nonblocking and controllable, we don’t need to

verify these two properties for our supervisors.

In case a verification is required, normal verification tools such as TCT can

be used. Verification is much simpler than synthesis since whenever a state or

string fails the desired property, the whole process can be stopped and the state

and property that failed can be then be returned to the user. Rudie [61] studied

the complexity of supcon for systems with one plant and one spec (ie. a flat

system), and concluded the time complexity for such a supcon algorithm to be

O(snpnl+suepel), in which s and su represent numbers of events and uncontrollable

events, np and nl represent the state sizes of the plant and specification, ep and

el represent numbers of transitions in plant and specification. As ep ≤ snp and

el ≤ snl, we can rewrite the complexity as O(snpnl + sus
2npnl). Interested readers

are referred to [61] for verification algorithms for nonblocking and controllable.

147

Master’s Thesis - P. Dai McMaster - Computing and Software

6.4 Verify Interface Consistency

For a given nth degree (n ≥ 1) hierarchical interface based system composed

of DES GH ,GL1 , . . . ,GLn ,GI1 , . . . ,GIn , we need to verify that all the interface

consistency conditions in Definition 3.4.2 are satisfied.

First we will verify that the system respects the alphabet partition given by

Equation 3.1. Then we will check the listed six interface consistency properties.

6.4.1 Alphabet Partition

We need to verify that

Σ = ΣH ∪̇
⋃̇

k = 1, . . . , n
(ΣLk

∪̇ ΣRk
∪̇ ΣAk

).

By definition of disjoint union, we have ns = |Σ| = |ΣH |+Σk=1,...,n(|ΣLk
|+ |ΣRk

|+
|ΣAk
|). Here we use |Σ| to mean the number of elements in the set Σ.

To check that the two sets are disjoint, we can use a variation of Algorithm 6.2.

Essentially, we would remove the S set from the algorithm, set n3 = |A1| + |A2|,
remove lines 4-8, the uMergeSort call for set S, and lines 15-18, and return the A0

array (we will need this shortly). The complexity would still be O(n3logn3). If we

use ns as an upper bound for n3, we see that the comparison for any two of our

sets would be O(nslogns).

Since we have one high level with event set ΣH and n low levels each having

three event sets (ΣLj
, ΣRj

and ΣAj
) associated with them, we thus have 3n + 1

event sets in total. To directly verify that all sets are pairwise disjoint, we could

compare every two combinations out of the 3n + 1 possible sets to see if they are

disjoint. This would require C3n+1
2 = 9n2+3n

2
comparisons. 2 However, we can

actual check this condition using a maximum of 3n comparisons.

2Cn
m := n!

m!(n−m)!

148

Master’s Thesis - P. Dai McMaster - Computing and Software

Imagine a complete binary tree structure, with each event set as a leaf node. 3

We then apply our comparison algorithm that we discussed above to every two sets

who share the same parent node. After comparing the two sets, we then replace

their parent node with the resulting set from the disjoint union (array A0 discussed

above). If we have an odd number of sets at a given level, we move the rightmost

node that represents a set, up one level to replace its parent node.

We repeat this process from bottom up until we have replaced the root node.

If any of these steps we find the two sets we are comparing are not disjoint, the

process terminates and we conclude that the alphabet partition does not satisfy

the requirement, and thus the system is not interface consistent.

We will need to call our comparison algorithm at most 3n times. Clearly, the

n3 value for any comparison will be less than ns. We thus have time complexity

O(3n) ·O(nslogns) = O(n · nslogns).

In the remainder of this chapter we will assume that the disjoint union property

has already been verified and we will use ∪ (normally set union) instead of ∪̇ in

our discussions.

6.4.2 Multi-level Properties

Multi-level property Point 1 can be verified by comparing event set of GH and

ΣIH , and event set of GLj
and ΣILj

, for j = 1 . . . n. We need do n+1 comparisons

in total.

Let ns be the size of alphabet Σ and let nD be an upper bound for the number

of component DES that make up GH and the GLj
. We assume that ΣIH , and each

ΣILj
are represented by a Boolean array of size ns. As each event has an index

number greater than or equal to one, we can specify whether an event in Σ belongs

3A complete binary tree is a binary tree which has at every level except possibly the lowest,
completely filled. At the lowest level, all nodes must be as far left as possible.

149

Master’s Thesis - P. Dai McMaster - Computing and Software

to a given set by marking the corresponding entry as true. We can thus test set

membership for a given event in constant time.

To determine the event set used by GH, we first initialize each entry in its

array to false. This has time complexity O(ns). We then process the event set

of each component DES and mark each corresponding array entry as true. This

process is O(nsnD). We can now check that every entry of this array is set to true

if and only if the corresponding entry of the array for ΣIH is set to true which

will tell us if the sets are equal. This process is O(ns). Our entire process is thus

O(2ns + nsnD) = O(nsnD). We can use a similar approach to check the n low

levels. We thus find the total time complexity for Point 1 to be O(nnsnD).

Multi-level property Point 2 requires that all interface DES are command-pair

interface. We can verify this by applying Algorithm 6.3 (Section 6.2) to each

GIj , for j = 1 . . . n. Let nx be the largest state size of of all the interfaces. As

Algorithm 6.3 runs in O(nslogns + nx · ns) time, we can thus check Point 2 in

O(nnslogns + nnx · ns).

6.4.3 High Level Property

The high level property (Point 3 of Definition 3.4.2) is similar to the controllability

definition. If we take GIj as the plant DES, GH ||GI1||GIj−1
||GIj+1

||GIn , Σu = ΣAj

as the supervisor DES and Σc = Σ−ΣAj
, we can then apply a normal controllability

check for each j ∈ {1, 2, . . . , n}. We also note that the synchronous product of the

plant and the supervisor is the same in each case, so we can then do only one

synchronization but check for each version of the controllability property at each

reachable state.

When carrying out our check, we store pointers to the component DES in an

array and put them in the following order: plant, specification and then interface

DES. Let nHP and nHS be the number of plant and specification DES in the high

150

Master’s Thesis - P. Dai McMaster - Computing and Software

level, respectively. When checking the high level property, we need to use all the

plant and specification DES from the high level, plus all n interface DES. The total

number of DES involved is thus

mH = nHP + nHS + n.

The algorithm to check Point 3 is given below in Listing 6.4.

Listing 6.4: Interface Consistency Pt 3 Check

1 bool Pt3Check ()

2 begin

3 ΣIH ←ΣH ∪
⋃

k=1..n(ΣAk
∪ ΣRk

) ;

4 nHP ← number o f high l e v e l p lant DES;

5 nHS ← number o f high l e v e l s p e c i f i c a t i o n DES;

6 mH ← nHP + nHS + n ;

7 for k← 1 to mH do

8 F i l l t r a n s i t i o n matrix (DES k) :δH(k, x, σ);

9 end for

10 s0← < x10 , x20 , . . . , xmH0 > ; //Tuple o f i n i t i a l s t a t e s from a l l DES

11 pending ← {s0} ;
12 found ← {s0} ;
13 while pending 6= ∅ do

14 s = < x1, x2, . . . , xmH > ← ex t r a c t element from pending ;

15 for each σ ∈ΣIH do

16 undef ined ← f a l s e ;

17 for i ← 1 to mH do

18 i f δH(i, xi, σ) ! then

19 xi ’ ← δH(i, xi, σ) ;

20 else

21 undef ined ← t rue ;

22 break ;

23 end i f

151

Master’s Thesis - P. Dai McMaster - Computing and Software

24 end for

25 i f undef ined then

26 i f i ≤ nHP + nHS then

27 for j ← nHP + nHS + 1 to mH do

28 i f δH(j, xj , σ) ! and σ ∈ΣAj then

29 return f a l s e ;

30 end i f

31 end for

32 end i f

33 else

34 s ’ ← < x1‘, x2‘, . . . , xmH ‘ > ;

35 i f s ’ /∈ found then

36 pending ← pending ∪ {s ’ } ;

37 found← found ∪ {s ’ } ;

38 end i f

39 end i f

40 end for

41 end while

42 return t rue ; //pt 3 check pass

43 end

Let nsH = |ΣIH |. Let nH be the number of states of the largest DES (in terms of

state size) among the mH DES. Let nx be state size of the synchronous product of

GH,GI1 , . . . ,GIn .

In Line 3, we simply copy the indicated event sets into a large array, which takes

linear time. Lines 7-9 constructs the transition table for each component DES. As

transition lists are stored as linked lists in DES, we need to construct the table

in able to quickly determine if a transition is defined at a given state, and where

the transition takes us. We construct the array for a given DES as follows: For

each state of the DES, we initialize the entry for each event in ΣIH to be to that

152

Master’s Thesis - P. Dai McMaster - Computing and Software

state (ie. set it to a selfloop). This is to account for events not in the event set of

the DES. This effectively converts the synchronous product to the corresponding

meet operation. We then loop through every event in the event set of the DES and

set that entry to zero which indicates no transition with that event label defined

as the state indexes start at one. We now loop through the transition list (stored

as a linked list) for the that state. Since we assume the DES is deterministic, we

can have maximum nsH transitions at a given state. For each one we find, we set

the corresponding array index to the indicated next state. As we do this for every

state of each DES, this operation is thus O(mH · nH · nsH).

The while block, lines 13-41, goes over the state space of the synchronous

product DES, which is worst case nx ≤ nmH
H states. The for loop in lines 15-40

runs nsH times, while the two parallel for loops in lines 17-24 and lines 27-31 each

run O(mH) times. Access to the trie representing the found set is also O(mH).

The running time for this algorithm is thus O(mH · nH · nsH) +O(nmH
H · nsH ·mH)

which is dominated by the O(nmH
H · nsH ·mH) term.

6.4.4 Low Level Properties

Point 4, 5 and 6 are all low level properties, which allows us to check them all

together and reduce the traversals required over a given low level subsystem.

We store pointers to the component DES in an array and organize them in the

order: plant, specification and then interface DES. Let nLiP and nLiS be number

of plant and specification DES in the ith low level (i ∈ {1, 2, . . . , n}), respectively.

For the ith low level, the total number of DES involved in the interface consistent

check is the number of plants and specifications plus one interface, thus

mLi
= nLiP + nLiS + 1.

We will use the data structures listed below in our algorithms to check the low

level properties.

153

Master’s Thesis - P. Dai McMaster - Computing and Software

• R-Reachable contains states from the synchronous product for a given low

level which can be reached by a request event, as well as the corresponding

component state belonging to the interface for that low level. We use this list

to check property 5 by calling function searchAnswer given in Algorithm

6.6 for each state (from the synchronous product) in R-Reachable.

• 5-Consistent contains states from R-Reachable that we have already called

function searchAnswer. This is to prevent duplicate searches when a given

state can be reached by request events from multiple other states.

• I-Marked contains states that are not marked in the synchronous product

of a given low level, but their corresponding interface component state is

marked in the interface for that low level. We use this list to verify Point 6.

