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A b s t r a c t  

Dynamic systems with a mix of continuous and discrete 

components, often called hybrid dynamic systems, fre- 
quently arise in engineering applications. Since many 

of these applications are safety critical, it is important 
to use reliable methods to simulate hybrid systems. 

This paper illustrates two approaches to rigorous simu- 
lation of hybrid dynamic systems. In the first approach, 
we use symbolic methods to compute closed-form so- 
lutions, thus avoiding round off and truncation errors. 
In the second approach, we use interval methods to 
compute rigorous bounds on the solution of a hybrid 
system. 

1 I n t r o d u c t i o n  

Hybrid dynamic systems (HDSs) are systems with a 
mix of discrete and continuous components. Depend- 
ing on the domain of application, HDSs are modeled as 
hybrid automata [2, 5, I0, 18] or dynamic systems with 

a discrete control [3, 4, 7]. The continuous components 
are normally governed by systems of initial value prob- 

lems (IVPs) of ordinary differential equations (ODEs). 
When a discrete event occurs, the system describing 
a continuous component of an HDS normally changes, 
and the execution of an HDS changes, or switches dis- 
creetly. For an overview of HDSs and their applica- 

tions, see [2]. 

Hybrid dynamic systems are used, for example, as 
models of continuous processes controlled by logic con- 

trollers or embedded systems. Since HDSs are often 
used to analyze safety-critical systems, it is important 
that HDSs are studied with reliable methods. One ap- 

proach to studying an HDS is by simulating its behav- 
ior into the future. For an overview and a comparison 
of several simulation packages, see [9]. A discussion of 

the problems arising in simulating HDSs can be found 

in [14]. 

i This work was supported in part by the Natural Sciences 
and Engineering Research Council of Canada (NSERC). 

A crucial part of a numerical simulation of an HDS 
is the reliable handling of state events, when the sys- 

tem changes from one discrete mode to another. Re- 
liable handling of state events is associated with accu- 

rate and reliable computing of switching points. That 

is, the times when the system changes between discrete 
modes. 

The current tools for numerical simulation of HDSs 
compute approximations to the solution of an HDS. 
Even if such a tool is highly reliable, the user does not 

normally have a guarantee about how accurate or re- 
liable the computed approximations are. If an HDS 
models a safety-critical process, such a guarantee may 

be needed. Furthermore, the solution to a system may 
not exist, or the solution may not be unique. In this 
case, the user should be notified. Otherwise, the sim- 
ulation may continue beyond a point where the sys- 
tem is not well defined, leading to incorrect results and 
possibly wrong conclusions about the behavior of the 

system. 

This paper illustrates two approaches to rigorous sim- 
ulation of HDSs: symbolic methods and interval meth- 
ods. Our focus is on reliable computing of switching 
points. 

Symbolic methods at tempt to compute closed-form so- 
lutions of continuous components. Then, switching 
times can be approximated to within a round off error. 
However, symbolic methods are restricted to problems 
that  have closed-form solutions. 

Interval (or validated) numerical methods for IVPs for 
ODEs have two important advantages over standard 

numerical methods: if an interval method returns suc- 
cessfully, it (I) ensures that the problem has a unique 
solution, and (2) produces bounds that contain the true 

solution. Thus, if a unique solution to a problem does 
not exist, an interval method detects this situation and 
can notify the user. Moreover, these methods are not 
restricted to problems with closed-form solutions. In 
addition, an interval method does not miss a switching 
point, while a standard (point) method may integrate 

over a switching point without noticing it. 
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i I. 

Section 2 defines the HDS tha t  is the subject  of this 
paper.  Section 3 outlines a symbolic  approach  to com- 
put ing a solution to an HDS. Section 4 briefly explains 
how interval me thods  for IVPs for ODEs  work and dis- 
cusses an interval approach  for bounding  the solution 
of an HDS. Numer ica l  exper iments  are presented in 
Section 5, and final r emarks  are given in Section 6. 

2 H y b r i d  D y n a m i c  S y s t e m s  

In the l i terature,  various definitions of hybr id  systems 
can be found [2, 3, 4, 5, 7, 10, 18]. In this paper ,  we 
employ the following definition. 

