
CAS708/CSE700 14W.1

Assignment 1

Due. January 29, Wednesday, 9:00.

1. What is the number of positive normal floating-point numbers in a floating-point system with
base β, precision t, maximal exponent emax, and minimal exponent emin?

2. Assuming a small floating-point system, where β = 2, t = 3, emin = −2, and emax = 3.

(a) List the floating-point numbers x ∈ [1, 3/2).
(b) List the floating-point numbers x ∈ [3/2, 2).
(c) List the floating-point numbers y ∈ (1/2, 2/3].
(d) List the floating-point numbers y ∈ (2/3, 1].
(e) Find two different floating-point numbers x1 and x2 for which the computed reciprocals

fl(1/x1) and fl(1/x2) are the same, assuming the nearest rounding.
(f) Does it follow that there exist floating-point numbers x for which

fl(1/(1/x))

is not exactly x, assuming the nearest rounding?

3. What is the number of double precision floating-point numbers lying in the interval [103, 210)?
What is the number of 15 decimal digit floating-point numbers lying in the same interval?
Does it follow that there must exist two distinct double precision numbers x1 and x2 which
are converted into a same 15 decimal digit floating-point number?
Does it follow that a 15 decimal digit floating-point number can be uniquely converted back
to the original double precision floating-point number?
If your answer is no, how many decimal digits are necessary for unique conversion?

4. In 250 B.C.E. the Greek mathematician Archimedes estimated the number π as follows. He
looked at a circle with diameter 1, and hence circumference π. Inside the circle he inscribed
a square. The perimeter of the square is smaller than the circumference of the circle, and
so it is a lower bound for π. Archimedes then considered an inscribed octagon, 16-gon, etc.,
each time doubling the number of sides of the inscribed polygon, and producing ever better
estimates for π. Using 96-sided inscribed and circumscribed polygons, he was able to show
that 223/71 < π < 22/7. There is a recursive formula for these estimates. Let pn be the
perimeter of the inscribed polygon with 2n sides. Then p2 = 2

√
2. In general,

pn+1 = 2n

√
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√
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Compute pn for n = 3, 4, ..., 60. Try to explain your results.

Kahan suggested a revision:
pn+1 = 2n√rn+1

where rn+1 can be computed iteratively

rn+1 =
rn
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√

4− rn
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2
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√
2
.

Use this revision to calculate rn and pn for n = 3, 4, ..., 60. Try to explain your results.