Listing 6.5: Interface Consistency Pt 4, 5 and 6 Check

1 bool LowICCheck ()

2 begin

3 for i=1 to n do //Go over a l l n low l e v e l s

4 ΣILi ←ΣLi ∪ ΣRi ∪ ΣAi ;

5 nLiP ← number o f ith low l e v e l p lant DES;

6 nLiS ← number o f ith low l e v e l s p e c i f i c a t i o n DES;

7 mLi ← nLiP + nLiS + 1 ;

8 for k← 1 to mLi do

9 F i l l t r a n s i t i o n matrix (DES k) : δi(k, x, σ) ;

10 end for

11 s0← < x10 , x20 , . . . , xmLi0 > ; //Tuple o f i n i t i a l s t a t e s from a l l DES

12 pending ← {s0} ;
13 found ← {s0} ;
14 R−Reachable ← ∅ ;

15 5−Cons i s t ent ← ∅ ;

16 I−Marked ← ∅ ;

154

Master’s Thesis - P. Dai McMaster - Computing and Software

17 markedStates ← ∅ ;

18 // begin pt 4 check

19 while pending 6= ∅ do

20 s = < x1, x2, . . . , xmLi > ← pop pending ;

21 for each σ ∈ ΣILi do

22 undef ined ← f a l s e ;

23 marked ← t rue ;

24 for j ← 1 to mLi do // j r ep r e s en t s a g iven component

25 i f δi(j, xj , σ) ! then // DES at low l e v e l i

26 xj ’ ← δi(j, xj , σ) ;

27 i f not xj ’ . marked then

28 marked ← f a l s e ;

29 end i f

30 else

31 undef ined ← t rue ;

32 break ;

33 end i f

34 end for

35 i f undef ined and σ ∈ΣRi and δi(mLi, xmLi , σ) ! then

36 // de f ined in the i n t e r f a c e

37 return Pt 4 f a i l s ;

38 else

39 s ’ ← < x1‘, x2‘, . . . , xmLi ‘ > ;

40 i f s ’ /∈ found then

41 i f marked then

42 s ’ . marked ← t rue ;

43 markedStates ← markedStates ∪ {s ’}
44 end i f

45 push pending , s ’ ;

46 push found , s ’ ;

47 i f xmLi’ . marked and not s ’ . marked then

155

Master’s Thesis - P. Dai McMaster - Computing and Software

48 I−Marked ← I−Marked ∪ {s ’ } ;

49 end i f // save f o r pt 6 check

50 end i f

51 i f σ ∈ΣRi then

52 R−Reachable ← R−Reachable ∪ {(s ’ , xmLi’) } ;
53 end i f

54 end i f

55 end for

56 end while

57 //end pt 4 check

58 // begin pt 5 check

59 while R−Reachable 6= ∅ do

60 (s , x) ← ex t r a c t item from R−Reachable ;

61 i f s /∈ 5−Cons i s t ent then

62 answers ← answer events de f ined at x in i n t e r f a c e ;

63 v i s i t e d [] ← f a l s e ; //Array o f bool , shows s t a t e s v i s i t e d

64 i f searchAnswer (s , answers , v i s i t e d , i) then

65 5−Cons i s t ent ← 5−Cons i s t ent ∪ { s } ;
66 else

67 return pt 5 f a i l s ;

68 end i f

69 end i f

70 end while

71 //end pt 5 check

72 // begin pt 6 check

73 i f I−Marked 6= ∅ then

74 pending ← markedStates ;

75 found ← pending ;

76 while pending 6= ∅ do

77 s ← ex t r a c t element from pending ;

78 for each i nv e r s e t r a n s i t i o n (t , σ) o f s do

156

Master’s Thesis - P. Dai McMaster - Computing and Software

79 i f σ ∈ΣLi∧ t /∈ found then

80 found ← found ∪ { t } ;
81 pending ← pending ∪ { t } ;
82 end i f

83 end for

84 end while

85 i f not I−Marked ⊆ found then

86 return Pt 6 f a i l s ;

87 end i f

88 end i f

89 //end pt 6 check

90 end for //End o f loop from Line 3

91 end

We first give function searchAnswer and analyze its complexity and then give

the complexity analysis for Algorithm 6.5.

Listing 6.6: explore DES for indicated answer events from s

1 bool searchAnswer (s , answers , v i s i t e d , i)

2 //Check i f a l l answer events de f ined at xI are reachab l e from s

3 begin

4 i f answers = ∅ then

5 return t rue ;

6 end i f

7 v i s i t e d (s) ← t rue ;

8 for each t r a n s i t i o n (s , σ) o f s , l e ad ing to some s t a t e t do

9 i f σ ∈ answers then

10 answers ← answers − {σ } ;
11 else i f σ ∈ΣLi then

12 i f not v i s i t e d (t) then

13 i f searchAnswer (t , answers , v i s i t e d , i) then ;

14 return t rue ;

157

Master’s Thesis - P. Dai McMaster - Computing and Software

15 end i f

16 end i f

17 end i f

18 end for

19 i f answers = ∅ then

20 return t rue ;

21 else

22 return f a l s e ;

23 end i f

24 end

Let nsLi
= |ΣILi

|. Let nLi
be the number of states of the largest largest DES (in

terms of state size) among the mLi
DES of the ith low level (i ∈ {1, 2, . . . , n}).

Lines 4-6 of Listing 6.6 terminates searching if we have found a path to all the

required answer events. The for loop in lines 8-18 searches all transitions from

the given state for answer events in the answers set. Whenever it finds an element

in the set, it removes it from the set. It also extends the search to states that

can be reached from the current state by low level events (lines 11-17). Line 12

ensures each state of the DES is visited no more than once. As we can remove an

event from the answers set in line 10 without immediately checking if the set is

now empty, it’s possible we could exit the for loop with the answers set empty.

We thus check for this in lines 19-21. The worst case scenario of this algorithm is

that it needs to traverse all the transitions in the synchronous product, which is

O(nsLi
· nmLi

Li
).

We now analyze the time complexity of Algorithm 6.5. Since there are n low

levels, we need to check Points 4, 5, 6 n times (Line 3-88). We now show the run

time for the ith low level. We have mLi
component DES for the ith low level, and

each DES has no more than nLi
states.

Line 4 copies the indicated event sets into a large array. This step takes linear

158

Master’s Thesis - P. Dai McMaster - Computing and Software

time O(nsLi
). Similar to algorithm Pt3Check in listing 6.4, lines 8-10 construct

a transition matrix for all component DES in the ith low level. The matrix is

constructed in O(mLi
· nLi

· nsLi
) time.

We now examine the complexity of checking Point 4 (lines 18-57). The while

block (lines 19-56) goes over the state space of the synchronous product, which

is worst case n
mLi
Li

. The for loop in lines 21-55 repeats nsLi
times to check every

event in low level i. This for loop also contains the for loop in lines 24-34 which

goes over every DES, and thus runs mLi
times. In parallel to the inner for loop,

we also access the found variable (lines 40 and 46) which is implemented as a trie

data structure. This access is O(mLi
). Putting things together, we find that the

outer for loop (21-55) is O(nsLi
·mLi

). Combining this with the while loop, and we

find that checking Point 4 check, takes O(nsLi
·mLi

·nmLi
Li

). We note that checking

Point 4 dominates line 4 and lines 8-10, and can thus be covered by the value for

the Point 4 check.

We now consider the Point 5 check (lines 58-71). In the worst case, R-Reachable

can contain an entry for every transition in the synchronous product. The while

loop (lines 59-70) thus runs O(nsLi
n

mLi
Li

). However, the if statement at line 61

ensures that the core loop only gets executed O(n
mLi
Li

) times. If fact, it’s as if we

have a while loop that executes O(nsLi
n

mLi
Li

) times performing a constant number

of operations each iteration, followed by a while loop that executes O(n
mLi
Li

) times

and executes lines 62-68 each iteration. Computations inside the second while

loop are additive and dominated by the searchAnswer function, which takes

O(nsLi
· nmLi

Li
). So the Point 5 check thus takes O(nsLi

n
mLi
Li

) + O(n
mLi
Li

) · O(nsLi
·

n
mLi
Li

) = O(nsLi
· n2mLi

Li
).

The Point 6 check (lines 72-88) is similar to the normal coreachability check.

The main difference being that we only traverse inverse transitions that are labelled

by events in ΣLi
. The while loop runs worst case once per state in the synchronous

product, thus O(n
mLi
Li

) times. Each iteration, it processes all inverse transitions for

159

Master’s Thesis - P. Dai McMaster - Computing and Software

the current state being examined. The for loop at lines 78-83 thus runs O(nsLi
·

n
mLi
Li

) times. The while loop thus appears to take O(nsLi
· n2mLi

Li
) time. However,

we note that the while loop is in effect processing each inverse transition in the

synchronous product once. As each inverse transition corresponds to a unique

transition, we can thus have maximum O(nsLi
·nmLi

Li
) unique inverse transitions in

a deterministic DES. We thus conclude that the while loop executes O(nsLi
·nmLi

Li
)

times.

After searching all transitions, we check whether all states in I-Marked were

reached in our search (lines 85-87). This takes O(n
mLi
Li

) steps. Running time for

the Point 6 check is dominated by the while loop, which is O(nsLi
· nmLi

Li
).

Adding the running time together for the construction of the transition matrices

and the checking of interface consistent properties Point 4, 5 and 6, and then

repeating n times, we have the running time for Algorithm 6.5 as O(n) · (O(nsLi
·

mLi
·nmLi

Li
)+O(nsLi

·n2mLi
Li

)+O(nsLi
·nmLi

Li
)) = O(n·(nsLi

·mLi
·nmLi

Li
+nsLi

·n2mLi
Li

)). As

typically we have n
mLi
Li
À mLi

, we can normally simplify this to O(n ·nsLi
·n2mLi

Li
).

6.5 Interface Consistent Synthesis

When applying HISC synthesis algorithms to generate supervisors from given

plants, specifications and interfaces, we want to make sure that the generated

supervisors satisfy the interface consistency, level-wise nonblocking, and level-wise

controllability definitions. We verify that the system is HISC-valid when we load

the component DES into memory. This provides us with the starting point for

our synthesis. For the high level subsystem, we want to make sure that it satisfies

Point 3 of the interface consistency definition as well as Point I of the level-wise

nonblocking definition and Point III of the level-wise controllability definition. For

the low levels, we need to make sure that Points 4, 5 and 6 of the interface con-

sistency definition as well as Point II of the level-wise nonblocking definition and

160

Master’s Thesis - P. Dai McMaster - Computing and Software

Point II of the level-wise controllability definition. By applying our algorithms on

the given HISC structured system, we will produce a set supervisors such that the

system, with the specifications replaced by these supervisors, is interface consistent

level-wise nonblocking and level-wise controllable.

6.5.1 High Level Interface Consistent Supcon

The objective of the traditional supcon algorithm ([77, 61]) is to construct the

maximally permissive controllable sublanguage of a given specification language

E, with respect to the plant G. The objective of HISC synthesis is to create level-

wise maximally permissive controllable sublanguages of the given specifications,

while making sure that the resulting system satisfies the interface properties.

The high level synthesis algorithm is based on the synchronous product op-

eration. It trims off states that violate the high level portion of the level-wise

controllability, nonblocking and interface consistency definitions. Based on the

synchronous product of the plant, specification DES, and interfaces, we trim off

three kinds of state: uncontrollable, non-interface consistent and blocking states.

Since trimming off any single state can possibly change the other properties, we

need to keep trimming until all three properties are satisfied in the resulting DES.

At that point no more states need to be trimmed off and we have reached a fixpoint

for the synthesis algorithm.

In this section we list the iSupconHigh algorithm which implements the high

level fixpoint operator ΩH . iSupconHigh calls two functions trimState and

trimDesHigh. trimState trims off a state in a controllable, high level interface

consistent fashion, This means that when asked to trim a given state s, it will

recursively trim s and any state s′ that connects to s if s′ fails the controllabil-

ity property or Point 3 of the interface consistency property. Since the index of

states in our DES start from 1, we can mark the trimmed states with index 0,

161

Master’s Thesis - P. Dai McMaster - Computing and Software

and then clean the trimmed states at the end of the synthesis algorithm. Func-

tion trimDesHigh will typically do the bulk of the required work. It returns

true if there is no need to trim another state. Definitions of these functions will

follow. Also in the following algorithm, we will use pseudo code addState (add a

state to the result DES. Also assigns state a unique index with value greater than

one), addTrans (add a transition to a state), addInverseTrans (add an inverse

transition to a state), addToMarkerState(adds state to list of marker states),

removeMarkerState (removes state from list of marker states), removeState (re-

moves state from DES). All three add a node to a linked list and take constant

time. We use states and marker states to represent linked lists of states and

marker states for a DES. A traversal of either lists takes linear time.

When running our algorithms, we store pointers to the component DES in an

array and put them in the following order: plant, specification and then interface

DES. Similar to algorithm Pt3Check, we define nHP and nHS to be the number

of plant and specification DES in the high level, respectively. We will use a total

number of

mH = nHP + nHS + n

DES in the high level synthesis, where n represents number of low levels and thus

the number of interfaces.