D e f i n i t i o n  2.1 ( H y b r i d  D y n a m i c  S y s t e m )  A hy- 

brid dynamic  sys tem is given by a set of ODEs 1 

y' (t) - F ( y ,  u), (1) 

where y E IR ~ is a state vector and u C It{ m is a control 

vector, an initial condit ion 

y(to) - y o ,  (2) 

and an initial value for  the control vector 

u -  so. (3) 

For a fixed u, we assume that F ( y ,  u) is Lipschitz  con- 
t inuous in y in some open 7) C_ R n, and yo C 7). 

The value for  u is de termined  by a controller 

Cu--(C~tl,Clt2,...,Cltrn) 

for  the HDS.  The i th component  ui of u is de termined 
by a piecewise constant  f unc t ion  C ~  • Nrn x ll{ n --+ ll{, 

y) - 

ci,p~ if ~i,p~ (y) 
ui otherwise, 

(4) 

where ci,j E R, j -  1, 2 , . . . , p i ,  and 

Xi,j " It{n - +  { t r u e ,  f a l s e  } 

are predicates for  which 

X ,l(y) A - l ¢ q. 

The regions in the s ta te  space defined by the charac- 
teristic predicates  ~i,j should not  be of measure  zero, 

1For expos i t iona l  convenience ,  we consider  only  a u t o n o m o u s  
sys tems.  Th i s  is not  a res t r i c t ion  of consequence ,  since a nonau-  
t o n o m o u s  s y s t e m  of O D E s  can be conver t ed  into an a u t o n o m o u s  

one. 

which means that, no matter what the value of the state 

variables, the system remains in any of the modes for 

at least some time 5 > O. 

If, for some s ta te  y, Xi,j(Y) - f a l s e  for all j = 
1 , 2 , . . .  ,Pi, then the value of ui remains unchanged. 
In this case, the behavior  of the system depends on its 
history. T h a t  is, we have hysteresis behavior.  

We refer to a par t icular  value si for u as the 'mode of 
an HDS. Since each component  of the control vector u 
can take only a finite number  of values, an HDS has 
a finite number  of modes. We denote the set of these 
modes by S. 

The  run of an HDS is a finite or infinite sequence 

- C o ( t ) ) ,  ( t ) ) ,  . . . ,  

where To - to, and ~-i for i _> 1 are switching times, or 
switching points• The functions ¢i(t) ,  i _> 0, satisfy 

¢'i(t) - F ( ¢ i ( t ) ,  si) for t e [7i,T~+l), 

-0) - y(to) if i - 0 

¢i(Ti) - ¢i-1(~-i) if i >_ 1, 

and 

where si-1 ¢ si, i _> 1. 

F o r / > _  1, if 

"ri - min C~ (si-1,  ¢i-1 (t)) - si 
t>Ti-- 1 

exists, then the sys tem switches from mode si-1 to 
si• If this min imum does not exist, the system stays 
in the mode si-1 forever. The  sequence of modes 
So, Sl, s2,. • . ,  is called the trace of an HDS. 

The  solution to an HDS corresponding to a run r [7] is 
a piecewise continuous function y•  R --+ R n such tha t  

¢ 0 ( t )  

y ( t )  - 

if T0 _< t < ~-1 

if ~-1 _< t < T2 

In this paper ,  we consider s imulat ing HDSs in finite 
time. We do not consider discrete changes (resetting) 
of the s ta te  variables. However, the methods  described 
here can be extended to handle this case. 

3 S y m b o l i c  S i m u l a t i o n  

In this section, we assume tha t  an explicit solution can 
be obta ined for each of the IVPs tha t  arise. 

To perform a symbolic s imulat ion of an HDS, we solve 
two problems" (1) compute  explicit solutions of IVPs 
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and (2) determine switching points by solving symbol- 
ically sets of equations. 

Consider 

¢ ; ( t )  - F ( ¢ o ,  ~o), ¢o(~o)  - yo. 

First, we compute an explicit form for Co(t). Then, we 
determine, by solving the set of equations 

{ Xi,j(¢o(t)) - true l i - 1 , . . . , m ,  j - 1 , . . . , p i  },  

the smallest 7~ > to such tha t  at least one of the pred- 
icates in this set is true. 

If T1 > to can be computed,  the system changes to a 
new mode Sl = C~(so, ¢0(T1)). Otherwise, we cannot 
continue our simulation beyond ~-1. If we have deter- 
mined ~-1 and el, we apply the same steps to the prob- 
lem 

¢'1(t) - F ( ¢ ~ , ~ ) ,  ¢~(*~) - ¢0(*~) ,  

and so on. 

