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Intro

Introduction

Problem setting: Given (Xo, Yo0), (X1,Y1); -, (Xn,¥Yn),
Xg < X1 < ---Xp, for example, a set of measurements, construct

a function f:
f(xi):yi, i=0,1,...,n
Desirable properties of f:

@ smooth: analytic and |f”(x)| not too large (the first and
second derivatives are continuous).

@ simple: polynomial of minimum degree, easy to evaluate.



Example

Measurements of the speed of sound in ocean water
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Polynomial

Polynomial Interpolation

Advantages: easy to evaluate and differentiate

Weierstrass Approximation Theorem:

If f is any continuous function on the finite closed
interval [a,b], then for every € > 0O there exists a
polynomial p,(x) of degree n = n(e) such that

max_|f(x) — pn(X)| < €.
x€la,b]
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Polynomial Interpolation

Advantages: easy to evaluate and differentiate

Weierstrass Approximation Theorem:

If f is any continuous function on the finite closed
interval [a,b], then for every € > 0O there exists a
polynomial p,(x) of degree n = n(e) such that

max_|f(x) — pn(X)| < €.
x€la,b]

Impractical (degree is often too high)



Polynomial

A straightforward approach

A polynomial of degree n is determined by its n + 1 coefficients.



Polynomial

A straightforward approach

A polynomial of degree n is determined by its n + 1 coefficients.

Given (Xo,Y0), ---, (Xn, Yn) to be interpolated, we construct the
linear system (Vandermonde matrix):

1 Xo - Xg st Yo
1 x4 --- X]r_] ai Y1
1 Xn - Xq an Yn

solve for the coefficients of the polynomial
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Horner’s rule

Evaluating the polynomial: agx® + a;x? + axx + az

Horner's form: ((apX + a1)x + a)x + as
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Horner’s rule

Evaluating the polynomial: agx® + a;x? + axx + az

Horner's form: ((apX + a1)x + a)x + as

v = a(0);
for (i = 1:n)

v = vxx + a(i);
end



Polynomial

Horner’s rule

Evaluating the polynomial: agx® + a;x? + axx + az

Horner's form: ((apX + a1)x + a)x + as

v = a(0);
for (i = 1:n)

v = vxx + a(i);
end

The optimal (most efficient and accurate) way of evaluating
apX" 4 ... +an.



Polynomial

Vandermonde matrix

When Xq, ..., X are distinct, the Vandermonde matrix is
nonsingular. Thus the system has a unigue solution
(coefficients of the interpolating polynomial).



Polynomial

Vandermonde matrix

When Xq, ..., X are distinct, the Vandermonde matrix is
nonsingular. Thus the system has a unigue solution
(coefficients of the interpolating polynomial).

Example. Given three points (28,0.4695) and (30, 0.5000),
(32,0.5299) we have the system

1 28 282 ao 0.4695
1 30 302 a; | = | 0.5000
1 32 322 a 0.5299

and the solution
agp —2.050 x 102
a; | = 1.960 x 1072 | .
a, —7.500 x 107>

p2(31) = 0.5150 ~ sin(30°)
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problem:
The coefficient (Vandermonde) matrix is often ill-conditioned
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Vandermonde matrix

problem:
The coefficient (Vandermonde) matrix is often ill-conditioned

What is the condition number of the Vandermonde matrix
constructed by x; = 2000 +1i,i =0,1,...,7?




Polynomial

Vandermonde matrix

problem:
The coefficient (Vandermonde) matrix is often ill-conditioned

What is the condition number of the Vandermonde matrix
constructed by x; = 2000 +1i,i =0,1,...,7?