Listing 6.7: High Level Synthesis

1 DES iSupconHigh ()

2 begin

3 ΣIH ←ΣH ∪
⋃

k=1..n(ΣAk
∪ ΣRk

) ;

4 nHP ← number o f high l e v e l p lant DES;

5 nHS ← number o f high l e v e l s p e c i f i c a t i o n DES;

6 mH ← nHP + nHS + n ;

7 for k← 1 to mH do

8 F i l l t r a n s i t i o n matrix (DES k) :δH(k, x, σ);

9 end for

162

Master’s Thesis - P. Dai McMaster - Computing and Software

10 x0← < x10 , x20 , . . . , xmH0 > ; //Tuple o f i n i t i a l s t a t e s from a l l DES

11 pending ← {x0} ;
12 found ← {x0} ;
13 DES resultDES ;

14 resultDES . a dd I n i t i a l S t a t e (x0) ;

15 while pending 6= ∅ do

16 x =< x1, x2, . . . , xmH > ← ex t r a c t element from pending ;

17 for each σ ∈ ΣIH do

18 undef ined ← f a l s e ;

19 marked ← t rue ;

20 for i ← 1 to mH do

21 i f δH(i, xi, σ) ! then

22 xi ’ ← δH(i, xi, σ) ;

23 i f xi ’ . marked = f a l s e then

24 marked ← f a l s e ;

25 end i f

26 else

27 undef ined ← t rue ;

28 break ;

29 end i f

30 end for

31 i f undef ined then

32 untrimmed ← t rue ;

33 i f i ≤ nHP + nHS then

34 for j ← nHP + nHS + 1 to mH do

35 i f δH(j, xj , σ) ! and σ ∈ ΣAj then

36 // f a i l high l e v e l property

37 trimState (x) ;

38 untrimmed ← f a l s e ;

39 break ;

40 end i f

163

Master’s Thesis - P. Dai McMaster - Computing and Software

41 end for

42 end i f

43 i f i > nHP and i ≤ nHP + nHS and σ ∈ Σu

44 and untrimmed then

45 // as i > nHP we know the σ t r a n s i t i o n i s

46 // de f ined in a l l o f the p lant s

47 specBlocked ← t rue ;

48 for j ← nHP + nHS + 1 to mH do

49 i f not δH(j, xj , σ) ! then

50 specBlocked ← f a l s e ;

51 break ;

52 end i f

53 end for

54 i f specBlocked then // uncon t r o l l ab l e event de f ined f o r

55 // a l l p lants , and i n t e r f a c e s

56 trimState (x) ;

57 end i f

58 end i f

59 else // not undef ined

60 x’← < x1‘, x2‘, . . . , xmH ‘ > ;

61 i f x’ /∈ found then

62 i f marked then

63 x’. marked ← t rue ;

64 resultDES . addToMarkerState (x’) ;

65 end i f

66 resultDES . addState (x’) ;

67 pending ← pending ∪ {x’} ;
68 found ← found ∪ {x’} ;
69 end i f

70 i f x’. index > 0 then

71 x . addTrans (x’ , σ) ;

164

Master’s Thesis - P. Dai McMaster - Computing and Software

72 x’. addInverseTrans (x , σ) ;

73 end i f

74 end i f

75 end for

76 end while

77 reach [] ← f a l s e ;

78 reach [x0] ← t rue ;

79 pending ← {x0} ;
80 found ← {x0} ;
81 while pending 6= ∅ do

82 x ← ex t r a c t element from pending ;

83 for each t ∈ x . t rans do

84 x’← t . s t a t e ;

85 i f x’ /∈ found then

86 pending ← pending ∪ {x’} ;
87 found ← found ∪ {x’} ;
88 reach [x’] ← t rue ;

89 end i f

90 end for

91 end while

92 while trimDesHigh (resultDES , reach) do

93 ; // keep trimming un t i l no changes happen

94 end while

95 for each x ∈ resultDES . s t a t e s do

96 i f not reach [x] then

97 resultDES . removeState (x) ;

98 end i f

99 end for

100 return resultDES ;

101 end

165

Master’s Thesis - P. Dai McMaster - Computing and Software

We now briefly discuss how the iSupconHigh algorithm works. We defer the

complexity analysis until after we have presented and analyzed the trimState

trimDesHigh algorithms.

In lines 15-75, we construct a possibly restricted synchronous product for the

high level. As we process each state, we check to see if it violates Point 3 of the

interface consistency definition, as well as Point III of the level-wise controllability

definition. We do this by examining each event that does not have a transition

defined at that state. We check Point 3 on lines 33-42. If i ≤ nHP + nHS, we

know that a plant or spec DES does not allow the event to occur at the current

state. We then check each interface to see if the event is allowed by the interface,

and if so, whether the event belongs to the interfaces set of answer events. If both

true, then Point 3 fails and we call trimState to remove the state.

In lines 43-58, we check to make sure the state satisfies Point III of the level-

wise controllability definition. If i > nHP and i ≤ nHP + nHS and the event is

uncontrollable, then we know that a specification is trying to disable an uncon-

trollable event. As i > nHP , we know that the event can occur in all of the plant

components at this state. We then check to see if any interfaces prevents the event.

If they all allow it, then the state fails Point III and we call trimState to remove

the state.

After we have determined that an event has a transition defined at our current

state, we process it in lines 59-73. Lines 61-68 ensure we only process each state

once. Lines 69-72 ensure that the state we have reached has not already been

found and trimmed from the DES before we add transitions to/from the state.

As it is possible that our DES may contain some unreachable states, we do a

reachability check (lines 77-90) and store the results in variable reach. We pass

reach into function trimDesHigh which will update the reach if it needs to trim

off any states.

166

Master’s Thesis - P. Dai McMaster - Computing and Software

Now that the synchronous product has been constructed, we call function

trimDesHigh to make the result DES nonblocking. This function call mainly

implements the ΩHNB operator, but it also trims away states in a controllable and

Point 3 consistent fashion. This is equivalent to make the DES nonblocking, fol-

lowed by a pass to make sure the DES is still controllable and satisfies Point 3 of the

interface consistency definition. We loop (lines 92-94) until calls to trimDesHigh

cause no change to our DES, meaning we have hit a fixpoint.

Now that we have reached a fixpoint, we remove from the DES all states that

are unreachable.

In the following algorithms, a state x has a transition list trans and an

inverse transition list inverseTrans. For some state x′, we use pseudo code

x.removeTrans(x′) to remove any transitions from x to x′. Similarly, we use

x.removeInverseTrans(x′) to remove any inverse transitions that correspond to

transitions from x to x′. We start by presenting trimState.

Listing 6.8: TrimState

1 void trimState (State x)

2 begin

3 i f x . index = 0 then

4 return ;

5 end i f

6 x . index ← 0 ; //mark the s t a t e as trimmed

7 for each t ∈ x . t rans do

8 x1← t . s t a t e ;

9 x1. removeInverseTrans (x) ;

10 end for

11 for each t ∈ x . inverseTrans do

12 x1← t . s t a t e ;

13 e ← t . event ;

14 x1. removeTrans (x) ;

167

Master’s Thesis - P. Dai McMaster - Computing and Software

15 i f e ∈ Σu or e ∈ΣA then

16 trimState (x1) ;

17 end i f

18 end for

19 end

trimState2 given in Algorithm 6.9 is a variation of trimState. The only

difference between these two is that Algorithm 6.9 is used in the final stage of the

synthesis procedure, thus it adds checking for reachability. As Algorithm 6.8 is

used during the creation of the synchronous product, it’s possible that a state may

only temporarily become unreachable and thus it should not be removed at that

point.

Listing 6.9: Trim State With Reachable Check

1 void trimState2(x , reach)

2 begin

3 i f x . index = 0 then

4 return ;

5 end i f

6 x . index ← 0 ; //mark the s t a t e as trimmed

7 reach [x] ← f a l s e ;

8 for each t ∈ x . t rans do

9 x1← t . s t a t e ;

10 x1. removeInverseTrans (x) ;

11 i f x1. inver seTrans = ∅ then //x1 no longe r reachab l e

12 trimState2(x1) ;

13 end i f

14 end for

15 for each t ∈ x . inverseTrans do

16 x1← t . s t a t e ;

17 e ← t . event ;

168

Master’s Thesis - P. Dai McMaster - Computing and Software

18 x1. removeTrans (x) ;

19 i f e ∈ Σu or e ∈ΣA then

20 trimState2(x1) ;

21 end i f

22 end for

23 end

We now give the trimDesHigh algorithm, followed by a complexity analysis

for algorithms 6.7- 6.10. We use an array visited to mark coreachable states, and

at the end of the algorithm we trim off all non coreachable states to make the DES

nonblocking. We use states and marker states to represent linked lists of states

and marker states for a DES. A traversal of either list takes linear time. Below,

we refer to the EMPTY DES. This is a placeholder representing any DES with

no states. This means that the closed behavior and the marked language of the

EMPTY DES are both empty.

Listing 6.10: High Level DES Trim Function

1 bool trimDesHigh (des , reach)

2 begin

3 changed ← f a l s e ;

4 i f des = EMPTY then

5 return changed ;

6 end i f

7 pending ← ∅ ;

8 v i s i t e d [] ← f a l s e ;

9 for each x ∈ des . marke r s ta t e s do

10 i f reach [x] then

11 pending ← pending ∪ {x } ;
12 v i s i t e d [x] = true ;

13 else

14 des . removeMarkerState (x) ;

169

Master’s Thesis - P. Dai McMaster - Computing and Software

15 end i f

16 end for

17 i f pending = ∅ then

18 // means no reachab l e marker s t a t e s

19 des ← EMPTY;

20 return changed ;

21 end i f

22 while pending 6= ∅ do

23 x ← ex t r a c t element from pending ;

24 for each r ∈ x . inverseTrans do

25 x1← r . s t a t e ;

26 i f not v i s i t e d [x1] then

27 v i s i t e d [x1] = true ;

28 pending ← pending ∪ {x1} ;
29 end i f

30 end for

31 end while

32 for each x ∈ des . s t a t e s do

33 i f not v i s i t e d [x] then

34 trimState2 (x , reach) ;

35 changed ← t rue ;

36 end i f

37 end for

38 return changed ;

39 end

As defined earlier, mH is the number of high level DES (plants + specs) plus

number of interfaces (n), nsH = |ΣIH |, and nH is the number of states of the

largest DES (in terms of state size) among the mH DES. Let nx be state size of

the synchronous product of GH,GI1 , . . . ,GIn . We can see that the synchronous

product has worst case nx ≤ nmH
H states.

170

Master’s Thesis - P. Dai McMaster - Computing and Software

Algorithm 6.8 and 6.9 check a state’s transitions, which in the worst case have

nsH transitions and nmH
H nsH inverse transitions. When trimming one state, the

algorithm may also go to another state and start trimming that state off by loop-

ing over the other state’s transition and inverse transition lists and so on. The

algorithm would appear to be O(nsH · n2mH
H) due to the number of possible re-

verse transitions at each state. However, as each reverse transition corresponds

to a unique transition, there can be a maximum of nmH
H nsH such transitions in a

deterministic DES. As this algorithm can be seen as looping over each all reverse

transitions in the DES, it is thus actually O(nsH · nmH
H).

In Algorithm 6.10, initializing the visited array takes O(nmH
H). The for loop in

lines 9-16 also takes O(nmH
H). We note that as we are looping through the linked

list marker states, we do not have to search to remove the current marked state,

thus its removal can be done in constant time.

The while loop in lines 22-31 runs O(nmH
H) times. Within the while loop,

the for loop in lines 24-30 runs O(nsHn
mH
H) times. This would appear that the

while loop is O(nsHn
2mH
H), but as discussed above, a deterministic DES can have a

maximum of nmH
H nsH reverse transitions so the while loop is actually O(nsHn

mH
H).

We now note that the for loop in lines 32-37 runs O(nmH
H) times. Within the

for loop, function trimState2 runs O(nsH · nmH
H). It would appear that the for

loop is O(nsH ·n2mH
H). However, as a state can only be trimmed once, implemented

by lines 3-6 in both Algorithm 6.8 and 6.9, it is actually O(nsH · nmH
H). Putting

everything together, we see that Algorithm 6.10 is 2 · O(nmH
H) + O(nsH · nmH

H) +

O(nsH · nmH
H) = O(nsH · nmH

H).

Now we investigate time complexity for Algorithm 6.7. Similar to Algorithm

6.4, line 3 takes O(nsH) time , and lines 7-9 takes O(mH · nH · nsH) time. The

while block (lines 15-76) goes over the state space of the result DES, and thus

loops O(nmH
H) times.