Part  of the numerical results in this paper are produced 
using this approach implemented in Maple; for a more 
detailed discussion, see [23]. 

4 S i m u l a t i o n  w i t h  I n t e r v a l  M e t h o d s  

If we use an approximate  (point) numerical method 
with event location facilities, for example a Runge- 
Kut t a  [6] or a multi-step method [22], to simulate an 
HDS, we compute approximations to its solution, as- 
suming that  it exists. Although such approximations 
are generally reliable, the user does not have a guaran- 
tee about the accuracy of the computed results. More- 
over, if the system is not well defined in the sense that  
it does not have a solution or has more then one solu- 
tion, an approximate method may not be able to notify 
the user and may produce misleading results. 

In contrast to point numerical methods for IVPs, inter- 
val methods verify first tha t  a unique solution to the 
problem exists and then produce bounds that  contain 
the mathematical ly  correct result. Such bounds can be 
used to prove properties of a system or to give the user 
an indication about  the reliability of the computed re- 
sults. Furthermore,  if an HDS is not well defined at 
some point, an interval method stops with a message 
that  the integration cannot continue. 

We introduce in §4.1 some of the notat ion that  we use 
later. In §4.2, we give a brief overview of how interval 
methods for IVPs for ODEs work. Since these meth- 
ods have been discussed in detail in several works, for 
example in [11, 15, 20], we do not present details here 
and refer the reader to those works. In §4.3, we de- 
scribe how we enclose a switching point and the solu- 
tion of an HDS to the right of a switching point. In 

§4.4, we summarize the main features of the VNODE 

(Validated Numerical ODE) solver [15], which we have 
used to produce some of the numerical results in this 
paper. 

4.1 N o t a t i o n  
An interval [ a ] -  [_a, g] is the set of real numbers 

[ ~ ] -  [ _ ~ , ~ ] -  { • 1 _~ _< ~ _< ~, _~, ~ R } .  

If In] and [b] are intervals and o C { + , - , . , / ) ,  then the 
interval-arithmetic operations [13] are defined by 

[~] o [b] - { • o y l ~  e [~], y e [b] }, (5) 

where 0 ~ [b] when o - / .  

One of the strengths of interval arithmetic when im- 
plemented on a computer is in computing rigorous en- 
closures of real operations by including rounding errors 
in the computed bounds. Such errors can be easily in- 
cluded by rounding the real intervals in (5) outwards. 
In this paper, we do not discuss properties of interval 
arithmetic and refer the reader to [1] and [13]. 

An interval vector is a vector with each component an 
interval. Let X" I~n -+ { true, false } be a predicate. 

We extend this predicate to interval vectors as follows" 

I 
true 

~([a])  - f ~ s e  

undetermined 

i f x ( a ) - t r u e ,  VaE In] 

if x(a) - f a l s e ,  Va E In] 

otherwise. 

Let si C S. Then, for an interval vector [a], if none 
of the predicates associated with C~ in (4) is undeter- 
mined, C~(si, [a]) = C~(si,a) for all a C [a]. That  is, 
we can compute a mode for all a C In]. 

If at least one of these predicates is undetermined, then 
we cannot determine a mode from si and [a]. In this 
case, we set U = C~(si, [a]), where U c R n and U ~ S. 
This U is not part  of the definition of an HDS. We shall 
use U in our method for detecting switching points and 
enclosing the solution past a switching point. 

4.2 Interva l  M e t h o d s  for I V P s  
Consider the set of autonomous IVPs 

y' (t) - f (y) (6) 

y(to)  e [yo], (7) 

where t C [to, tm] for some tm > to. Here to and t,~ C IR, 
f C Ck-1(77), k >_ 2 (k is the order of the truncation 
error of the method),  Z) C_ It{ n is open, f "  7? -~ IR ~, 
and [y0] C_ ~D. The condition (7) permits the initial 
value y(to) to be in an interval, rather than specifying 
a particular value. We assume that  the representation 
of f contains a finite number of constants, variables, 
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elementary operations, and s tandard functions. Since 
we assume f E ck-1(79),  we exclude functions that  
contain, for example, branches, abs, or rain. For ex- 
positional convenience, we consider only autonomous 
systems. This is not a restriction of consequence, since 
a nonautonomous system of ODEs can be converted 
into an autonomous one. 

