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Problem setting

Eigenvalue problem:
Ax = λx,

λ: eigenvalue
x: right eigenvector.
yHA = λyH, y left eigenvector.
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Canonical forms

Decomposition:
A = SBS−1

where B is in a canonical (simple) form, whose eigenvalues and
eigenvectors can be easily obtained.

A and B have the same eigenvalues. (They are similar.)

If x is an eigenvector of B, then Sx is the eigenvector of A
corresponding to the same eigenvalue.
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Jordan canonical form

A = SJS−1, J = diag(Jn1(λ1), ..., Jnk (λk ))

Jni (λi) =





λi 1 0
. . . . . .

. . . 1
0 λi




.
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Jordan canonical form

The algebraic multiplicity of λi is ni .

A Jordan block has one right eigenvector [1, 0, ..., 0]T and
one left eigenvector [0, ..., 0, 1]T.

If all ni = 1, then J is diagonal, A is called diagonalizable;
otherwise, A is called defective.

An n-by-n defective matrix has fewer than n eigenvectors.
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Example

In practice, confronting defective matrices is a fundamental fact.

Mass-spring problem

m

k

b
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Mass-spring problem

Newton’s law F = ma implies

mẍ(t) = −kx(t) − bẋ(t).

Let

y(t) =

[
ẋ(t)
x(t)

]
,

we transform the second order ODE into a system of the first
order ODEs

ẏ(t) =

[
− b

m − k
m

1 0

]
y(t) =: Ay(t).
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Mass-spring problem

The characteristic polynomial of A is

λ2 +
b
m

λ +
k
m

and the eigenvalues are

λ± =
− b

m ±
√(

b
m

)2
− 4 k

m

2
=

b
2m

(
−1 ±

√
1 − 4km

b2

)
.

When 4km/b2 = 1, critically damped, two equal eigenvalues, A
is not diagonalizable.
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Jordan canonical form

A = SJS−1

A =

[
− b

m − k
m

1 0

]
, 4km = b2,

J =

[
− b

2m 1
0 − b

2m

]
, S =

[
− b

2m 1 − b
2m

1 1

]
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Jordan canonical form

It is undesirable to compute Jordan form, because

Jordan block is discontinuous

J(0) =

[
0 1
0 0

]
J(ǫ) =

[
ǫ 1
0 2ǫ

]
,

while J(0) has an eigenvalue of multiplicity two, J(ǫ) has
two simple eigenvalues.

In general, computing Jordan form is unstable, that is,
there is no guarantee that ŜĴŜ−1 = A + E for a small E .
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Schur canonical form

A = QTQH

Q: unitary
T : upper triangular
The eigenvalues of A are the diagonal elements of T .
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Schur canonical form

A = QTQH

Q: unitary
T : upper triangular
The eigenvalues of A are the diagonal elements of T .

Real case
A = QTQT

Q: orthogonal
T : quasi-upper triangular, 1-by-1 or 2-by-2 blocks on the
diagonal.
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Conditioning

Let λ be a simple eigenvalue of A with unit right eigenvector x
and left eigenvector y.
λ + ǫ be the corresponding eigenvalue of A + E , then

ǫ =
yHEx
yHx

+ O(‖E‖2)

or

|ǫ| ≤ 1
|yHx|‖E‖ + O(‖E‖2).

Condition number for finding a simple eigenvalue

1/|yHx|
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Computing the Schur decomposition

A = QTQT, T : quasi-upper triangular

Step 1: Reduce A to upper Hessenberg

A = Q1HQT
1 , hij = 0, i > j + 1

Step 2: Compute the Schur decomposition of H

H = Q2TQT
2
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Introducing zeros into a vector

Householder transformation

H = I − 2uuT with uTu = 1

H is symmetric and orthogonal (H2 = I).
Goal: Ha = αe1.
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Introducing zeros into a vector

Householder transformation

H = I − 2uuT with uTu = 1

H is symmetric and orthogonal (H2 = I).
Goal: Ha = αe1.
Choose

u = a ± ‖a‖2 e1
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A geometric interpretation

(b)

 1
e

u

a

(a)

b

a
u

Figure (a) shows the image b = (I − 2uuT)a for an arbitrary u,
in figure (b), u = a − ‖a‖2 e1.
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Computing Householder transformations