171

Master’s Thesis - P. Dai McMaster - Computing and Software

Within the while loop, the for loop in lines 17-75 runs nsH times, and the

three parallel inner for loops in lines 20-30, lines 34-41, and lines 48-53 each run

O(mH) times. Also in parallel to the inner for loops are accesses to the found

variable on lines 37, and 56, and a call to trimState on line 56. Accessing the

found variable is O(mH), and trimState runs O(nsH · nmH
H). Within the for

loop on lines 34-41, we have a call to trimState on line 37. The complexity for

this for loop is O(mH) +O(nsH · nmH
H) = O(mH + nsH · nmH

H) as trimState can

be called at most once.

Putting everything together, the for loop in lines 17-75 appears to be O(nsH) ·
(O(mH) +O(nsH · nmH

H)) = O(nsH(mH + nsH · nmH
H)). As a state can be trimmed

only once, the complexity is actually O(nsH ·mH + nsH · nmH
H).

We now see that the while loop (lines 15-76) appears to be O(nmH
H) · O(nsH ·

mH + nsH · nmH
H) = O(nsH · mH · nmH

H + nsH · n2mH
H). Again, as a state can

only be removed once, we can argue as above that the while loop is actually

O(nsH ·mH · nmH
H + nsH · nmH

H) = O(nsH ·mH · nmH
H).

We next note that the array reach (line 77) can be initialized in O(nmH
H) time.

The variable found can be now implemented as an array, and thus be accessed

(lines 85 and 87) in constant time. The while loop in lines 81-91 runs in O(nsH ·
nmH

H) time.

The while block in lines 92-94 calls Algorithm 6.10, where each call takes

O(nsH · nmH
H) time. The worst case is that Algorithm 6.10 only trims one state

each time and finally all states need to be trimmed off. The while block will

thus run O(nmH
H) times, making the total run time O(nmH

H) · O(nsH · nmH
H) =

O(nsH · n2mH
H). However, the function trimDesHigh is typically only called a

constant number of times 4. Therefore the running time for the while block will

typically be O(nsH ·nmH
H). Finally, the for loop in lines 95-99 runs O(nmH

H) times.

4In a standard supcon algorithm, there is a similar trim function. Rudie [61] shows that a
standard supcon algorithm normally calls the trim function once. And if there are multiple calls,
the number of calls is effectively constant compared to the number of states of the DES.

172

Master’s Thesis - P. Dai McMaster - Computing and Software

We are now ready to determine the complexity for all of Algorithm 6.7. Putting

the parallel sections together, we see that Algorithm 6.7 runs inO(nsH)+O(mH ·nH ·
nsH)+O(nsH ·mH ·nmH

H)+O(nsH ·n2mH
H)+O(nmH

H) = O(nsH ·mH ·nmH
H +nsH ·n2mH

H)

as typically mH ·nH ¿ nmH
H . However, as discussed above, the O(nsH ·n2mH

H) term

typically turns out to be O(nsH · nmH
H). We would thus expect the algorithm to

behave as O(nsH ·mH · nmH
H).

6.5.2 Low Level Interface Consistent Synthesis

For the kth low level of an interface system, k ∈ {1, 2, . . . , n}, we would like to

compute the kth low level level-wise maximally permissive supervisor that satisfies

the interface properties. For the low levels, we need to make sure that Points 4,

5 and 6 of the interface consistency definition as well as Point II of the level-wise

nonblocking definition and Point II of the level-wise controllability definition.

In this section we list the iSupconLow algorithm which implements the kth low

level fixpoint operator ΩLk
. We will use the same notations as defined for LowIC-

Check in Section 6.4.4. Similar to high level’s trimState and trimState2, we

use slightly modified versions trimStateLow and trimStateLow2 to remove

unwanted states.

Listing 6.11: Low Level Synthesis

1 bool iSupconLow ()

2 begin

3 for i=1 to n do // (A) , go over a l l n low l e v e l s

4 DES resultDESi

5 ΣILi ←ΣLi ∪ ΣRi ∪ ΣAi ;

6 nLiP ← number o f ith low l e v e l p lant DES;

7 nLiS ← number o f ith low l e v e l s p e c i f i c a t i o n DES;

8 mLi ← nLiP + nLiS + 1 ;

9 for k← 1 to mLi do

173

Master’s Thesis - P. Dai McMaster - Computing and Software

10 F i l l t r a n s i t i o n matrix (DES k) : δi(k, x, σ) ;

11 end for

12 s0← < x10 , x20 , . . . , xmLi0 > ; //Tuple o f i n i t i a l s t a t e s from a l l DES

13 pending ← {s0} ;
14 found ← {s0} ;
15 R−Reachable ← ∅ ;

16 I−Marked ← ∅ ;

17 // begin pt 4 check

18 while pending 6= ∅ do

19 s = < x1, x2, . . . , xmLi > ← pop pending ;

20 for each σ ∈ ΣILi

21 undef ined ← f a l s e ;

22 marked ← t rue ;

23 for j ← 1 to mLi

24 i f δi(j, xj , σ) ! then

25 xj ’ ← δi(j, xj , σ) ;

26 i f not xj ’ . marked then

27 marked ← f a l s e ;

28 end i f

29 else

30 undef ined ← t rue ;

31 break ;

32 end i f

33 end for

34 i f undef ined and [(σ ∈ΣRi and δi(mLi, xmLi , σ)!)

35 or (j > nLiP and σ ∈ Σu)] then

36 trimStateLow (s , i) ;

37 else

38 s ’ ← < x1‘, x2‘, . . . , xmLi ‘ > ;

39 i f s ’ /∈ found then

40 i f marked then

174

Master’s Thesis - P. Dai McMaster - Computing and Software

41 s ’ . marked ← t rue ;

42 resu l tDESi . addToMarkerState (s ’) ;

43 end i f

44 resu l tDESi . addState (s ’) ;

45 push pending , s ’ ;

46 push found , s ’ ;

47 i f xmLi’ . marked and not s ’ . marked then

48 I−Marked ← I−Marked ∪ {s ’ } ;

49 end i f // save f o r pt 6 check

50 end i f

51 i f σ ∈ΣRi then

52 R−Reachable ← R−Reachable ∪ {(s ’ , xmLi’) } ;
53 end i f

54 i f s ’ . index > 0 then

55 s . addTrans (s ’ , σ) ;

56 s ’ . addInverseTrans (s , σ) ;

57 end i f

58 end i f

59 end for

60 end while

61 reach [] ← f a l s e ;

62 reach [s0] ← t rue ;

63 pending ← {s0} ;
64 found ← {s0} ;
65 while pending 6= ∅ do

66 s ← ex t r a c t element from pending ;

67 for each t ∈ s . t rans do

68 s ’ ← t . s t a t e ;

69 i f s ’ /∈ found then

70 pending ← pending ∪ {s ’ } ;

71 found ← found ∪ {s ’ } ;

175

Master’s Thesis - P. Dai McMaster - Computing and Software

72 reach [s ’] ← t rue ;

73 end i f

74 end for

75 end while

76 while trimDesLow (resultDESi , R−Reachable , I−Marked ,

77 i , reach) do

78 ; // keep trimming un t i l no changes happen

79 end while

80 for each s ∈ resu l tDESi . s t a t e s do

81 i f not reach [s] then

82 resu ltDESi . removeState (s) ;

83 end i f

84 end for

85 end for

86 return resultDESj , j = 1 ,2 , . . , n ;

87 end

We now briefly discuss how the iSupconLow algorithm works. Much is similar

to the iSupconHigh algorithm, so we will only discuss the new stuff. We defer

the complexity analysis until after we have presented and analyzed the trim-

StateLow trimDesLow algorithms.

In lines 34-36, we check whether a state violates Point 4 of the interface con-

sistency definition, and Point II of the level-wise controllability definition. If the

state fails either condition, we trim the state away from the result DES.

During the synchronization, we record a few sets (R-Reachable and I-Marked)

and keep them for checking Point 5 and 6.

Finally after the synchronous product is constructed, we call function

trimDesLow to make the result DES nonblocking and to ensure it satisfies Points

5 and 6 of the interface consistency definition. It also trims state away in a con-

176

Master’s Thesis - P. Dai McMaster - Computing and Software

trollable and Point 4 consistent fashion.

Listing 6.12: Low Level Trim State

1 void trimStateLow (x , i)

2 begin

3 i f x . index = 0 then

4 return ;

5 end i f

6 x . index ← 0 ; //mark the s t a t e as trimmed

7 for each t ∈ x . t rans do

8 x1← t . s t a t e ;

9 x1. removeInverseTrans (x) ;

10 end for

11 for each t ∈ x . inverseTrans do

12 x1← t . s t a t e ;

13 e ← t . event ;

14 x1. removeTrans (x) ;

15 i f e ∈ Σu or e ∈ΣRi then

16 trimStateLow (x1, i) ;

17 end i f

18 end for

19 end

trimStateLow2 given in Algorithm 6.13 is a variation of trimStateLow. The

only difference between these two is that Algorithm 6.13 is used in the final stage

of the synthesis procedure, thus it adds checking for reachability. As Algorithm

6.12 is used during the creation of the synchronous product, it’s possible that a

state may only temporarily become unreachable and thus it should not be removed

at that point.

Listing 6.13: Low level Trim State With Reachable Check

1 void trimStateLow2 (x , i , reach)

177

Master’s Thesis - P. Dai McMaster - Computing and Software

2 begin

3 i f x . index = 0 then

4 return ;

5 end i f

6 x . index ← 0 ; //mark the s t a t e as trimmed

7 reach [x] ← f a l s e ;

8 for each t ∈ x . t rans do

9 x1← t . s t a t e ;

10 x1. removeInverseTrans (x) ;

11 i f x1. inver seTrans = ∅ then //x1 no longe r reachab l e

12 trimStateLow2 (x1, i , reach) ;

13 end i f

14 end for

15 for each t ∈ x . inverseTrans do

16 x1← t . s t a t e ;

17 e ← t . event ;

18 x1. removeTrans (x) ;

19 i f e ∈ Σu or e ∈ΣRi then

20 trimStateLow2 (x1, i , reach) ;

21 end i f

22 end for

23 end

We now give the trimDesLow algorithm, followed by a complexity analysis

for algorithms 6.11-6.14. We use states and marker states to represent linked lists

of states and marker states for a DES. A traversal of either list takes linear time.

Below, we refer to the EMPTY DES. This is a placeholder representing any DES

with no states. This means that the closed behavior and the marked language of

the EMPTY DES are both empty. We also note that we use in the algorithm

below the function searchAnswer which was given earlier in Listing 6.5.