We consider a grid to < t~ < . . .  < t,~ and denote the 
stepsize from tj-1 to tj by hj-1 = t j -  t j-1.  We denote 
the solution of (6) with an initial condition y(t j -1)  = 
yj_~ at ty-1 by y(t; t j - l , y j - 1 ) .  For an interval, or an 
interval vector [yy_l], let 

y ( t ; t j _ l , [ y y - 1 ] ) -  { y ( t ; t j - l , y j - 1 )  l yj-1 c [yj-1] }. 

Validated methods compute interval vectors [yj] tha t  
contain the solution of (6-7) at tj, j - 1 , 2 , . . . , m .  
That  is, 

y(tj;to,[Yo]) C_[yj], for j - l , 2 , . . . , m .  

Usually, these are one-step methods,  where each step 
consists of two phases, Algorithm I and Algorithm II 
[15, 16]. 

Algorithm I computes a stepsize hj-1 and an a priori 
enclosure [gj] such that  (6) with y( t j -1)  - y j - 1  has a 
unique solution y(t; t j -1,  Yj-1) tha t  satisfies 

y(t; t _l, yj-1) e 

for all t C [tj-1, tj] and all Yj-1 E [Yj-1]. 

Algorithm II uses [~j] to bound the t runcat ion error of 
the method and computes a tight enclosure [yj] C_ [~j] 
on the solution at tj, such tha t  

y(tj; to,  [Yo]) C_ [yj]. 

The algorithm to validate the existence of a unique so- 
lution typically uses the Picard-LindelSf operator  and 
the Banach fixed-point theorem [12, 17]. The compu- 
tat ion of a tight enclosure is usually based on Taylor 
series plus a remainder term, the mean-value theorem, 
and various interval t ransformations [12, 13, 15]. Re- 
cently, the Taylor series approach was generalized to 
the interval Hermite-Obreschkoff method [15], which is 
shown to be superior to interval Taylor series methods. 

4.3 Enclos ing the Solut ion  of an H D S  
Our goal is to compute bounds on the solution of an 
HDS. In this section, we describe how to compute such 
bounds when an HDS is in the initial mode, and if the 
system switches to mode s l, how to locate and enclose 
the time when it switches. Then, we are interested in 
enclosing the solution of the HDS after it has switched 
to mode s l. Once we have bounds on the solution when 
the system is in s l, we can apply the same approach to 
enclose the solution as the system evolves. 

Since we use interval methods, we assume that,  for any 
si E S, F(y,  si) C Ck-~(79). We also assume that  
the initial condition of the HDS is given by an interval 
[Yo] C_ 79. Thus, we can have a set of solutions to (1-3), 
where each solution corresponds to some yo E [y0]. 

Detec t ing  and Enclos ing Switching Points  
Consider the problem 

y ' ( t ) -  y ( t o ) -  yo e [yo] (s) 

Suppose that  we have computed at tj_~ > to an enclo- 
sure [yj-1] of the solution of (8) such that  

;to, [y0]) c_ 

and Cu(so, [yj-1]) - so. 

Let [~j] be such that  y(t; t j_l ,  Yj--1) ~ [Yj] for all yj-1 C 
[yj-1] and all t C [tj-1]. If C~(so, [gy]) - so, then 

- 

for all Yj-1 C [Yj-1] and all t C [tj_l,tj]. Thus, we 
can guarantee that,  for any Y0 C [Yo], the HDS given in 
(1-3) does not have a switching point in [tj_~, tjl. 

However, if Cu(so,[yj]) - U, then there may be a 
switching point in [tj-1, tj] for some yo C [y0]. In this 
case, we try to determine 

< hj_ as possible, 1. as small a stepsize 0 < hj_ 1 _ 1 
such that  C~(so, [ y j ] ) -  sl, where 

! ! y(t}; to, [yo]) c_ E] ,  tj - tj_  + 

o r  

! 
2. as large a stepsize 0 < hj_ 1 < hj_l as possible, such 
that  Cu(so, [ ~ . ] ) -  so, where 

y(t; tj_ , yj_  ) e [9}l, 

! ! 
for all yj-1 E [yj-1] and all t C [tj_l , t j l ,  ty - tj-1 + 

! 
hj_l . 

Consider first 1. If Cu(so, [y~.]) - sl,  then for any y0 C 
/ 

[yo], there exists a switching point 7-1 C [tj-1, tjl. The 
interval [tj_l,t}] encloses the switching points for all 
Yo C [Yo]. We also guarantee that  

y(t; to, [yo]) c_ y(t; tj_, ,  [yj_,]) c_ [9}], 

I for all t E [tj-1, tj]. 

