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Representing floating-point numbers

On paper we write a floating-point number in the format:

±d1.d2 · · · dt × βe

0 < d1 < β, 0 ≤ di < β (i > 1)

t : precision

β: base (or radix), almost universally 2, other
commonly used bases are 10 and 16

e: exponent, integer
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Examples

1.00× 10−1

t = 3 (trailing zeros count), β = 10, e = −1

1.234× 102

t = 4, β = 10, e = 2

1.10011× 2−4

t = 6, β = 2 (binary), e = −4
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Characteristics

A floating-point number system is characterized by four
(integer) parameters:

base β (also called radix)

precision t

exponent range emin ≤ e ≤ emax
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Some properties

A floating-point number system is

discrete (not continuous)

not equally spaced throughout

finite

Example. The 33 points in a small system: β = 2, t = 3,
emin = −1, and emax = 2. (Negative part not shown.)

0 1 2 4 8

In general, how many numbers in a system: β, t , emin, emax?



Floating-point Numbers Sources of Errors Stability of an Algorithm Sensitivity of a Problem Fallacies Summary

Storage

In memory, a floating-point number is stored in three
consecutive fields:

s e f

sign (1 bit)
exponent (depends on the range)
fraction (depends on the precision)
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Standards

In order for a memory representation to be useful, there must
be a standard.

IEEE floating-point standards:

single precision

s e f

31 30 22 0

double precision

s e f

63 62 51 0
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Machine precision

A real number representing the accuracy.

Machine precision

Denoted by ǫM , defined as the distance between 1.0 and the
next larger floating-point number, which is 0.0...01× β0.

Thus, ǫM = β1−t .

Equivalently, the distance between two consecutive
floating-point numbers between 1.0 and β. (The floating-point
numbers between 1.0(= β0) and β are equally spaced:
1.0...000, 1.0...001, 1.0...010, ..., 1.1...111.)
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Machine precision (cont.)

How would you compute the underlying machine precision?

The smallest ǫ such that 1.0 + ǫ > 1.0.

For β = 2:

eps = 1.0;
while (1.0 + eps > 1.0)

eps = eps/2;
end
2* eps,

Examples. (β = 2)

When t = 24, ǫM = 2−23 ≈ 1.2× 10−7

When t = 53, ǫM = 2−52 ≈ 2.2× 10−16
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Approximations of real numbers

Since floating-point numbers are discrete, a real number, for
example,

√
2, may not be representable in floating-point. Thus

real numbers are approximated by floating-point numbers.

We denote
fl(x) ≈ x .

as a floating-point approximation of a real number x .



Floating-point Numbers Sources of Errors Stability of an Algorithm Sensitivity of a Problem Fallacies Summary

Approximations of real numbers (cont.)

Example

The floating-point number 1.10011001100110011001101× 2−4

can be used to approximate 1.0× 10−1. The best single
precision approximation of decimal 0.1.

1.0× 10−1 is not representable in binary. (Try to convert
decimal 0.1 into binary.)

When approximating, some kind of rounding is involved.
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Error measurements: ulp and u

If the nearest rounding is applied and fl(x) = d1.d2...dt × βe,
then the absolute error is bounded by

|fl(x)− x | ≤ 1
2

β1−tβe,

half of the unit in the last place (ulp);

the relative error is bounded by

|fl(x)− x |
|fl(x)| ≤ 1

2
β1−t , since |fl(x)| ≥ 1.0× βe,

called the unit of roundoff denoted by u.
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Unit of roundoff u

When β = 2, u = 2−t .
How would you compute u?

The largest number such that 1.0 + u = 1.0.
Also, when β = 2, the distance between two consecutive
floating-point numbers between 1/2(= β−1) and 1.0(= β0)
(1.0...0× 2−1, ..., 1.1...1 × 2−1, 1.0.)
1.0 + 2−t = 1.0 (Why?)

u = 1.0;
while (1.0 + u > 1.0)

u = u/2;
end
u,
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Four parameters

Base β = 2.

single double
precision t 24 53

emin −126 −1022
emax 127 1023

Formats:

single double
Exponent width 8 bits 11 bits

Format width in bits 32 bits 64 bits
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x 6= y ⇒ 1/x 6= 1/y?

How many single precision floating-point numbers in [1, 2)?