Given a vector x, it computes scalars σ, α, and vector u such
that

(I − σ†uuT)x = −αe1

where σ† = 0 if σ = 0 and σ−1 otherwise

α = signx1‖x‖2

u = x + α e1

‖u‖2
2 = 2(α2 + α x1) = 2α u1
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house.m

function [u,sigma,alpha] = house(x)

u = x;

alpha = sign(u(1)) * norm(u);
u(1) = u(1) + alpha;
sigma = alpha * u(1);
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Reducing A to upper Hessenberg

n = length(A(1,:));
Q = eye(n);

for j=1:(n-2)
[u, sigma, alpha] = myhouse(A(j+1:n, j));
if sigma ˜= 0.0

for k = j:n
A(j+1:n, k) = A(j+1:n, k) - ((u’ * A(j+1:n, k))/sigma) * u;

end %for k
for i=1:n

A(i, j+1:n) = A(i, j+1:n) - ((A(i, j+1:n) * u)/sigma) * u’;
Q(i, j+1:n) = Q(i, j+1:n) - ((Q(i, j+1:n) * u)/sigma) * u’;

end %for i
end %if

end %for j
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Computing eigenvalues and eigenvectors

Suppose A has distinct eigenvalues λi , i = 1, ..., n, where
|λ1| > |λ2| ≥ ... ≥ |λn|, and xi are the eigenvectors (linear
independent).

An arbitrary vector u can be expressed as

u = µ1x1 + µ2x2 + · · · + µnxn

If µ1 6= 0, Aku has almost the same direction as x1 when k and
large and thus (λi/λ1)

k (i > 1) is small.
Thus the Rayleigh quotient

(Aku)TA(Aku)

(Aku)T(Aku)
≈ λ1.
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Power method

Initial u0; i = 0;
repeat

vi+1 = Aui ;
ui+1 = vi+1/‖vi+1‖2;
λ̃i+1 = uT

i+1Aui+1;
i = i + 1

until convergence
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Power method

Initial u0; i = 0;
repeat

vi+1 = Aui ;
ui+1 = vi+1/‖vi+1‖2;
λ̃i+1 = uT

i+1Aui+1;
i = i + 1

until convergence

Problems

Computes only (λ1, x1)

Converges slowly when |λ1| ≈ |λ2|
Does not work when |λ1| = |λ2|



EIG Singular Value Decomposition Software Summary

Inverse power method

Suppose that µ is an estimate of λk , then (λk − µ)−1 is the
dominant eigenvalue of (A − µI)−1. Applying the power method
to (A − µI)−1, we can compute xk and λk .

Example.
Eigenvalues of A: −1, −0.2, 0.5, 1.5
Shift µ: −0.8
Eigenvalues of (A − µI)−1: −5.0, 1.7, 0.78, 0.43

Very effective when we have a good estimate for an eigenvalue.
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QR method

Goal: Generate a sequence

A0 = A, A1, ..., Ak+1

Ai+1 = QT
i AQi =

[
B u
sT µ

]

where s is small and Qi is orthogonal, i.e., QT
i = Q−1

i (so Ak+1

and A have the same eigenvalues).

Since s is small, µ is an approximation of an eigenvalue of
Ak+1 (A);

Deflate Ak+1 and repeat the procedure on B when s is
sufficiently small. The problem size is reduced by one.
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QR method

What does Qk look like?

If the last column of Qk is a left eigenvector y of A, then

QT
k AQk =

[
PT

k
yT

]
A [Pk y]

=

[
PT

k
yT

]
[APk Ay]

=

[
B u
0T λ

]
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QR method

How do we get an approximation of a left eigenvector y of A
(yTA = λyT)?
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QR method

How do we get an approximation of a left eigenvector y of A
(yTA = λyT)?

One step of the inverse power method: Solve for q in
(A − µI)Tq = en, where µ is an estimate for an eigenvalue of A.
(How? Later.)
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QR method

How do we get an approximation of a left eigenvector y of A
(yTA = λyT)?

One step of the inverse power method: Solve for q in
(A − µI)Tq = en, where µ is an estimate for an eigenvalue of A.
(How? Later.)

How do we construct an orthogonal Q whose last column is q?
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QR method

How do we get an approximation of a left eigenvector y of A
(yTA = λyT)?

One step of the inverse power method: Solve for q in
(A − µI)Tq = en, where µ is an estimate for an eigenvalue of A.
(How? Later.)

How do we construct an orthogonal Q whose last column is q?