Answer: 1.87 x 103/



Polynomial

Lagrange form (conceptually simple)

Basis polynomials: {l;(x)} (j = 0,1, ...,n) of degree n such that

(1, ifi=|
hxi) = { 0, otherwise
construct < x
i(x) = —
i(X) gxi -
Thus

Pa(Y)(x) =D li(x)y;

j=0



Polynomial

Example

Given three points: (28,0.4695), (30,0.5000), (32,0.5299),
construct a second degree interpolating polynomial in the
Lagrange form:

(x —30)(x — 32)
(28 — 30)(28 — 32)

(x —28)(x — 32)
(30 — 28)(30 — 32)

(x —28)(x —30)
T (32-28)(32-30)

P2(X) 0.4695

0.5000

0.5299

p2(31) = 0.5150 ~ sin(31°)



Polynomial

Example

Given three points: (28,0.4695), (30,0.5000), (32,0.5299),
construct a second degree interpolating polynomial in the
Lagrange form:

(x —30)(x — 32)
(28 — 30)(28 — 32)

(x —28)(x — 32)
(30 — 28)(30 — 32)

(x —28)(x —30)
T (32-28)(32-30)

0.4695

p2(x)

0.5000

0.5299

p2(31) = 0.5150 ~ sin(31°)

Expensive to evaluate.
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Dangers of polynomial interpolation

An example. Runge’s function (continuous derivatives of all

order)
1
R -1,1
equally spaces xg = —1, Xy, - ,Xp =1




Polynomial

Dangers of polynomial interpolation

An example. Runge’s function (continuous derivatives of all
order)

1
X)=——> on [-1,1

equally spaces xg = —1, Xy, - ,Xp =1

It is often best not to use global polynomial interpolation.
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Piecewise

Piecewise Polynomial Interpolation

Given the partition
=X <Xg <o < Xp = [,

interpolate on each [x;, X;;1] with a low degree polynomial.



Piecewise

Piecewise Polynomial Interpolation

Given the partition
=X <Xg <o < Xp = [,

interpolate on each [x;, X;;1] with a low degree polynomial.
Linear
Li(z) = ai + bi(z —Xi), Z € [Xi,Xit1]

aj = Vi, b_y'Jrl y.’ 1<i<n-1
Xi+1 — X



Piecewise

Algorithm. Piecewise linear interpolation

Given vectors x and y with interpolating points, this function
returns the piecewise linear interpolation coefficients in the
vectors a and b.

function [a, b] = pwL(X,Y)

n = length(x);
a =y(ln-1);
b =diff(y)./diff(x);



Piecewise

Evaluation

Given the piecewise linear interpolation L(z) represented by
the coefficient vectors a, b, how do we evaluate this function at
z € [0, ]2

First, we locate [x;, ;1] such that z € [x;, x;+1]. Then, we
evaluate L(z) using L;(z).

Search method: binary search, since x; are sorted.



Piecewise

Evaluation

Given the piecewise linear interpolation L(z) represented by
the coefficient vectors a, b, how do we evaluate this function at
z € [0, ]2

First, we locate [x;, ;1] such that z € [x;, x;+1]. Then, we
evaluate L(z) using L;(z).

Search method: binary search, since x; are sorted.

Observation: If [x;, X 1] is associated with the current z, then it
is likely that this subinterval will be the one for the next value.



Piecewise

Algorithm. Locate

Idea: Use the previous subinterval as a guess. If not, do binary
search.

Given the vector x of breakpoints and a scalar z between x;
and X, this function locates i so thatx; < z < xj,;. The
optional g is a guess.

function i = Locate(x,z, Q)
i f nargi n==3 %try the guess
it (x(9g) <=z) &(z<=x(g+1))
i =0
return % qui ck return
end
end



Piecewise

Algorithm. Locate (cont.)

n = I ength(x);
if z==x(n)
i =n-1; % qui ck return
el se % bi nary search
left = 1; right = n;
while right > left+1
md = floor((left + right)/2);
if z < x(md)

right = md;
el se
left = md;
end
end
i = left;

end



Piecewise

Algorithm. pwLEval

Given a piecewise linear interpolation coefficient vectors a and
b from pwL and its breakpoints in x, this function returns the
values of the interpolation evaluated at the points in z.

function v = pwLEval (a, b, x, 2)

m = |l ength(z);
v = zeros(m1l);
g =1

for j=1:m

i = Locate(x,z(j),9);

v(i) =a(i) + b(i)=(z(j) - x(i));
g =1,

end
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Example

L + ! —6
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Problem setting

Given (x1,¥1), (X2,Y2), -+, (Xn, Yn), find s(x):

@ in each subinterval [x;, X 11], S(x) is cubic
@ s(x)=y,i=1,..,n
@ s’(x) and s”(x) are continuous at X2, X3, ..., Xn_1



Cubic Spline

Problem setting

Given (x1,¥1), (X2,Y2), -+, (Xn, Yn), find s(x):

in each subinterval [x;, X 1], S(X) is cubic

s(xi) =y, i=1,..,n

s’'(x) and s”(x) are continuous at Xz, X3, .., Xn_1
s"(x1) =s"(xn) =0

The second derivative of s(x) is zero at the end points
means that s(x) is linear at the end points.