1.00...00→ 1.11...11

223, evenly spaced.

How many single precision floating-point numbers in (1/2, 1]?

1.00...01× 2−1 → 1.00...00

223, evenly spaced.
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x 6= y ⇒ 1/x 6= 1/y? (cont.)

How many single precision floating-point numbers in [3/2, 2)?

(1/2)× 223

How many single precision floating-point numbers in
(1/2, 2/3]?

(1/3)× 223.

Since (1/2)× 223 > (1/3)× 223, there exist x 6= y ∈ [3/2, 2)
such that 1/x = 1/y ∈ (1/2, 2/3].
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Hidden bit and biased representation

Since the base is 2 (binary), the integer bit is always 1. This bit
is not stored and called hidden bit.

The exponent is stored using the biased representation. In
single precision, the bias is 127. In double precision, the bias is
1023.

Example

Single precision 1.10011001100110011001101× 2−4 is stored
as

0 01111011 10011001100110011001101
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Special quantities

The special quantities are encoded with exponents of either
emax + 1 or emin − 1. In single precision, 11111111 in the
exponent field encodes emax + 1 and 00000000 in the
exponent field encodes emin − 1.
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Signed zeros

Signed zeros: ±0

Binary representation:
X 00000000 00000000000000000000000

When testing for equal, +0 = −0, so the simple test if (x
== 0) is predictable whether x is +0 or −0.

The relation 1/(1/x) = x holds when x = ±∞.

log(+0) = −∞ and log(−0) = NaN; sign(+0) = 1 and
sign(−0) = −1.
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Signed zeros

If z = −1,
√

1/z = i , but 1/
√

z = −i .√
1/z 6= 1/

√
z!

Why? Square root is multivalued, can’t make it continuous in
the entire complex plane. However, it is continuous for
z = cos θ + i sin θ, −π ≤ θ ≤ π, if a branch cut consisting of all
negative real numbers is excluded from the consideration.
With signed zeros, for the numbers with negative real part,
−x + i(+0), x > 0, has a square root of i

√
x ; −x + i(−0) has a

square root of −i
√

x .

z = −1 = −1 + i(+0), 1/z = −1 + i(−0), then√
1/z = −i = 1/

√
z

However, +0 = −0, and 1/(+0) 6= 1/(−0). (Shortcoming)
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Infinities

Infinities: ±∞
Binary Representation:
X 11111111 00000000000000000000000

Provide a way to continue when exponent gets too large,
x2 =∞, when x2 overflows.

When c 6= 0, c/0 = ±∞.

Avoid special case checking, 1/(x + 1/x), a better formula
for x/(x2 + 1), with infinities, there is no need for checking
the special case x = 0.
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NaN

NaNs (not a number)

Binary representation:
X 11111111 nonzero fraction

Provide a way to continue in situations like

Operation NaN Produced By

+ ∞+ (−∞)

∗ 0 ∗ ∞
/ 0/0,∞/∞

REM x REM 0,∞ REM y
sqrt sqrt(x) when x < 0
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Example for NaN

The function zero(f) returns a zero of a given quadratic
polynomial f .

If
f = x2 + x + 1,

d = 1− 4 < 0, thus
√

d = NaN and

−b ±
√

d
2a

= NaN,

no zeros.
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Denormalized numbers

Denormalized Numbers

The small system: β = 2, t = 3, emin = −1, emax = 2

Without denormalized numbers (negative part not shown)

0 1 2 4 8

With (six) denormalized numbers (negative part not shown)

0.01× 2−1, 0.10× 2−1, 0.11× 2−1

0 1 2 4 8
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Denormalized numbers

Binary representation:
X 00000000 nonzero fraction

When e = emin − 1 and the bits in the fraction are b2, b3, ..., bt ,
the number being represented is 0.b2b3...bt × 2e+1 (no hidden
bit)

Guarantee the relation: x = y ⇐⇒ x − y = 0

Allow gradual underflow. Without denormals, the spacing
abruptly changes from β−t+1βemin to βemin , which is a factor
of βt−1.
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Example for denormalized numbers

Complex division

a + ib
c + id

=
ac + bd
c2 + d2 + i

bc − ad
c2 + d2 .