178

Master’s Thesis - P. Dai McMaster - Computing and Software

Listing 6.14: Low Level DES Trim Function

1 bool trimDesLow (des , R−Reachable , I−Marked , i , reach)

2 begin

3 changed ← f a l s e ;

4 i f des = EMPTY then

5 return changed ;

6 end i f

7 remain [] ← f a l s e ;

8 pending ← ∅ ;

9 for each s ∈ des . marke r s ta t e s do

10 i f reach [s] then

11 pending ← pending ∪ { s } ;
12 remain [s] ← t rue ;

13 else

14 des . removeMarkerState (s) ;

15 end i f

16 end for

17 i f pending = ∅ then

18 // means no reachab l e marker s t a t e s

19 des ← EMPTY;

20 return changed ;

21 end i f

22 5−Cons i s t ent ← ∅
23 while pending 6= ∅ do // check coreachab l e

24 s ← pop pending ;

25 for each r ∈ s . inverseTrans do

26 s ’ ← r . s t a t e ;

27 i f not remain [s ’] then

28 remain [s ’] ← t rue ;

29 push pending , s ’ ;

30 end i f

179

Master’s Thesis - P. Dai McMaster - Computing and Software

31 end for

32 end while

33 // check Point 5

34 for (s , x) ∈ R−Reachable do

35 i f (not reach [s]) or (not remain [s]) then

36 R−Reachable ← R−Reachable − {(s , x) } ;
37 else

38 i f s /∈ 5−Cons i s t ent then

39 answers ← answer events de f ined at x in i n t e r f a c e ;

40 v i s i t e d [] ← f a l s e ;

41 i f searchAnswer (s , answers , v i s i t e d , i) then

42 5−Cons i s t ent ← 5−Cons i s t ent ∪ { s } ;
43 else

44 //mark a l l s t a t e s f o r trimming that reach s v ia

45 // a reque s t event

46 for t ∈ s . inverseTrans do

47 i f t . event ∈ ΣRi then

48 remain [t . s t a t e] ← f a l s e ;

49 end i f

50 end for

51 end i f

52 end i f

53 end i f

54 end for

55 // check Point 6

56 i f I−Marked 6= ∅ then

57 // the next two l i n e s imply that pending and found are

58 // as s i gned a copy o f des . marke r s ta t e s

59 pending ← des . marke r s ta t e s ;

60 found ← des . marke r s ta t e s ;

61 while pending 6= ∅ do

180

Master’s Thesis - P. Dai McMaster - Computing and Software

62 s ← ex t r a c t element from pending ;

63 for each (s ’ , σ) ∈ s . inverseTrans do

64 i f σ ∈ΣLi∧ s ’ /∈ found then

65 found ← found ∪ {s ’ } ;

66 push pending , { s ’ } ;

67 end i f

68 end for

69 end while

70 for each x ∈ I−Marked do

71 i f not reach [x] then

72 I−Marked ← I−Marked − {x } ;
73 else i f x /∈ found then

74 remain [x] ← f a l s e ;

75 I−Marked ← I−Marked − {x } ;
76 end i f

77 end for

78 end i f

79 for each x ∈ des . s t a t e s do

80 i f not remain [x] then

81 trimStateLow2 (x , i , reach) ;

82 changed ← t rue ;

83 end i f

84 end for

85 return changed ;

86 end

We now give a complexity analysis for algorithms 6.11-6.14. We will leave

Algorithm 6.11 for last.

For low level k, k = 1, 2, . . . n, let nsk = |ΣILk
|, and nk be the number of states

of the largest DES (in terms of state size) among the mLk
DES. We note that the

state size of the synchronous product is O(n
mLk
k).

181

Master’s Thesis - P. Dai McMaster - Computing and Software

We first note that Algorithms 6.12 and 6.13 are almost identical to Algorithms

6.8 and 6.9, and thus take O(nsk · nmLk
k) time when called for the kth low level.

We now examine Algorithm 6.14 for processing low low level k. On line 7, we

initialize the array remain which takes O(n
mLk
k) time. We use the array remain to

mark whether a state should stay in the final result. The for loop on lines 9-16

also takes O(n
mLk
k) time.

The while loop in lines 23-32 is similar to the while loop on lines 22-31 in

Algorithm 6.10, and is thus O(nskn
mLk
k).

We now consider the for loop in lines 34-54 that checks Point 5. In the worst

case, R-Reachable can contain an entry for every transition in the synchronous

product. The for loop thus runs O(nskn
mLk
k). However, the if statement at line

38 ensures that the core loop only gets executed O(n
mLk
k) times. If fact, it’s as if

we have a for loop that executes O(nskn
mLk
k) times performing a constant number

of operations each iteration, followed by a for loop that executes O(n
mLk
k) times

and executes lines 39-52 each iteration. Computations inside the second for loop

are additive and dominated by the searchAnswer function and the for loop on

lines 46-50, both taking O(nsk · nmLk
k) time. We thus have that the Point 5 check

takes O(nskn
mLk
k) +O(n

mLk
k) ·O(nsk · nmLk

k) = O(nsk · n2mLk
k).

We next note that the initialization of the arrays on lines 59-60 each take

O(nmLk
k) time. We now examine the while loop in lines 61-69. As this loop is

similar to the while loop in lines 76-84 in Algorithm 6.5, we know it executes

O(nsk ·nmLk
k) times. It’s followed by a for loop in lines 70-77 which runs O(n

mLk
k)

times.

Finally, we note that the for loop in lines 83-88 is similar to the for loop in

lines 32-37 of Algorithm 6.10 and thus runs in O(nsk · nmLk
k) time.

As all the other steps take either constant or linear time, they are covered

by the parts we analyzed. Put the analysis together for Algorithm 6.14, it takes

182

Master’s Thesis - P. Dai McMaster - Computing and Software

O(n
mLk
k) +O(nsk · nmLk

k) +O(nsk · n2mLk
k) = O(nsk · n2mLk

k).

Now we investigate time complexity for Algorithm 6.11. The for loop (Line

3-85) runs n times, once for each low level. We will now analyze the rest for low

level k.

Similar to Algorithm 6.4, line 5 takes O(nsk) time , and lines 9-11 takes O(mLk
·

nk ·nsk) time. We now examine the while loop in lines 18-60. The while loop goes

over the state space of the synchronous product, which is worst case n
mLk
k . The

for loop in lines 20-59 repeats nsk times to check every event in low level k. This

for loop also contains the for loop in lines 23-33 which goes over every DES, and

thus runs mLk
times. In parallel to the inner for loop, we also access the found

variable (lines 39 and 46) which is implemented as a trie data structure. This

access is O(mLk
). Also parallel to the inner for loop is a call to trimStateLow

in line 36. Putting things together, we find that the outer for loop (20-59) is

O(nsk ·mLk
+ n2

sk · n
mLk
k). However, as trimStateLow ensures that a state can

only be trimmed at most once, we actually get O(nsk ·mLk
+nsk ·nmLk

k). Combining

this with the while loop, we get O(nsk · mLk
· nmLk

k + nsk · n2mLk
k). Again, as

trimStateLow ensures that a state can only be trimmed at most once, we get

O(nsk ·mLk
· nmLk

k + nsk · nmLk
k) = O(nsk ·mLk

· nmLk
k).

We next note that the array reach (line 61) can be initialized in O(n
mLk
k)

time. The variable found can now be implemented as an array, and thus be

accessed (lines 69 and 71) in constant time. The while loop in lines 65-75 runs in

O(nsk · nmLk
k) time.

The while block in lines 76-79 calls the Algorithm 6.14. Each call of this

algorithm takes O(nsk · n2mLk
k) time. The worst case is that Algorithm 6.14 only

trims one state each time and finally all states need to be trimmed off. The while

block will thus run O(n
mLk
k) times, making the total run time O(n

mLk
k) · O(nsk ·

n
2mLk
k) = O(nsk · n3mLk

k). Similar to analysis for Algorithm 6.7, the number of

calls to this function is effectively constant, thus this block would normally run in

183

Master’s Thesis - P. Dai McMaster - Computing and Software

O(nsk · n2mLk
k) time. Finally, the for loop in lines 80-85 runs O(n

mLk
k) times.

Putting the parallel sections together, the run time for Algorithm 6.11 for one

low level is O(nsk) + O(mLk
· nk · nsk) + O(nsk · mLk

· nmLk
k) + O(n

mLk
k) + (nsk ·

n
mLk
k) + O(nsk · n3mLk

k) + O(n
mLk
k) = O(nsk · mLk

· nmLk
k + nsk · n3mLk

k). As we

have n low levels, we thus have O(n(nsk ·mLk
· nmLk

k + nsk · n3mLk
k)). As typically

mLk
·nmLk

k ¿ n
2mLk
k , we can simplify this to O(n ·nsk ·n3mLk

k). As discussed above,

the O(nsk · n3mLk
k) term typically turns out to be O(nsk · n2mLk

k). We would thus

expect the algorithm to behave as O(n · nsk · n2mLk
k).

6.5.3 Summary

It is shown in [27] that the synthesis for a system constructed from multiple plant

and specification DES is a NP-hard problem. This means there is unlikely any

algorithm that solves this problem in a polynomial time. The complexity is expo-

nential to the number of component DES involved in the synthesis.

As we can see from our analysis, we would expect our algorithms take O(nsH ·
mH · nmH

H) and O(n · nsk · n2mLk
L) to generate our high and low level interface

consistent supervisors.

LetNH denote the size of the state space of Gp
H ||EH , whileNI andNL are upper

bounds for the state space size of GIj
and Gp

Lj
||ELj

(j = 1, . . . , n), respectively.

As was discussed in [37], the limiting factor for a flat system would typically be

NHN
n
L , and NHN

n
I for the HISC method as it grows in the number of low levels.

We would expect our method to offer significant improvement as long as NI ¿ NL.

Of course, this increased scalability comes with a price: a more restrictive

architecture and thus the possible loss of global maximal permissiveness. In other

words, if we instead modeled the system as a flat system and did a normal synthesis

operation such as using the TCT supcon algorithm [79], we might be able to get a

larger closed loop behavior than we got with the HISC synthesis. However, we feel

184

Master’s Thesis - P. Dai McMaster - Computing and Software

that the tradeoff is worthwhile due to the increased scalability and the behavior

encapsulation provided by the HISC method.

185

Master’s Thesis - P. Dai McMaster - Computing and Software

Chapter 7

AIP Example

To demonstrate the utility of our method, we apply it to a large manufacturing

system, the Atelier Inter-établissement de Productique (AIP) as described in [9,

14], and later investigated by Leduc et al. [34, 35, 36, 37, 33] using the HISC

method and then by Ma et al. [47, 48] using state tree structure and binary

decision diagrams.

In this chapter we first introduce the system structure of the AIP. Then we

describe our modifications to the AIP example which are based on Leduc et al.

[34, 35, 36, 37, 33]. Finally, we apply our synthesis method to the example, and

discuss the result.

In this chapter, a few figures are borrowed from [34, 35] with the author’s

permission. We will indicate in the figure’s caption when this happens.

7.1 Introduction

The AIP is an automated manufacturing system consisting of a central conveyor

loop (CL) and four external conveyor loops (EL). There are three assembly stations

(AS) that process incoming pallets and four transfer units (TU) that transfer

186

Master’s Thesis - P. Dai McMaster - Computing and Software

pallets between central and external loops. An I/O station puts raw pallets into

external loop 4 and takes away processed pallets from it.

The AIP system structure is shown in Figure 7.1. Figure 7.2 shows the hierar-

chical structure of AIP system.

Figure 7.1: AIP System Structure ([34])

A transfer unit checks whether a pallet needs to be transferred or not and if it

does, then performs the transfer between the central loop and the transfer unit’s

external loop.

Assembly stations monitor pallets on their corresponding external conveyor

loops. If the pallets need to be processed, the assembly station processes it and

187

Master’s Thesis - P. Dai McMaster - Computing and Software

Figure 7.2: Hierarchical Structure of AIP([34])

then puts it back on its external loop. The pallet then waits to be transferred

to the central loop. The three assembly stations can perform different assembly

actions. Station 1 (AS1) can do task1A and task1B. Station 2 (AS2) can do task2A

and task2B. Station 3 (AS3) acts like a master station which can perform all four

tasks and works as a backup machine when AS1 or AS2 break down.

Figure 7.3 and 7.4 show the layout of an assembly station and a transfer unit,

respectively.

Figure 7.3: Assembly Station Layout ([34])

The AIP system can process two types of pallets: type 1 pallets and type 2

pallets. We assume that the system is initially empty and two types of pallets are

188

Master’s Thesis - P. Dai McMaster - Computing and Software

Figure 7.4: Transfer Unit Layout ([34])

fed into the system alternately in the order type 1, type 2, type 1, ...

The system needs to achieve the follow control specifications:

• Type 1 pallets are processed in the order task1A, task1B, task2A, task2B

Type 2 pallet is processed in the order task2B, task2A, task1B, task1A.

Pallets may only leave the system after all four steps have been completed.

• Pallets exiting the system must alternate in type, starting with type 1.

• Only one pallet is permitted in external loop 1 or 2 at a time.

• Assembly stations can only process one pallet at a time.

• When AS1 or AS2 are down, pallets will be routed to AS3. When the station

is repaired, the system will return to normal.

• When an assembly error occurs, the unfinished pallet will be routed to AS3

for maintenance and then sent back to the original station to undergo the

assembly operation again.

189

Master’s Thesis - P. Dai McMaster - Computing and Software

We first applied our algorithm on the original AIP example as appeared in

[35, 36, 37, 33]. The result was supervisor with 3,306,240 states, constructed in 3

minutes 24 seconds, using 885MB of memory. As expected, no states were trimmed

off during the synthesis process since the given set of specifications are themselves

supervisors that were designed to meet the HISC requirements.