Cubic Spline

A straightforward approach

Suppose a; + bijx + ¢ix? +dix® on [x;, Xi41],i = 1,..,n — 1.
4(n — 1) unknowns to be determined.



Cubic Spline

A straightforward approach

Suppose a; + bijx + ¢ix? +dix® on [x;, Xi41],i = 1,..,n — 1.
4(n — 1) unknowns to be determined.

Interpolation:

a +bixi +cix2 +dix3 =y, i=1,..,.n—1

ai + bixji11 + Cixi2+l + dixii—l =Viy1, 1 =1,..,n-1
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A straightforward approach

Suppose a; + bijx + ¢ix? +dix® on [x;, Xi41],i = 1,..,n — 1.
4(n — 1) unknowns to be determined.

Interpolation:

a +bixi +cix2 +dix3 =y, i=1,..,.n—1

ai + bixji11 + Cixi2+l + dixii—l =Viy1, 1 =1,..,n-1
Continuous first derivative (consider [xi_1,x;] and [x;, Xj11]):
bi_1+2ci_1Xx + 3di_1Xi2 = b + 2¢ix + 3diXi2, i=2,.,n—-1



Cubic Spline

A straightforward approach
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A straightforward approach

Suppose a; + bijx + ¢ix? +dix® on [x;, Xi41],i = 1,..,n — 1.
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Cubic Spline

A straightforward approach

Suppose a; + bijx + ¢ix? +dix® on [x;, Xi41],i = 1,..,n — 1.
4(n — 1) unknowns to be determined.

Interpolation:

a +bixi +cix2 +dix3 =y, i=1,..,.n—1

ai + bixji11 + Cixi2+l + dixii—l =Viy1, 1 =1,..,n-1
Continuous first derivative (consider [xi_1,x;] and [x;, Xj11]):
bi_1+2ci_1Xx + 3di_1Xi2 = b + 2¢ix + 3diXi2, i=2,.,n—-1
Continuous second derivative:

2ci_1 +6dj_1xj = 2¢; + 6d;x;, i =2,..,n—1

Two end conditions:

2cy +6d1x; =0 and 2c4_1 +6dp_1Xn =0

Total of 4(n — 1) equations, a dense system.



Cubic Spline

A clever approach: Constructing s(x)

In the subinterval [x;, Xj 1], let h; = Xj,1 — X; and introduce new

variables:
w=(x—xj)/hj, w=1-w.

Note: w(xj) =0, w(Xj;+1) =l andw(x) =1, w(xj4+1) =0,
(linear Lagrange polynomials).

Thus wy;; + wy; is the (linear) Lagrange interpolation on
[Xi, Xi 1]



Cubic Spline

A clever approach: Constructing s(x)

In the subinterval [x;, Xj 1], let h; = Xj,1 — X; and introduce new
variables:
w=(x—xj)/hj, w=1-w.

Note: w(xj) =0, w(Xj;+1) =l andw(x) =1, w(xj4+1) =0,
(linear Lagrange polynomials).

Thus wy;; + wy; is the (linear) Lagrange interpolation on
[Xi, Xi 1]

Construct
S(X) = WYj41 + vT/yi + hiz[(W3 — W)O’i+1 + (WS — W)Ui]

where o; to be determined, so that the properties (the first and
second derivatives are continuous) are satisfied.



Cubic Spline

Properties of s(x)

Using w’ = 1/h; and w = —1/h;, we can verify
O s(xi) = Vi, S(Xi+1) = Yi+1, independent of o, that is, s(x)
interpolates (x;, ;).
Q@ s”(x) = 6woj 1 + 6Waj, linear Lagrange interpolation at
the points (x;, 607) and (Xj+1,60i1).