Underflows when a, b, c, and d are small.
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Example for denormalized numbers

Smith’s formula

a+b(d/c)
c+d(d/c) + i b−a(d/c)

c+d(d/c) if |d | < |c|

b+a(c/d)
d+c(c/d) + i −a+b(c/d)

d+c(c/d) if |d | ≥ |c|

For a = 2βemin , b = βemin , c = 4βemin , and d = 2βemin , the result
is 0.5 with denormals (a + b(d/c) = 2.5βemin) or 0.4 without
denormals (a + b(d/c) = 2βemin ).

It is typical for denormalized numbers to guarantee error
bounds for arguments all the way down to βemin .
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IEEE floating-point representations

Exponent Fraction Represents
e = emin − 1 f = 0 ±0
e = emin − 1 f 6= 0 0.f × 2emin

emin ≤ e ≤ emax 1.f × 2e

e = emax + 1 f = 0 ±∞
e = emax + 1 f 6= 0 NaN
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Examples (IEEE single precision)

1 10000001 11100000000000000000000
represents: −1.1112 × 2129−127 = −7.510

0 00000000 11000000000000000000000
represents: 0.112 × 2−126

0 11111111 00100000000000000000000
represents: NaN

1 11111111 00000000000000000000000
represents: −∞.
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Underflow

An arithmetic operation produces a number with an exponent
that is too small to be represented in the system.

Example.
In single precision,

a = 3.0× 10−30,

a ∗ a underflows.
By default, it is set to zero.
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Overflow

An arithmetic operation produces a number with an exponent
that is too large to be represented in the system.

Example.
In single precision,

a = 3.0× 1030,

a ∗ a overflows.
In IEEE standard, the default result is∞.
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Avoiding unnecessary underflow and overflow

Sometimes, underflow and overflow can be avoided by using a
technique called scaling.
Given x = (a, b)T , a = 1.0× 1030, b = 1.0, compute
c = ‖x‖2 =

√
a2 + b2.

scaling: s = max{|a|, |b|} = 1.0× 1030

a← a/s (1.0),
b ← b/s (1.0× 10−30)
t =
√

a ∗ a + b ∗ b (1.0)
c ← t ∗ s (1.0× 1030)
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Example: Computing 2-norm of a vector

Compute √
x2

1 + x2
2 + ... + x2

n

Efficient and robust:

Avoid multiple loops:
searching for the largest; Scaling; Summing.

Result: One single loop

Technique: Dynamic scaling
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Example: Computing 2-norm of a vector

scale = 0.0;
ssq = 1.0;
for i=1 to n

if (x(i) != 0.0)
if (scale<abs(x(i))

tmp = scale/x(i);
ssq = 1.0 + ssq * tmp* tmp;
scale = abs(x(i));

else
tmp = x(i)/scale;
ssq = ssq + tmp * tmp;

end
end

end
nrm2 = scale * sqrt(ssq);
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Correctly rounded operations

Correctly rounded means that the result of the floating-point
operation must be the same as if it were computed exactly and
then rounded, usually to the nearest floating-point number.

For example, if ⊕ denotes the floating-point addition, then given
two
floating-point numbers a and b,

a⊕ b = fl(a + b).
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Correctly rounded operations

Examples

β = 10, t = 4

a = 1.234× 100 and b = 5.678× 10−3

Exact: a + b = 1.239678 Floating-point: fl(a + b) = 1.240× 100

a = 4.563× 10−3 and b = 5.678× 10−3

Exact: a + b = 10.241× 10−3 Floating-point:
fl(a + b) = 1.024× 10−2

a = 1.234× 100 and b = −1.221× 100

Exact: a + b = 0.012 Floating-point: fl(a + b) = 1.200× 10−2

(exact)
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Correctly rounded operations

IEEE standards require the following operations are correctly
rounded:

arithmetic operations +, −, ∗, and /

square root and remainder

conversions of formats (binary, decimal)
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Rounding error

Due to finite precision arithmetic, a computed result must be
rounded to fit storage format.

Example
β = 10, t = 4 (u = 0.5× 10−3)
a = 1.234× 100, b = 5.678× 10−3

x = a + b = 1.239678× 100 (exact)
x̂ = fl(a + b) = 1.240× 100

the result was rounded to the nearest computer number.

Rounding error: fl(a + b) = (a + b)(1 + ǫ), |ǫ| ≤ u.