If we have reached a prescribed value for the minimum 

stepsize allowed, and Cu(so, [y~]) - U or Cu(so, [y}]) - 
so and Cu(so, [~}]) - U, then we do not continue the 

The reason is that  we do not know solution beyond tj. 
with certainty if, for any y0 C [yo], there is a switching 
point in [tj-1, t~j]. 
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In 2., if C~(so, [~}]) - so, we continue the integration 
i. In this case, we can guar- with F(y, so) and [Y~I at tj 

antee that ,  for any Y0 E [Yo], there is no switching point 
in [tj-1, t}]. 

Enclos ing the So lut ion  Past  Switching  Points  
We assume that  C~(so, [yj-1]) - so and C~(so, [y].]) - 
Sl. We use the two-step approach described in [19] to 
compute [yj] such tha t  the solution to 

y'(t) - r ( y ,  y( l) e 

~ Thus, we for all ~-1 E [tj_~, tj], is contained in [yj] at tj. 
"extend" the solution to the right of a switching point 
with F(y, sl ). 

If C~(so, [yj]) = 81, we continue the integration with 

y'(t) - r ( y ,  y(t ) e [yj]. 

Otherwise, we do not continue the integration beyond 
/ and notify the user tha t  our solver cannot continue. tj 

One reason for C~(so, [yj]) = s~ not to hold is that  
a (classical) unique solution may not exist beyond a 
switching point. In §5.3, we il lustrate this situation. 

4.4 T h e  V N O D E  S o l v e r  
The VNODE package is an object-oriented C + +  pack- 
age for computing bounds tha t  contain the true solu- 
tion of an IVP for an ODE. Currently, the methods 
in VNODE are based on Taylor series [12, 15] and the 
Hermite-Obreschkoff scheme [15]. On each integration 
step, VNODE carries out the two-algori thm approach 
outlined in §4.2. The user can supply a constant value 
for the stepsize, or specify a variable stepsize control, 
where the stepsize is controlled such tha t  the local error 
per unit step is within a user-specified tolerance [15]. 

The numerical results in the next section are produced 
with a high-order method for validating existence and 
uniqueness of the solution [17] of order 17, an interval 
Hermite-Obreschkoff method of the same order, vari- 
able stepsize control, and the event location scheme 
described in §4.3. 

5 N u m e r i c a l  E x p e r i m e n t s  

We present three examples. For each of them, we use 
Maple to compute symbolically switching points and 
then VNODE to compute numerically bounds on the 
switching points. In the last example, we consider a 
problem for which a classical solution does not exist 
beyond a switching point. 

5.1 Water-Leve l  Control  
The water-level controller is often used as an example 
in the l i terature on hybrid systems [5, 7, 10, 23]. Here, 
we consider the following simplified model. 

We have a reservoir that has an in-flow valve and an 

out-flow valve. The out-flow valve is always open, and 

the in-flow valve can be open, closed, opening, or clos- 

ing. We assume that initially the water level is between 

w_ and @, where w and @ are constants, w_ < @, and 

the in-flow valve is open. 

Our water-level controller is described by 

! 

Y[ - Y2, Y2 - 0.5u, (9) 

where yl is the water level, y2 is the flow rate, and 

- 1  if yl > ~  

C ~ ( u , y ) -  1 if yl <_w 

0 otherwise. 

For our simulation, we have chosen w - 3, @ - 7, 
y ( 0 ) -  (5, 1) T, and so - 0 .  

We integrated this water-level controller for t C [0, 35] 
using Maple and VNODE. In the first column of Ta- 
ble 1, we show the exact values for the first five switch- 

Switching Points 
Exact  Enclosure 

2 
6 
10 
14 
18 

1.9999999999999[9, 11] 
5.999999999999[96,111] 
9.999999999999[68,126] 

13.99999999999{911, 1140] 
17.99999999999{558, 1469] 

T a b l e  1" The first five switching points of the water-level 
controller. 

ing points. We have computed these values symboli- 
cally with Maple. In the second column, we show the 
enclosures of these points as computed by VNODE. 
The notation 3.9999999999999[9, 11] in the first line in 
this table specifies the interval 

1.9999999999999[9, 11] 

= [1.99999999999999, 2.00000000000001], 

which contains the mathemat ical ly  correct value 2. The 
rest of the enclosures in this table can be interpreted 
in a similar manner.  