In next section we will modify the AIP example by slightly changing the control

specifications so that we will need to do synthesis.

7.2 Modifying the AIP

In this chapter, we use the AIP model in Leduc et al. [34, 35, 36, 37, 33] as our

starting point. In addition to the control specifications given in Section 7.1, we

have added two new design requirements:

• Restrict capacity of external loop 3 to three pallets.

• For AS1 and AS2, if three consecutive errors happen, the assembly station

is suspected to be broken and a repair procedure will be invoked.

We use italic font for uncontrollable events and regular font for controllable

events. We use the event partition listed in [34] with one small change. As part of

our redesign, we removed DES DetWhichStnUp and thus had to remove event

DetStnsUp from ΣH . In the DES in our diagrams, the initial state has a thick

border and marker states are represented by filled gray circles.

7.2.1 High Level

The high level contains 6 plant DES and 7 specification DES, as shown in Figure

7.5. The synchronous product of these 6 plant DES is the high level plant Gp
H , and

190

Master’s Thesis - P. Dai McMaster - Computing and Software

the synchronous product of all 7 specification DES is the high level specification

DES EH .

Pal letArvGateSenEL3_2
QueryPal letAtTU_TU1
QueryPal letAtTU_TU2
QueryPal letAtTU_TU3
QueryPal letAtTU_TU4
ASStoreUpState4State

ManageTU1
ManageTU2
EL3Cap
ManageTU3
ManageTU4
OFProtEL1
OFProtEL2

Plants Sp ecs

Figure 7.5: High Level DES List

We first discuss the plant DES. PalletArvGateSenEL 2 AS3, a shown in

Figure 7.6, states that a pallet can not be processed by AS3 until a pallet has

arrived at its gate. QueryPalletAtTU.i in Figure 7.7, where i in {’TU1’, ’TU2’,

’TU3’, ’TU4’}, are a set of DES that check whether a pallet is ready to be trans-

ferred between the center loop and a specific external loop.

Figure 7.6: PalletArvGate-
SenEL 2 AS3 ([34]) Figure 7.7: QueryPalletAtTU.i ([34])

DES ASStoreUpState, shown in Figure 7.8, stores the breakdown status of

AS1 and AS2. It encodes the status in events which are used by TU3 to determine

191

Master’s Thesis - P. Dai McMaster - Computing and Software

s0 s1

StnU p.AS1
StnU p.AS2

s2

TrnsfT oE L3_U p DoR pr.AS1
TrnsfT oE L3_1D

s3

RobU p.AS2

DoR pr.AS2
TrnsfT oE L3_2D

DoR pr.AS1
DoR pr.AS2
TrnsfT oE L3_BD

ASD wn.AS1

ASD wn.AS1

ASD wn.AS2 ASD wn.AS2

RobU p.AS1

RobU p.AS1

RobU p.AS2

StnDow n.As1
StnU p.AS2

StnU p.AS1
StnDow n.As2

StnDow n.AS1
StnDow n.As2

Figure 7.8: ASStoreUpState

if a pallet should be processed by AS3. For example, the event TrnsfToEL3 1D

contains the information that AS1 is down and AS2 is currently up.

We now discuss the specification DES for the high level. DES ManageTU1

and ManageTU2, shown in Figure 7.9 and Figure 7.10, differ from the original

ones in [34] by removing the QStnUp.i events (’i’ stands for either AS1 or AS2) as

these events are no longer needed. These supervisors control the transfer of pallets

between the center loop and the indicated external loop.

We update DES ManageTU3, shown in Figure 7.11, by removing the Det-

StnsUp event which was previously used to signal DES DetWhichStnUp. In

the AIP example from [34, 35, 36, 37, 33], ManageTU3 used supervisor De-

tWhichStnUp to determine whether AS1 and AS2 are up, and then encode

this information as an event. This task is now performed by plant compo-

nent ASStoreUpState, so DES DetWhichStnUp is no longer required. The

DES HndlComEventsAS was also removed from the system (it was present in

[34, 35, 36, 37, 33]) as it is no longer needed as its task was to arbitrate between

DetWhichStnUp and ManageTU1 and ManageTU2 with respect to access

192

Master’s Thesis - P. Dai McMaster - Computing and Software

s0

IsPal letEL.TU1

TrnsfELToCL.TU1
NoPalletEL.TU1

NoPalletCL.TU1

s5

s4

s3
s2

QPal letAtCL.TU1

QPal letAtEL.TU1

TrnsfCpl ToCL.TU1

TrnsfCpl ToEL.TU1

NoTrnsfEL.TU1

IsPalletCL.TU1

Li bPal let.TU1

Pal letRl sd.TU1

Li bPal let.TU1
TrnsfToEL.TU1

StnUp.AS1
StnDown.AS1

StnUp.AS1
StnDown.AS1

StnUp.AS1
StnDown.AS1

s6

StnDown.AS1

StnUp.AS1

StnUp.AS1
StnDown.AS1

Pal letRl sd.TU1 StnUp.AS1
StnDown.AS1

Figure 7.9: ManageTU1

to common controllable events.

For the new requirement that only three pallets are permitted at a time in

external loop 3, we added DES EL3Cap, shown in Figure 7.12. The remaining

supervisors DES ManageTU4, OFProtEL1 and OFProtEL2, are unchanged.

Readers are referred to [34] for more details.

7.2.2 Low Levels

We implemented the second new specification by modifying interfaces for low levels

AS1 and AS2, shown in Figure 7.13. In the diagram, ’i’ can take the value ’AS1’ or

’AS2’. After three consecutive errors, the new interface forces a repair operation.

To accommodate the new interface, we had to modify plant components

Robot.AS1 and Robot.AS2, shown in Figures 7.16 and 7.17. In the original

model, a robot repair could only be initiated after a timeout during processing oc-

193

Master’s Thesis - P. Dai McMaster - Computing and Software

s0

IsPal letEL.TU2

TrnsfELToCL.TU2
NoPalletEL.TU2

NoPalletCL.TU2

s5

s4

s3
s2

QPal letAtCL.TU2

QPal letAtEL.TU2

TrnsfCpl ToCL.TU2

TrnsfCpl ToEL.TU2

NoTrnsfEL.TU2

IsPalletCL.TU2

Li bPal let.TU2

Pal letRl sd.TU2

Li bPal let.TU2
TrnsfToEL.TU2

StnUp.AS2
StnDown.AS2

StnUp.AS2
StnDown.AS2

StnUp.AS2
StnDown.AS2

s6

StnDown.AS2

StnUp.AS2

StnUp.AS2
StnDown.AS2

Pal letRl sd.TU2 StnUp.AS2
StnDown.AS2

Figure 7.10: ManageTU2

curred. We had to add the functionality that a repair could occur while the robot

was in its initial state. We then had to make corresponding changes to supervisors

DoRobotTasks.AS1, DoRobotTasks.AS2, shown in Figures 7.14, 7.15. For

the remainder DES at the low levels, readers are referred to [34, 35] .

7.2.3 Results

We now apply our software to our version of the AIP example, and determine

that the system is HISC-valid. We next apply our iSupconHigh algorithm and

get a high level interface consistent supervisor.We then apply our iSupconLow

algorithm and get seven low level interface consistent supervisors, one for each low

level. Since our algorithms build interface consistent, level-wise nonblocking and

level-wise controllable supervisors, we can apply Theorem 6 and Theorem 7 and

conclude that the flat system is nonblocking and the flat supervisor is controllable

for the flat plant. Running on a Redhat Linux 9 computer with a 2.4 GHz Xeon

194

Master’s Thesis - P. Dai McMaster - Computing and Software

s0

IsPal letEL.TU3

TrnsfELToCL.TU3

NoPalletEL.TU3

NoPalletCL.TU3

s5

s4

s3
s2

QPal letAtCL.TU3

QPal letAtEL.TU3

TrnsfCpl ToCL.TU3

TrnsfCpl ToEL.TU3

NoTrnsfEL.TU3

IsPalletCL.TU3

Li bPal let.TU3

Pal letRl sd.TU3

TrnsfToEL3_Up
TrnsfToEL3_1D
TrnsfToEL3_2D
TrnsfToEL3_B D

Figure 7.11: ManageTU3

s0

s3s2

s4

TrnsfCplToEL.TU3 TrnsfCplToEL.TU3 TrnsfCplToEL.TU3

TrnsfCplToCL.TU3 TrnsfCplToCL.TU3 TrnsfCplToCL.TU3

Figure 7.12: EL3Cap

CPU and 4G memory, the program finishes in 6 minutes and 2 seconds and uses

2GB memory. Detailed results are shown in Table 7.1. It shows the size of the

various subsystem automata used in the AIP calculations. First, the size of the

state space of each component without being synchronized with their respective

interfaces (Standalone) is given and then state space size when synchronized with

their interface DES (GH is synchronized with all seven interfaces). Next, the size

of the interfaces for the high level and each low level. We then give the number of

states trimmed during synthesis, followed by the run time for each component.

In Section 6.5.3, we discussed that the limiting factor for a monolithic algorithm

would be NHN
n
L and similarly NHN

n
I for the HISC method. In the equations, NH

denotes the size of the state space of GH , while NI and NL are the bounds for GIj

195

Master’s Thesis - P. Dai McMaster - Computing and Software

ProcPal let.i

ProcCpl .i

ProcErr.i

ASDwn.i

DoRpr.i

RobUp.i

ASDwn.i

ProcPal let.i ProcCpl .i

ProcErr.i

ASDwn.i

ProcCpl .i

ProcPal let.i

ProcErr.i

s0

s7s6s5s3
s2

s1 s4

Figure 7.13: Interface for AS1 and AS2

and GLj
(j = 1, . . . , n), respectively. If we substitute actual data from Table 7.1,

Nn
L = (353)2(203)(98)2(204)(152) = 7.53 × 1015 and Nn

I = (9)2(2)(4)4 = 41, 471.

This is a potential savings of 11 orders of magnitude!

Table 7.1: AIP Results
States States Computing

Subsystem Standalone || with GIj
Size of GIj

Trimmed Time

GH 793,800 6,634,800 41,472 349,200 6 min 1 sec

AS1 1,732 353 9 116 < 1 sec

AS2 1,732 353 9 116 < 1 sec

AS3 1,178 203 2 0 < 1 sec

TU1 98 98 4 0 < 1 sec

TU2 98 98 4 0 < 1 sec

TU3 204 204 4 0 < 1 sec

TU4 152 152 4 0 < 1 sec

The modified AIP example has a worst case state space of 2.25 × 1022. This

was estimated by multiplying the size of the state space of the high level and all of

the low levels together. It is quite likely that the actual system is much smaller.

We also tried to construct a synchronous product of our entire system to see how

long that would take and what the state space size would be, but the program

196

Master’s Thesis - P. Dai McMaster - Computing and Software

s0

StrRti mer.AS1

RtaskCpl1B.AS1

s5

s4s3s2

StrRobRepai r.AS1

StrRtask1B .AS1

RobRprCpl.AS1

Rtimeout.AS1

StrRtask1A.AS1

s6

RobRprCpl.AS1

Rtimeout.AS1

AError1B.AS1

RtaskCpl1A.AS1

RtaskCpl .AS1

AssmbErrB .AS1

AssmbErrA.AS1

s1

s18

s17

s13 s12 s11

s10

s9s8s7

s19

s20

s21

StrRtask1B .AS1

StrRtask1A.AS1

StrRti mer.AS1RtaskCpl1A.AS1

StrRti mer.AS1 StrRti mer.AS1RtaskCpl1B.AS1

Rtimeout.AS1

Rtimeout.AS1

StrRobRepai r.AS1
AssmbErrA.AS1

AssmbErrB .AS1

ProcTyp1.AS1

ProcTyp2.AS1

AError1B.AS1

AError1A.AS1

AError1A.AS1

RobUp.AS1

RobUp.AS1

DoRpr.AS1

DoRpr.AS1

RobDwn.AS1

s16

Figure 7.14: DoRobotTasks.AS1

crashed after using up all available memory.