1.240 = 1.239678(1 + 2.59...× 10−4), |2.59...× 10−4| < u
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Effect of rounding errors

Top: y = (x − 1)6

Bottom: y = x6 − 6x5 + 15x4 − 20x3 + 15x2 − 6x + 1

0.99 1 1.01
−1

−0.5

0

0.5

1
x 10

−12

0.99 1 1.01
−1

−0.5

0

0.5

1
x 10

−12

0.995 1 1.005
−1.5

−1

−0.5

0

0.5

1

1.5
x 10

−14

0.995 1 1.005

−1.5

−1

−0.5

0

0.5

1

1.5

x 10
−14

0.998 1 1.002

−6

−4

−2

0

2

4

6

x 10
−16

0.998 1 1.002
−3

−2

−1

0

1

2

3
x 10

−15

Two ways of evaluating the polynomial (x − 1)6
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Real to floating-point

double x = 0.1;

What is the value of x stored?

1.0× 10−1 = 1.100110011001100110011...× 2−4

Decimal 0.1 cannot be exactly represented in binary. It must be
rounded to

1.10011001100...110011010× 2−4

> 1.10011001100...11001100110011...

slightly larger than 0.1.
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Real to floating-point

double x, y, h;
x = 0.0;
h = 0.1;

for i=1 to 10
x = x + h;

end
y = 1.0 - x;

y > 0 or y < 0 or y = 0?

Answer: y ≈ 1.1× 10−16 > 0
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Real to floating-point (cont.)

Why?

i = 1
x = h = 1.100...110011010× 2−4 > 1.0× 10−1

i = 2
x = 1.100...110011010× 2−3 > 2.0× 10−1

i = 3
x = 1.001...10011001110× 2−2

→ 1.001...10100× 2−2 > 3.0× 10−1

i = 4
x = 1.100...11001101010× 2−2

→ 1.100...110011010× 2−2 > 4.0× 10−1
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Real to floating-point (cont.)

i = 5
x = 1.000...0000010× 2−1

→ 1.000...0000× 2−1 = 5.0× 10−1

i = 6
x = 1.001...100110011010× 2−1

→ 1.001...100110011× 2−1 < 6.0× 10−1

...

Rounding errors in floating-point addition.
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Integer to floating-point

Fallacy

Java converts an integer into its mathematically equivalent
floating-point number.

long k = 18014398509481985;
long d = k - (long)((double) k);

Note 18014398509481985 = 254 + 1

d = 0?

No, d = 1!
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Integer to floating-point

Why?

k = 1.00...0001× 254

(double ) k = 1.00...00× 254
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Truncation error

When an infinite series is approximated by a finite sum,
truncation error is introduced.
Example. If we use

1 + x +
x2

2!
+

x3

3!
+ · · ·+ xn

n!

to approximate

ex = 1 + x +
x2

2!
+

x3

3!
+ · · ·+ xn

n!
+ · · · ,

then the truncation error is

xn+1

(n + 1)!
+

xn+2

(n + 2)!
+ · · · .
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Discretization error

When a continuous problem is approximated by a discrete one,
discretization error is introduced.
Example. From the expansion

f (x + h) = f (x) + hf ′(x) +
h2

2!
f ′′(ξ),

for some ξ ∈ [x , x + h], we can use the following approximation:

yh(x) =
f (x + h)− f (x)

h
≈ f ′(x).

The discretization error is Edis = |f ′′(ξ)|h/2.
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Example

Let f (x) = ex , compute yh(1).
The discretization error is

Edis =
h
2
|f ′′(ξ)| ≤ h

2
e1+h ≈ h

2
e for small h.

The computed yh(1):

ŷh(1) =
(e(1+h)(1+ǫ1)(1 + ǫ2)− e(1 + ǫ3))(1 + ǫ4)

h
(1 + ǫ5),

|ǫi | ≤ u.
The rounding error is

Eround = ŷh(1)− yh(1) ≈ 7u
h

e.
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Example (cont.)

The total error:

Etotal = Edis + Eround≈
(

h
2

+
7u
h

)
e.

10
−10

10
−9

10
−8

10
−7

10
−6

10
−5

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 10

−5

H

T
O

T
A

L 
E

R
R

O
R

Total error in the computed yh(1).