Clearly s”(x;) = 60j, which implies that s”(x) is continuous.



Cubic Spline

Properties of s(x)

Using w’ = 1/h; and w = —1/h;, we can verify
O s(xi) = Vi, S(Xi+1) = Yi+1, independent of o, that is, s(x)
interpolates (x;, ;).
Q@ s”(x) = 6woj 1 + 6Waj, linear Lagrange interpolation at
the points (x;, 607) and (Xj+1,60i1).
Clearly s”(x;) = 60j, which implies that s”(x) is continuous.

Is s’(x) continuous?



Cubic Spline

Properties of s(x) (cont.)

It remains to determine o so that s’(x) is continuous.



Cubic Spline

Properties of s(x) (cont.)

It remains to determine o so that s’(x) is continuous.
Consider, on [, Xj 1],

S'(x) = y'“hl Yo (3w = 1)oipq — (302 — 1))

Let A = (Yit1 — Vi)/hi
On [xi, Xj+1], w(x;) = 0and w(x;) = 1,

s’ (X)) = Aj + hi(—0oiy1 — 20).



Cubic Spline

Properties of s(x) (cont.)

(x) = P 0 [(3WP — D)o — (307 — )i ]

andw(xj) =1, w(x) = 0. Thus

s_(xi) = Aji_1 + hi_1(20i + 0i_1).



Cubic Spline

Making s’(x) continuous

Setting
si(x)=s_(x), 1=2,3,..,n—1,

we get n — 2 equations:
hi—10i-1 + 2(hi—1 + hi)oi + hioi1 = Aj — Ay

fori=2,3,...,n— 1.

Solve for oy, ...,on_1, recalling that o1 = oy = 0 (natural cubic
spline).



Cubic Spline

Matrix form

diagonal: [2(hy + hy), - (hn 2+ hn_1)]
supper/subdiagonal: [h2, ,hn_2]
unknowns: [o2, - - ,0n_1]"

right-hand side: [Ay — Ag, -+, Aq_1 — Ap_2]T



Cubic Spline

Matrix form

diagonal: [2(h1 + hy), - (hn 2+ hn_1)]
supper/subdiagonal: [h2, ,hn_2]
unknowns: [o2, - - ,0n_1]"

right-hand side: [Ay — Ag, -+, Aq_1 — Ap_2]T
The matrix is
@ symmetric
@ tridiagonal
@ diagonally dominant (Ja; ;| > >, [ai j[), when
X1 < X < -+ < Xp, postive definite

Can apply the Cholesky factorization, working on two vectors
with O(n) operations.



Cubic Spline

Modeling a problem

Note. Had we taken the straightforward approach to
determining the coefficients of the piecewise cubic polynomials,
four coefficients for each of n — 1 cubic polynomials, we would
have ended up with a large (4(n — 1) x 4(n — 1)) and dense
system requiring O(n?®) operations.

Now we have an O(n) method.



Cubic Spline

Evaluating s(x)

If s(x) is evaluated many times, arrange s(x) so that
S(X) = ¥i +bi(x =) + Ci(x —x)? +di(x —x)°

and rearrange it in the Horner’s form, for x; < x < xj,1 and
calculate and store b;, ¢;, d; (instead of ;)

bj = w — hi(oit1 + 20i)
|
Ci = 30 di = L—Flh-_ g
|

fori=1,2,...n—1



Cubic Spline

Algorithm. Natural cubic spline

ncspli ne

Given a vector x with breakpoints and vector y with function
values, this algorithm computes the coefficients b, ¢, d of
natural spline interpolation.

@ Compute h; and A;;

@ Form the tridiagonal matrix (two arrays) and the right hand

side;
© Solve for o;
© Compute the coefficients b, ¢, and d.
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Software

Software packages

IMSL csint, csdec, csher, csval
MATLAB polyfit, spline, ppval
NAG eOlaef, eOlbaf, e0Olbef, e02bbf, e01bff
Octave interpl



Summary

Summary

@ Polynomial interpolation: General idea and methods,
Lagrange interpolation

@ Piecewise polynomial interpolation: Construction of
piecewise polynomial (linear and cubic), evaluation of a
piecewise function, ncspl i ne, seval



Summary
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