It is interesting to note that typically we can not perform a flat synthesis, such

as the supcon algorithm from TCT [79], to an HISC system and expect to receive

a meaningful result. Let’s consider the high level for the AIP. If we examine

the specification in EL3Cap Figure 7.12, we see that it forbids answer event

TrnsfCpltToCL.TU3 from occurring at state s0. The high level synthesis is not

permitted to disable an answer event, so it will correctly disable the request event

TrnsfELtoCL.TU3 that leads to a state that the answer event is defined. This is

because it knows that the answer event is an abstraction of a corresponding low

level task, and it is the low level task that we actually wish to prevent. However

if we did a flat synthesis, supcon would just disable TrnsfCpltToCL.TU3 as it’s a

controllable event, but allow request event TrnsfELtoCL.TU3 to occur. This would

197

Master’s Thesis - P. Dai McMaster - Computing and Software

s0

StrRti mer.AS2

RtaskCpl2B.AS2

s5

s4s3s2

StrRobRepai r.AS2

StrRtask2B .AS2

RobRprCpl.AS2

Rtimeout.AS2

StrRtask2A.AS2

s6

RobRprCpl.AS2

Rtimeout.AS2

AError2B.AS2

RtaskCpl2A.AS2

RtaskCpl .AS2

AssmbErrB .AS2

AssmbErrA.AS2

s1

s18

s17

s13 s12 s11

s10

s9s8s7

s19

s20

s21

StrRtask2B .AS2

StrRtask2A.AS2

StrRti mer.AS2RtaskCpl2A.AS2

StrRti mer.AS2 StrRti mer.AS2RtaskCpl2B.AS2

Rtimeout.AS2

Rtimeout.AS2

StrRobRepai r.AS2
AssmbErrA.AS2

AssmbErrB .AS2

ProcTyp1.AS2

ProcTyp2.AS2

AError2B.AS2

AError2A.AS2

AError2A.AS2

RobUp.AS2

RobUp.AS2

DoRpr.AS2

DoRpr.AS2

RobDwn.AS2

s16

Figure 7.15: DoRobotTasks.AS2

have the effect of allowing the low level task to occur, but only disabling the low

level from reporting that the task has completed! Definitely not the desired result.

The reason that a normal flat synthesis would likely not produce a meaningful

result is because it does not understand the hierarchy of an HISC system, or the

abstractions that it employs.

198

Master’s Thesis - P. Dai McMaster - Computing and Software

s0
StrRti mer.AS1

RtaskCpl1B.AS1
AError1B.AS1

s5

s4

s3

s2

StrRobRepai r.AS1

StrRtask1B .AS1

RobRprCpl.AS1

Rtimeout.AS1

StrRtask1A.AS1

s6

RtaskCpl1A.AS1
AError1A.AS1

StrRobRepai r.AS1

RobRprCpl.AS1

Rtimeout.AS1

s1

Figure 7.16: Robot.AS1

s0
StrRti mer.AS2

RtaskCpl2B.AS2
AError2B.AS2

s5

s4

s3

s2

StrRobRepai r.AS2

StrRtask2B .AS2

RobRprCpl.AS2

Rtimeout.AS2

StrRtask2A.AS2

s6

RtaskCpl2A.AS2
AError2A.AS2

StrRobRepai r.AS2

RobRprCpl.AS2

Rtimeout.AS2

s1

Figure 7.17: Robot.AS2

199

Master’s Thesis - P. Dai McMaster - Computing and Software

Chapter 8

Conclusions and Future Work

8.1 Conclusions

In this thesis we developed a synthesis method for the Hierarchical Interface-based

Supervisory Control (HISC) system that does a per level synthesis to construct

for each level a maximally permissive supervisor that satisfies the corresponding

HISC conditions.

We then defined a set of language based fixpoint operators and showed that they

compute the required level-wise supremal languages. We then presented algorithms

that implement the fixpoint operators. Next, we performed a complexity analysis

for the algorithms. As the synthesis is done on a per level basis, the complete

system model never needs to be stored in memory, offering potentially significant

savings in computational resources. In fact, as long as the state size of the interfaces

are much smaller than the state size of the corresponding low levels, we should see

significant reduction in complexity.

Finally we developed software to implement the algorithms. We modified the

AIP example from [34, 35, 36, 37, 33], and applied our software to it. We demon-

strated that we were able to handle this complex example, where a monolithic

200

Master’s Thesis - P. Dai McMaster - Computing and Software

approach failed.

8.2 Future Work

The HISC framework is still relatively new, and there are many areas of interest

to be explored. Some of these are:

• The current HISC model accommodates only two levels: one high level and

one or more low level subsystems. In general, as we add more low levels to

the system, the high level becomes increasingly more complex. Similarly, a

given low could be potentially very large. It would be useful to extend the

HISC method to allow for a multi-level hierarchy.

• Currently, only the high level can communicate directly with the low levels. It

would be useful if the low levels were able to communicate directly with each

other, and request other low levels to perform tasks for them. This would be

useful for modeling a system composed of independent autonomous agents,

for example.

• Although our synthesis method simplified the work for designers, there are

not many choices for design tools. Currently, our software takes text files as

input and can output in either text or TCT [79] data file format. A graphical

interface for entering DES and the system hierarchy would be very helpful

for designers.

• In the current HISC structure, communication between levels occurs via re-

quest and answer events. When the high level sends a request event to a

particular low level, it can not send additional information to the low level

until it receives an answer event back from it. It would be useful to able

to send information in between the request and answer events. A possible

application would be an abort signal if the task was no longer needed.

201

Master’s Thesis - P. Dai McMaster - Computing and Software

Bibliography

[1] Sharif Abdelwahed, Interacting discrete event systems: Modeling, verification

and supervisory control, Ph.D. thesis, Dept. of Elec. and Comp. Eng., Univer-

sity of Toronto, 2002.

[2] Knut Åkesson, Hugo Flordal, and Martin Fabian, Exploiting modularity for

synthesis and verification of supervisors, Proc. of the IFAC World Congress

on Automatic Control (Barcelona, Spain), 2002.

[3] N. Alsop, Formal techniques for the procedural control of industrial processes,

Ph.D. thesis, Department of Chemical Engineering and Chemical Technology,

Imperial College of Science, Technology and Medicine, London, 1996.

[4] P. Apkarian and D. Noll, Decentralized supervision of petri nets, IEEE Trans.

Automatic Control 51 (2006), no. 2, 376– 381.

[5] Adnan Aziz, Vigyan Singhal, and Gitanjali M. Swamy, Minimizing interact-

ing finite state machines: A compositional approach to language containment,

Proc. of IEEE Int. Conf. on Computer Design: VLSI in Computers and Pro-

cessors (Cambridge, Massachusetts), Oct 1994, pp. 255–261.

[6] G. Barrett and S. Lafortune, Decentralized supervisory control with communi-

cating controllers, IEEE Transactions on Automatic Control 45 (2000), no. 9,

1620–1638.

202

Master’s Thesis - P. Dai McMaster - Computing and Software

[7] George Barrett and Stephane Lafortune, Decentralized supervisory control

with communicating controllers, IEEE Trans. Automatic Control 45 (2000),

no. 9, 1620–1638.

[8] Sergey Berezin, Sérgio Campos, and Edmund M. Clarke, Compositional rea-

soning in model checking, COMPOS’97, LNCS, vol. 1536, Springer-Verlag,

1998, pp. 81–102.

[9] Bertil Brandin and François Charbonnier, The supervisory control of the auto-

mated manufacturing system of the AIP, Proc. Rensselaer’s 1994 Fourth Inter-

national Conference on Computer Integrated Manufacturing and Automation

Technology (Troy), Oct 1994, pp. 319–324.

[10] Y. Brave and M. Heymann, Control of discrete event systems modeled as

hierarchical state machines, IEEE Trans. on Automatic Control 38 (1993),

no. 12, 1803–1819.

[11] R. E. Bryant, Graph-based algorithms for boolean function manipulation, IEEE

Trans. Comput. C-35 (1986), no. 8, 677–691.

[12] J.R. Burch, Edmund M. Clarke, and K.L. McMillan, Symbolic model checking:

1020 states and beyond, Information and Computation 98 (1992), 142–170.

[13] P.E. Caines and Y.J. Wei, The hierarchical lattices of a finite machine, Sys-

tems Control Letters 25 (1995), 257–263.

[14] F. Charbonnier, Commande par supervision des systèmes à événements dis-

crets: application à un site expérimental l’Atelier Inter-établissement de Pro-

ductique, Tech. report, Laboratoire d’Automatique de Grenoble, Grenoble,

France, 1994.

[15] H. Chen and H.M. Hanisch, Model aggregation for hierachichal control syn-

thesis of discrete event systems, Proc. 39th Conf. of Desision Control (Sydney,

Australia), Dec. 2000, pp. 418–423.

203

Master’s Thesis - P. Dai McMaster - Computing and Software

[16] Haoxun Chen and Hans-Michael Hanisch, Model aggregation for hierarchical

control synthesis of discrete event systems, Proc. 39th Conf. Decision Contr.

(Sydney, Australia), December 2000, pp. 418–423.

[17] S.-L. Chen, Control of discrete-event systems of vector and mixed structural

type, Ph.D. thesis, Department of Electrical and Computer Engineering, Uni-

versity of Toronto, Toronto, ONT, 1996.

[18] Yi-Liang Chen and Feng Lin, Hierarchical modeling and abstraction of discrete

event systems using finite state machines with parameters, Proc. 40th Conf.

Decision Contr. (Orlando, USA), December 2001, pp. 4110–4115.

[19] Thomas Cormen, Charles Leiserson, Ronald Rivest, and Cliff Stein, Introduc-

tion to algorithms, MIT Press and McGraw-Hill, 2001.

[20] M. Courvoisier, M.Combacau, and A. de Bonneval, Control and monitoring of

large discrete event systems: a generic approach, Proc. of ISIE 93 (Budapest),

1993, pp. 571–576.

[21] Luca de Alfaro and Thomas A. Henzinger, Interface automata, Proceedings of

the Ninth Annual Symposium on Foundations of Software Engineering, ACM

Press, 2001, pp. 109–120.

[22] E. W. Endsley, M. R. Lucas, and D. M. Tilbury, Modular design and ver-

ification of logic control for reconfigurable machining systems, [ONLINE].

Available: http://www-personal.engin.umich.edu/~tilbury/papers.html, Oct.

2000.

[23] E. W. Endsley and D. M. Tilbury, Modular verification of modular finite state

machines, Proc. 43th Conf. Decision Contr. (Atlantis, Paradise Island, Ba-

hamas), vol. 1, December 2004, pp. 972–979.

204

Master’s Thesis - P. Dai McMaster - Computing and Software

[24] Jose M. Eyzell and Jose E.R. Cury, Exploiting symmetry in the synthesis of

supervisors for discrete event systems, Proc. of American Control Conference

(Philadelphia, USA), June 1998, pp. 244–248.

[25] M. Fabian, On object-oriented non-deterministic supervisory control, Ph.D.

thesis, Chalmers Univ. of Tech., Goteborg, Sweden, 1995.

[26] M. Fabian and B. Lennartson, Petri nets and control synthesis; an object

oriented approach, Proc. of I.M.S. (Vienna, Austria), June 1994, pp. 365–370.

[27] P. Gohari-M. and W.M. Wonham, On the complexity of supervisory control

design in the RW framework., IEEE Trans. on Systems, Man and Cybernetics;

Part B: Cybernetics. (Special Issue on Discrete Systems and Control) (2000),

643–652.

[28] Peyman Gohari-Moghadam, A linguistic framework for controlled hierarchical

DES, Master’s thesis, Department of Electrical and Computer Engineering,

University of Toronto, Toronto, Ont, 1998.

[29] Johan Gunnarsson, Symbolic methods and tools for discrete event dynamic

systems, Ph.D. thesis, Department of Electrical Engineering at Linköping Uni-

versity, Sweden, 1997.

[30] Qian Pu Ken, Modeling and control of discrete-event systems with hierar-

chical abstraction, Master’s thesis, Department of Electrical and Computer

Engineering, University of Toronto, Toronto, ONT, 2000.

[31] P. Kozak and W.M. Wonham, Fully decentralized solutions of supervisory

control problems, Automatic Control, IEEE Transactions on 40 (1995), 2094

– 2097.