The optimal h: hopt =
√

14u ≈ √u.
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Backward errors

Recall that

a⊕ b = fl(a + b) = (a + b)(1 + η), |η| ≤ u

In other words,
a⊕ b = ã + b̃

where ã = a(1 + η) and b̃ = b(1 + η), for |η| ≤ u, are slightly
different from a and b respectively.

The computed sum (result) is the exact sum of slightly different
a and b (inputs).
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Example

β = 10, p = 4 (u = 0.5× 10−3)
a = 1.234× 100, b = 5.678× 10−3

a⊕ b = 1.240× 100, a + b = 1.239678

1.240 = 1.239678(1 + 2.59...× 10−4), |2.59...× 10−4| < u

1.240 = a(1 + 2.59...× 10−4) + b(1 + 2.59...× 10−4)

The computed sum (result) is the exact sum of slightly different
a and b (inputs).
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Backward errors (cont.)

A general example

sn = x1 ⊕ x2 ⊕ · · · ⊕ xn

The computed result (x1 ⊕ · · · ⊕ xn) is the exact result of the
problem with slightly perturbed data. (x1(1 + η1), ..., xn(1 + ηn)).
Backward errors:
|η1| ≤ 1.06(n − 1)u
|ηi | ≤ 1.06(n− i + 1)u, i = 2, 3, ..., n
If the backward errors are small, then we say that the algorithm
is backward stable.
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Example

Example: a + b

a = 1.23, b = 0.45, s = a + b = 1.68

Slightly perturbed
â = a(1 + 0.01), b̂ = b(1 + 0.001), ŝ = â + b̂ = 1.69275

Relative perturbations in data (a and b) are at most 0.01.
Causing a relative change in the result |ŝ − s|/|s| ≈ 0.0076,
which is about the same as the perturbation 0.01

The result is insensitive to the perturbation in data.
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Example (cont.)

a = 1.23, b = −1.21, s = a + b = 0.02

Slightly perturbed
â = a(1 + 0.01), b̂ = b(1 + 0.001), ŝ = â + b̂ = 0.03109

Relative perturbations in data (a and b) are at most 0.01.
Causing a relative change in the result |ŝ − s|/|s| ≈ 0.5545,
which is more than 55 times as the perturbation 0.01

The result is sensitive to the perturbation in the data.
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Perturbation analysis

Example: a + b

|a(1 + δa) + b(1 + δb)− (a + b)|
|a + b|

≤ |a|+ |b|
|a + b| δ, δ = max(δa, δb).

Condition number: (|a|+ |b|)/|a + b|, magnification of the
relative error.

relative error in result
relative error in data

≤ cond

Condition number is a measurement (an upper bound) of the
sensitivity of the problem to changes in data.
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Example

Two methods for calculating z(x + y):

z ⊗ x ⊕ z ⊗ y and z ⊗ (x ⊕ y)

β = 10, t = 4
x = 1.002, y = −0.9958, z = 3.456
Exact z(x + y) = 2.14272× 10−2

z ⊗ (x ⊕ y) = fl(3.456 ∗ 6.200× 10−3)
= 2.143× 10−2

error: 2.8× 10−6

(z ⊗ x)⊕ (z ⊗ y)) = fl(3.463− 3.441)
= 2.200× 10−2

error: 5.7× 10−4

More than 200 times!
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Example (cont.)

Backward error analyses

z ⊗ x ⊕ z ⊗ y

= (zx(1 + ǫ1) + zy(1 + ǫ2))(1 + ǫ3)

= z(1 + ǫ3)(x(1 + ǫ1) + y(1 + ǫ2)), |ǫi | ≤ u

z ⊗ (x ⊕ y)

= z((x + y)(1 + ǫ1))(1 + ǫ3)

= z(1 + ǫ3)(x(1 + ǫ1) + y(1 + ǫ1)), |ǫi | ≤ u

Both methods are backward stable.
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Example (cont.)

Perturbation analysis

z(1 + δz)(x(1 + δx ) + y(1 + δy ))

≈ zx(1 + δz + δx ) + zy(1 + δz + δy )

= z(x + y) + zx(δz + δx ) + zy(δz + δy )

= z(x + y)(1 + (δz + δx ) + (δy − δx )/(x/y + 1))

|z(1 + δz)(x(1 + δx ) + y(1 + δy ))− z(x + y)|
|z(x + y)|

≤
(

2 +
2

|xy + 1|

)
δ, δ = max(|δx |, |δy |, |δz |)

The condition number can be large if y ≈ −x and δx 6= δy .