In Figure 1, we plot the bounds produced by VNODE 
for yl (t) versus the t ime t. The dashed lines denote the 
a priori bounds on the solution in each of the integra- 
tion intervals. The solid lines connect the tight bounds 
of the solution between integration points. When plot- 
ted, these bounds cannot be distinguished since their 
widths are very small. For example, at t -  35, 

yl(t) E 7.74999999[831040, 1193196] 

= [7.74999999831040, 7.75000000193196]. 
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F i g u r e  1" Plot of the bounds on the water level, yl(t), 
versus t. 

On each step, the  stepsize control ler  in our solver ac- 
cepts a stepsize such t h a t  a to lerance  requ i rement  is 
satisfied. However,  when  the  solut ion is close to a 
switching point ,  the  stepsize is reduced  such tha t  the  
t rue  value for the  switching point  is enclosed as accu- 
rately as possible. This  reduc t ion  of the  stepsize a round  
a switching point  can be seen from Figure  1, where  the  
a priori bounds  are t igh ter  and  t ighter ,  as the  solut ion 
is closer and  closer to a switching point .  

These a priori bounds can be used to guarantee that the 
true solution is within certain bounds. For example, 

our method guarantees that, for all t E [0, 35], 

yz (t) E [1.67187499978418, 8.32812500001357]. 

As can be seen from Figure  1, if we take smaller  step- 
sizes when Yl (t) is close to 2 and 8, the  a priori bounds  
on y~ (t) can be m a d e  t ighter .  W i t h  an upper  limit of 
0.1 on the stepsize, we ob ta ined  tha t  

Yl (t) E [ 1 . 9 9 7 4 9 9 9 9 9 6 5 5 1 8 ,  8 . 0 0 2 5 0 0 0 0 0 0 2 1 5 4 ] ,  

for all t E [0, 35]. Therefore ,  the  water  level is within 
these bounds  for all t C [0, 35]. 

5.2 A M o d e l  o f  a C h e m i c a l  R e a c t o r  
We consider a simplified model  of a chemical  reactor  
[21]. The  s ta te  variables are the  fluid level in the  re- 
actor,  yz, and  the t e m p e r a t u r e  in the  reactor ,  y2. The  
mode  is de t e rmined  by the  vector  

U - -  (Ui,  Ud ,  %b, Uh,  Uc, Ur)  T ,  

where each c o m p o n e n t  encodes  a control  signal: 

Signal I n t e rp r e t a t i on  

ui inflow valve signal 
I td dra in ing  valve signal 
Ub blender  signal 
~th hea te r  signal 
Uc cooler signal 
l t r  reac tor  signal 

Each of these signals can be 0 or 1. For more details, 
see [21]. 

The  dynamics  of this reactor  is specified by 

y' - A(u)y  + b(u), 

where 

--ahUd 
A(u) - 0 

and 

b(u)- ( bheatU 

o ) 
- - ( a T l ( 1 - - ~ t b )  - ~ - a T 2 U b )  

bh ui ) 
h + bcoolUc + breac~tr " 

(10) 

(11) 

(12) 

We use the following cons tants  in (11-12)" ah -- 1.13 x 
10 .3  aT -- 0 1 5  X 10 .3  aT2 -- 0 2 2  × 10 .3  bh -- 

, I " ' " ' 

9.938 x 10 -3, b h e a t  - -  29.43 × 10 -3, b c o o l  - -44 .15  x 
10 -3,  brec - 44.15 x 10 -3. 

The  initial condit ion is y(0) - (0,0) 7, and the ini- 
tial mode  is so - (1, 0, 0, 1, 0, 0) T The  values for the 
componen t s  of the control  vector  u are de te rmined  as 
follows: 

• ui is set to 0 when 25yl + y2 - 300 and is set to 1 
when 25yl + y2 - 250; 

• Ud - -  0 when Y2 < 50 and Itd - -  1 otherwise; 
• Ub -- 0 when Yl < 3 and ~ b  - -  1 otherwise; 
• ~ h  - -  1 when y2 < 50 and ~ h  - -  0 otherwise; 
• Uc is set to 0 when y2 - 110 and is set to 1 when 

Y2 - 130; and 
• l tr  - -  0 when Y2 < 50 and Ur - 1 otherwise.  