[32] Robert Kruse, Bruce Leung, and Clovis Tondo, Data structures and program

design in c, Prentice Hall, Inc., 1997.

205

Master’s Thesis - P. Dai McMaster - Computing and Software

[33] R. Leduc, M. Lawford, and P. Dai, Hierarchical interface-based supervisory

control of a flexible manufacturing system, Accepted to IEEE Trans. on Con-

trol Systems Technology, Dec. 2005.

[34] R. J. Leduc, Hierarchical interface-based supervisory control, Ph.D.

thesis, Department of Electrical and Computer Engineering, Uni-

versity of Toronto, Toronto, Ont., 2002, [ONLINE] Available:

http://www.cas.mcmaster.ca/~leduc.

[35] , Hierarchical interface-based supervisory control: Command-pair in-

terfaces (see extended version), Proc. of the Third International DCDIS

Conference on Engineering Applications and Computational Algorithms

(Guelph, Ontario, Canada), May 15-18 2003, [ONLINE] Available:

http://www.cas.mcmaster.ca/~leduc, pp. 323–329.

[36] R. J. Leduc, B. A. Brandin, M. Lawford, and W. M. Wonham, Hierarchical

interface-based supervisory control, part I: Serial case, IEEE Trans. Automatic

Control 50 (2005), no. 9, 1322–1335.

[37] R. J. Leduc, M. Lawford, and W. M. Wonham, Hierarchical interface-based

supervisory control, part II: Parallel case, IEEE Trans. Automatic Control 50

(2005), no. 9, 1336–1348.

[38] R.J. Leduc, B.A. Brandin, and W. Murray Wonham, Hierarchical interface-

based non-blocking verification, Proceedings of the Canadian Conference on

Electrical and Computer Engineering, May 2000, pp. 1–6.

[39] R.J. Leduc, B.A. Brandin, W. Murray Wonham, and M. Lawford, Hierarchical

interface-based supervisory control: Serial case, Proc. of 40th Conf. Decision

Contr. (Orlando, USA), December 2001, pp. 4116–4121.

[40] R.J. Leduc, M. Lawford, and P. Dai, Hierarchical interface-based supervi-

sory control of a flexible manufacturing system, Tech. Report No. 32, Soft-

206

Master’s Thesis - P. Dai McMaster - Computing and Software

ware Quality Research Laboratory, Dept. of Computing and Software, Mc-

Master University, Hamilton, ON, Canada, Dec. 2005, [ONLINE] Available:

http://www.cas.mcmaster.ca/sqrl/sqrl reports.html.

[41] R.J. Leduc, W. Murray Wonham, and M. Lawford, Hierarchical interface-

based supervisory control: Parallel case, Proc. of 39th Annual Allerton Con-

ference on Comm., Contr., and Comp., Oct 2001, pp. 386–395.

[42] R.J Leduc, W. Murray Wonham, and M. Lawford, Hierarchical interface based

supervisory control: Bi-level systems, Tech. Report No. 0103, Systems Control

Group, University of Toronto, Toronto, ON, Canada, Nov 2001.

[43] Ryan Leduc, PLC implementation of a DES supervisor for a manufactur-

ing testbed: An implementation perspective, Master’s thesis, Department of

Electrical and Computer Engineering, University of Toronto, Toronto, ONT,

1996.

[44] Y. Li, Control of vector discrete-event systems, Ph.D. thesis, Department of

Electrical Engineering, University of Toronto, Toronto, ONT, 1991.

[45] F. Lin and W.M. Wonham, Decentralized control and coordination of discrete-

event systems with partial observations, Proc. 27th IEEE Conf. Decision

Contr., Dec 1988, pp. 1125–1130.

[46] , Decentralized control and coordination of discrete-event systems with

partial observations, IEEE Transactions on Automatic Control 35(122)

(1990), 1330–1337.

[47] C. Ma and W. Murray Wonham, Control of state tree structures, Proc. 11th

Mediterranean Conference on Control and Automation, June 2003, Paper T4-

005 (6pp.).

207

Master’s Thesis - P. Dai McMaster - Computing and Software

[48] Chuan Ma, Nonblocking supervisory control of state tree structures, Ph.D.

thesis, Department of Electrical and Computer Engineering, University of

Toronto, Toronto, ONT, 2004.

[49] K.L. McMillan, Symbolic model checking, Kluwer, 1992.

[50] John O. Moody and Panos J. Antsaklis, Supervisory control of discrete event

systems using Petri nets, Kluwer Academic Publishers, 1998.

[51] T. Moor, J. Raisch, and J.M. Davoren, Admissibility criteria for a hierarchical

design of hybrid control systems, Proc. IFAC Conference on Analysis and

Design of Hybrid Systems (Saint-Malo, France), June 2003, pp. 389–394.

[52] D. L. Parnas, P. C. Clements, and D. M. Weiss, The modular structure of

complex systems, ACM SIGSOFT Software Engineering Notes , Proceedings of

the 8th European software engineering conference held jointly with 9th ACM

SIGSOFT international symposium on Foundations of software engineering,

March 1984.

[53] D.L. Parnas, On the criteria to be used in decomposing system into modules.,

Communications of the ACM 15 (1972), no. 12, 1053–1058.

[54] , A technique for software module specification with examples., Com-

munications of the ACM 15 (1972), no. 5, 330 – 336.

[55] Ken Qian Pu, Modeling and control of discrete-event systems with hierarchical

abstraction, Master’s thesis, Dept. of Electrical and Computer Engineering,

University of Toronto, Toronto, Ont, 2000.

[56] Robin G. Qiu and Sanjay B. Joshi, A structured adaptive supervisory control

methodology for modeling the control of a discrete event manufacturing system,

IEEE Trans. Systems, Man, and Cybernetics, Part A 29 (1999), no. 6, 573–

586.

208

Master’s Thesis - P. Dai McMaster - Computing and Software

[57] M. Queiroz and J. Cury, Modular supervisory control of large scale discrete

event systems, Proceedings of WODES 2000 (Ghent, Belgium), Aug. 2000,

pp. 103–110.

[58] M.H. de Queiroz and J.E.R. Cury, Modular supervisory control of large scale

discrete event systems, Proceedings of WODES 2000 (Ghent, Belgium), Aug

2000, pp. 103–110.

[59] P. Ramadge and W. Wonham, Supervisory control of a class of discrete-event

processes, SIAM J. Control Optim 25 (1987), no. 1, 206–230.

[60] P.J. Ramadge, Control and supervision of discrete event processes, Ph.D. the-

sis, Department of Electrical Engineering, University of Toronto, 1983.

[61] Karen Rudie, Software for the control of discrete event systems: A complexity

study, Master’s thesis, Department of Electrical and Computer Engineering,

University of Toronto, Toronto, ONT, 1988.

[62] Karen Rudie and Jan C. Willems, The computational complexity of decen-

tralized discrete-event control problems, IEEE Trans. Automatic Control 440

(1995), no. 7, 1313–1319.

[63] Karen Rudie and W.M. Wonham, Think globally, act locally: Decentralized

control, IEEE Transactions on Automatic Control (1992), 1692–1708.

[64] M.A. Shayman and R. Kumar, Process objects/masked composition: an object-

oriented approach for modeling and control of discrete-event systems, IEEE

Trans. Automatic Control 44 (1999), no. 10, 1864–1869.

[65] Gang Shen and Peter E. Caines, Hierarchically accelerated dynamic program-

ming for finite-state machines, IEEE Trans. Automatic Control 47 (2002),

no. 2, 271–283.

209

Master’s Thesis - P. Dai McMaster - Computing and Software

[66] Raoguang Song, Symbolic synthesis and verification of hierarchical interface-

based supervisory control, Master’s thesis, Department of Computing and Soft-

ware, McMaster University, Hamilton, ONT, March 2006.

[67] G. Stremersch and R.K. Boel, Decomposition of the supervisory control prob-

lem for Petri nets under preservation of maximal permissiveness, IEEE Trans.

Automatic Control 46 (2001), no. 9, 1490–1496.

[68] Kevin J. Sullivan, William G. Griswold, Yuanfang Cai, and Ben Hallen, The

structure and value of modularity in software design, Proceedings of the 7th

international conference on Software engineering, vol. 26, September 2001.

[69] C. Torrico and J. Cury, Hierarchical supervisory control of discrete-event sys-

tems based on state aggregation, Proceedings of Fifteenth Triennial World

Congress of the International Federation of Automatic Control (Barcelona,

Spain), Jul. 2002.

[70] M. Uzam, An optimal deadlock prevention policy for flexible manufacturing

systems using Petri net models with resources and the theory of regions, Int.

J. Adv. Manuf. Technol. 19 (2002), 192–208.

[71] Arash Vahidi, Bengt Lennartson, and Martin Fabian, Efficient analysis of

large discrete-event systems with binary decision diagrams, Proc. of the 44th

IEEE Conference on Decision and Control and European Control Conference

2005 (Seville, Spain), 2005, pp. 2751–2756.

[72] Bing Wang, Top-down design for RW supervisory control theory, Master’s

thesis, Department of Electrical and Computer Engineering, University of

Toronto, Toronto, ONT, 1995.

[73] Y. Willner and M. Heymann, Supervisory control of concurrent discrete-event

systems, International Journal of Control 54 (1991), no. 5, 1143–1169.

210

Master’s Thesis - P. Dai McMaster - Computing and Software

[74] K.C. Wong, Discrete-event control architecture: An algebraic approach, Ph.D.

thesis, Department of Electrical and Computer Engineering, University of

Toronto, Toronto, ONT, 1994.

[75] K.C. Wong and J.H. van Schuppen, Decentralized supervisory control of dis-

crete event systems with communication, Proc. of WODES 1996 (Edinburgh,

UK), Aug 1996, pp. 284–289.

[76] , Decentralized supervisory control of discrete event systems with com-

munication, Proceedings of WODES 1996 (Edinburgh, UK), Aug. 1996,

pp. 284–289.

[77] W. Wonham and P. Ramadge, On the supremal controllable sublanguage of a

given language, SIAM J. Control Optim 25 (1987), no. 3, 637–659.

[78] , Modular supervisory control of discrete event systems, Mathematics

of Control, Signal and Systems 1 (1988), no. 1, 13–30.

[79] W. Murray Wonham, Supervisory control of discrete-event systems, De-

partment of Electrical and Computer Engineering, University of Toronto,

July 2005, Monograph and TCT software can be downloaded at

http://www.control.toronto.edu/DES/.

[80] T. Yoo and S. Lafortune, A general architecture for decentralized supervisory

control of discrete-event systems, Proc. of WODES 2000 (Ghent, Belgium),

Aug 2000, pp. 111–118.

[81] T. Yoo and S. Lafortune, A general architecture for decentralized supervisory

control of discrete-event systems, Proceedings of WODES 2000 (Ghent, Bel-

gium), Aug. 2000, pp. 111–118.

[82] Hashtrudi Zad, R.H. Kwong, and W.M. Wonham, Supremum operators and

computation of supremal elements in system theory, Decision and Control,

211

Master’s Thesis - P. Dai McMaster - Computing and Software

1997., Proceedings of the 36th IEEE Conference on, vol. 3, Dec 1997, pp. 2946

– 2951.

[83] Z.H. Zhang, Smart TCT: an efficient algorithm for supervisory control design.,

Master’s thesis, Dept. of Electrical and Computer Engineering, University of

Toronto, Toronto, Ont, 2001.

[84] Z.H. Zhang and W. Murray Wonham, STCT: an efficient algorithm for su-

pervisory control design, Proc. of SCODES 2001 (INRIA, Paris), July 2001,

pp. 82–93.

[85] H. Zhong and W.M. Wonham, On the consistency of hiearchical supervision

in discrete-event systems, IEEE Transactions on Automatic Control (1990),

1125–1134.

[86] Meng Chu Zhou, David T. Wang, and Israel Mayk, Using Petri nets for

object-oriented design of command and control systems, International Journal

of Intelligent Control and Systems 2 (1998), no. 2, 287–300.

[87] MengChu Zhou and Frank DiCesare, Petri net synthesis for discrete event

control of manufacturing systems, Kluwer Academic Publishers, 1993.

212