Floating-point Numbers Sources of Errors Stability of an Algorithm Sensitivity of a Problem Fallacies Summary

Example (cont.)

Forward error analysis

z ⊗ x ⊕ z ⊗ y

= z(1 + ǫ3)(x(1 + ǫ1) + y(1 + ǫ2))

≈ z(x + y)(1 + (ǫ3 + ǫ1) + (ǫ2 − ǫ1)/(x/y + 1)), |ǫi | ≤ u

|(z ⊗ x ⊕ z ⊗ y)− z(x + y)|
|z(x + y)| ≤

(
2 +

2
|xy + 1|

)
u
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Example (cont.)

Forward error analysis (cont.)

z ⊗ (x ⊕ y) ≈ z(x + y)(1 + ǫ1 + ǫ3), |ǫi | ≤ u

|z ⊗ (x ⊕ y)− z(x + y)|
|z(x + y)| ≤ 2u
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Remarks

forward error ≤ cond · backward error

If we can prove the algorithm is stable, in other words, the
backward errors are small, say, no larger than the
measurement errors in data, then we know that large
forward errors are due to the ill-conditioning of the problem.

If we know the problem is well-conditioned, then large
forward errors must be caused by unstable algorithm.

Condition number is an upper bound. It is possible that a
well-designed stable algorithm can produce good results
even the problem is ill-conditioned.
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Example of stability/sensitivity

Compute the integrals

En =

∫ 1

0
xnex−1dx , n = 1, 2, ....

Using integration by parts,

∫ 1

0
xnex−1dx = xnex−1|10 −

∫ 1

0
nxn−1ex−1dx ,

or
En = 1− nEn−1, n = 2, ...,

where E1 = 1/e.
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Example of stability/sensitivity

En = 1− nEn−1

Double precision

E1 ≈ 0.3679 E7 ≈ 0.1124 E13 ≈ 0.0669
E2 ≈ 0.2642 E8 ≈ 0.1009 E14 ≈ 0.0627
E3 ≈ 0.2073 E9 ≈ 0.0916 E15 ≈ 0.0590
E4 ≈ 0.1709 E10 ≈ 0.0839 E16 ≈ 0.0555
E5 ≈ 0.1455 E11 ≈ 0.0774 E17 ≈ 0.0572
E6 ≈ 0.1268 E12 ≈ 0.0718 E18 ≈ −0.0295

Apparently, E18 > 0.

Unstable algorithm or ill-conditioned problem?
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Example of stability/sensitivity

En = 1− nEn−1

Perturbation analysis. Suppose that we perturb E1:

Ẽ1 = E1 + ǫ,

then Ẽ2 = 1− 2Ẽ1 = E2 − 2ǫ.

In general,
Ẽn = En − (−1)n+1n! ǫ.

Thus this problem is ill-conditioned.

We can show that this algorithm is backward stable.
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Example of stability/sensitivity

En−1 = (1− En)/n
Note that En goes to zero as n goes to∞.
Start with E40 = 0.0

E35 ≈ 0.0270 E29 ≈ 0.0323 E23 ≈ 0.0401
E34 ≈ 0.0278 E28 ≈ 0.0334 E22 ≈ 0.0417
E33 ≈ 0.0286 E27 ≈ 0.0345 E21 ≈ 0.0436
E32 ≈ 0.0294 E26 ≈ 0.0358 E20 ≈ 0.0455
E31 ≈ 0.0303 E25 ≈ 0.0371 E19 ≈ 0.0477
E30 ≈ 0.0313 E24 ≈ 0.0385 E18 ≈ 0.0501
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Example of stability/sensitivity

En−1 = (1− En)/n

Perturbation analysis. Suppose that we perturb En:

Ẽn = En + ǫ,

then Ẽn−1 = En−1 − ǫ/n.

In general,

Ẽk = Ek + ǫk , |ǫk | =
ǫ

n(n − 1)...(k + 1)
.

Thus this problem is well-conditioned.