We in tegra ted  the above problem for t E [0, 1200]. 
There  are 29 switching points  in this interval. S tar t ing 
from the initial mode,  the execut ion of this system goes 
t h rough  six other  modes.  

Here are f loat ing-point  approx imat ions  to the symbol- 
ically compu ted  (with Maple) switching points" 

Switching Points  

1 301.87160394445562487 
2 1092.1766084799351739 
3 2124.1454957215599882 

• 

. 

28 11464.510543006407988 
29 11714.526388901017066 

In the second column of Table 2, we have shown the en- 
closures of these switching points.  In the third column, 
we have included the cor responding  widths of these en- 
closures. Each of these widths can be in terpre ted  as the 
error, or uncer ta inty,  in enclosing a switching point. 

The  values for the  switching t imes computed  by Maple 
are conta ined in the  cor responding  intervals computed  
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Switching Points 
Enclosure Error 

1 

2 
3 

28 

29 

301.87160394445147,70] 
1092.1766084799128,47] 
2124.1454957215120,93] 

11464.[48486940166,56299440167] 
11714.[49460713296,65085713297] 

2 x 10 - 1 2  

2 x 10 - 1 1  

8 X 10 -11 

8 x  10 -2 
2 x 10 -1 

T a b l e  2" Enclosures on the switching points of the chem- 
ical reactor problem for t E [0, 1200]. 

by VNODE. From Table 2, the widths of the enclosing 
intervals grow as the integration proceeds. One rea- 
son for this growth is that,  in an interval enclosing a 
switching point, we enclose the solution in two modes. 

Although it is generally difficult to obtain tight bounds 
for the switching times for large values of t with our 
approach, we guarantee that  a switching point is not 
missed, and we produce bounds on both the switching 
points and the solution• 

In Figure 2, we plot the temperature,  y2, versus the 
fluid level, yl. The "corners" in this plot correspond to 
the switches in the system. 
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F i g u r e  2" Phase portrait of the chemical reactor model. 

5.3 A P r o b l e m  w i t h o u t  a C l a s s i c a l  S o l u t i o n  
The problem 

Y'I - Y2 

Y2 --  - - 0 . 2  Y2 -- Yl + 2 cos (Tr t )  -- 4 
- 4  

y(0) - (3, 4) T 

i f  y2 :> 0 (13) 
if y2 < 0 

is considered in [8] as an example for which a classical 
solution does not exist beyond a point t ~ 2.0352. In 

[8], 0.5628 and 2.0352 are given as approximations for 
the switching points. 

With Maple, we computed 0.56280532524534910455 as 
an approximation to the first switching point. How- 
ever, Maple could not compute an approximation to 
the second switching point, since this package could 
not determine a real root of y2(t) = O. 

With VNODE, we computed the following enclosures 
on the switching points: 

0.5628053252453[4,7] and 2.035200434043[25,55]. 

After the second switching point, our solver could not 
continue since it could not determine an enclosure [y2,j] 
for y2 such that y2,j > 0, for all y2,j c [y2,j]. 

In Figure 3, we have plotted the bounds on y2(t) versus 
t for t C [0, 2.03520043404325]. 
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3 
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0 

-1 

-2 
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' i I I I 

- L . . . . . . .  a 

, 
. . . . . . . . .  

I I I I 

0.5 1 1.5 2 2.5 

F i g u r e  3" Plot of the bounds on y2(t) of (13) versus t. 

A standard (point) solver may continue the integration 
past the second switching point. In this situation, the 
user may not have information that a solution to the 
problem does not exist. When simulating systems for 
which the reliability of the results is important, such 
information may be desirable. 

6 C o n c l u d i n g  R e m a r k s  

Symbolic methods are suitable for studying HDSs when 
closed-form solutions of continuous components can be 
computed. 

Interval methods ensure that a unique solution to 

an HDS exists and compute bounds that contain the 

true solution. Hence, these methods guarantee that a 

switching point is not missed and that the system does 

not enter a "wrong" mode. Furthermore, if a unique 

solution does not exist, an interval method notifies the 

user. 

Since our method encloses roundoff and truncation er- 
rors on each step and propagates such errors from pre- 
vious steps, these errors may accumulate over long in- 
tegration intervals. As a result, the computed bounds 
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may become too wide. In this case, our method nor- 
mally stops with a message that the integration cannot 
proceed. Thus, the proposed interval approach per- 
forms well when the computed bounds on the solution 
of an HDS remain sufficiently small. 
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