Note that we view these two methods as two different problems,
since they have different inputs and outputs.
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Example revisited

β = 10, t = 4
x = 1.002, y = −0.9958, z = 3.456
Exact z(x + y) = 2.14272× 10−2

z ⊗ (x ⊕ y) = fl(3.456 ∗ 6.200× 10−3)
= 2.143× 10−2

error: 2.8× 10−6

(z ⊗ x)⊕ (z ⊗ y)) = fl(3.463− 3.441)
= 2.200× 10−2

error: 5.7× 10−4

More than 200 times!

Why?
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Example revisited

(z ⊗ x)⊕ (z ⊗ y)) = fl(3.463− 3.441)
= 2.200× 10−2

error: 5.7× 10−4

Cancellation in subtracting two computed (contaminated)
numbers. (Catastrophic)

z ⊗ (x ⊕ y) = fl(3.456 ∗ 6.200× 10−3)
= 2.143× 10−2

error: 2.8× 10−6

Cancellation in subtracting two original (not contaminated)
numbers. (Benign)

Catastrophic cancellation v.s. benign cancellation.
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Example myexp

Using the Taylor series

ex = 1 + x +
x2

2!
+

x3

3!
+ · · · ,

we write a function myexp:

oldy = 0.0;
y = 1.0;
term = 1.0;
k = 1;
while (oldy ˜= y)

term = term * (x/k);
oldy = y;
y = y + term;
k = k + 1;

end
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Example myexp

About the stopping criterion

When x is negative, the terms have alternating signs, then
it is guaranteed that the truncation error is smaller then the
last term in the program.

When x is positive, all the terms are positive, then it is not
guaranteed that the truncation error is smaller than the last
term in the program. For example, when x = 678.9, the
last two digits of the computed result are inaccurate.
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Example myexp

When x = −7.8

k sum term
1 1.000000000000000E+0 −7.80000000000000E+0
...

10 −1.322784174621715E+2 2.29711635560962E+2
11 9.743321809879086E+1 −1.62886432488682E+2
12 −6.545321438989151E+1 1.05876181117643E+2

...
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Example myexp

k sum term
26 1.092489579672046E−4 3.88007967049995E−04

...
49 4.097349789682480E−4 −8.48263272621995E−20
50 4.097349789682479E−4 1.32329070529031E−20

The MATLAB result:

4.097349789797868E− 4
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Example myexp

An explanation

When k = 10, the absolute value of the intermediate sum
reaches the maximum, about 10+2, that is, the ulp is about
10−13. After that, cancellation occurs, so the final result is
about 10−4. We expect the error in the final result is 10−13, in
other words, ten digit accuracy.

Cancellation magnifies the relative error.

An accurate method.

Break x into the integer part m and the fraction part f . Compute
em using multiplications, then compute ef when −1 < f < 0 or
1/e−f when 0 < f < 1.

Using this method, the computed e−7.8 is

4.097349789797864E− 4
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A classic example of avoiding cancellation

Solving quadratic equation

ax2 + bx + c = 0

Text book formula:

x =
−b ±

√
b2 − 4ac

2a

Computational method:

x1 =
2c

−b − sign(b)
√

b2 − 4ac
, x2 =

c
ax1
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Question

Suppose β = 10 and t = 8 (single precision), solve

ax2 + bx + c = 0,

where
a = 1, b = −105, and c = 1,

using the both methods.
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Fallacies

Cancellation in the subtraction of two nearly equal
numbers is always bad.

The final computed answer from an algorithm cannot be
more accurate than any of the intermediate quantities, that
is, errors cannot cancel.

Arithmetic much more precise than the data it operates
upon is needless and wasteful.

Classical formulas taught in school and found in
handbooks and software must have passed the Test of
Time, not merely withstood it.
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Summary

A computer number system is determined by four
parameters: Base, precision, emin, and emax

IEEE floating-point standards, single precision and double
precision. Special quantities: Denormals, ±∞, NaN, ±0,
and their binary representations.
Error measurements: Absolute and relative errors, unit of
roundoff, unit in the last place (ulp)
Sources of errors: Rounding error (computational error),
truncation error (mathematical error), discretization error
(mathematical error). Total error (combination of rounding
error and mathematical errors)
Issues in floating-point computation: Overflow, underflow,
cancellations (benign and catastrophic)
Error analysis: Forward and backward errors, sensitivity of
a problem and stability of an algorithm
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