If (A − µI) = QR is the QR decomposition and q is the last
column of Q, then

qT(A − µI) = qTQR = rn,neT
n.

Thus, after normalizing,

(A − µI)Tq = en.
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QR method

How do we get an approximation of a left eigenvector y of A
(yTA = λyT)?

One step of the inverse power method: Solve for q in
(A − µI)Tq = en, where µ is an estimate for an eigenvalue of A.
(How? Later.)

How do we construct an orthogonal Q whose last column is q?

If (A − µI) = QR is the QR decomposition and q is the last
column of Q, then

qT(A − µI) = qTQR = rn,neT
n.

Thus, after normalizing,

(A − µI)Tq = en.

Q can be obtained from the QR decomposition (A − µI) = QR.
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QR decomposition

QR decomposition of an upper Hessenberg matrix using the
Givens rotations.
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QR decomposition

QR decomposition of an upper Hessenberg matrix using the
Givens rotations.

Givens rotation

G =

[
cos θ sin θ

− sin θ cos θ

]

Introducing a zero into a 2-vector:

G
[

x1

x2

]
=

[
×
0

]

i.e., rotate x onto x1-axis.
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Computing the Givens rotations

Given a vector [a b]T, compute cos θ and sin θ in the Givens
rotation.

cos θ =
a√

a2 + b2
sin θ =

b√
a2 + b2
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Computing the Givens rotations

Given a vector [a b]T, compute cos θ and sin θ in the Givens
rotation.

cos θ =
a√

a2 + b2
sin θ =

b√
a2 + b2

function [c, s] = grotate(a, b)

if (b = 0) c = 1.0; s = 0.0; return; end;

if (abs(b) >= abs(a))
ct = a/b;
s = 1/sqrt(1 + ct * ct); c = s * ct;

else
t = b/a;
c = 1/sqrt(1 + t * t); s = c * t;

end
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QR decomposition

Compute the QR decomposition H = QR of an upper
Hessenberg matrix H using the Givens rotations.

function [R, Q] = hqrd(H)

n = length(H(1,:));
R = H; Q = eye(n);

for j=1:n-1
[c, s] = grotate(R(j,j), R(j+1,j));
R(j:j+1, j:n) = [c s; -s c] * R(j:j+1, j:n);
Q(:, j:j+1) = Q(:, j:j+1) * [c -s; s c];

end



EIG Singular Value Decomposition Software Summary

QR method

But, we want

similarity transformations of A, not A − µI;

to carry on and improve accuracy (make s smaller).
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QR method

But, we want

similarity transformations of A, not A − µI;

to carry on and improve accuracy (make s smaller).

A − µI = QR.

RQ = QT(A − µI)Q = QTAQ − µI.

RQ + µI = QTAQ is similar to A.
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QR method

One step of QR method

repeat
choose a shift mu;
QR decomposition A - mu * I = QR;
A = RQ + mu* I;

until convergence (A(n,1:n-1) small)
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QR method

If A has been reduced to the upper Hessenberg form, the
structure is maintained during the iteration.

H0 is upper Hessenberg;

H0 − µI is upper Hessenberg;

H0 − µI = QR, R is upper triangular and Q is upper
Hessenberg;

H1 = RQ + µI is upper Hessenberg;
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QR method

If A has been reduced to the upper Hessenberg form, the
structure is maintained during the iteration.

H0 is upper Hessenberg;

H0 − µI is upper Hessenberg;

H0 − µI = QR, R is upper triangular and Q is upper
Hessenberg;

H1 = RQ + µI is upper Hessenberg;

Implication: The QR decomposition is cheap (only eliminate the
subdiagonal).



EIG Singular Value Decomposition Software Summary

Choosing the shift

Since the last element converges to an eigenvalue, it is
reasonable to choose hn,n as the shift. But, it doesn’t always
work. A more general method is to choose the eigenvalue of
the trailing 2-by-2 submatrix

[
hn−1,n−1 hn−1,n

hn,n−1 hn,n

]

that is close to hn,n. Heuristically, it is more effective than
choosing hn,n especially in the beginning.
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Choosing the shift

Since the last element converges to an eigenvalue, it is
reasonable to choose hn,n as the shift. But, it doesn’t always
work. A more general method is to choose the eigenvalue of
the trailing 2-by-2 submatrix

[
hn−1,n−1 hn−1,n

hn,n−1 hn,n

]

that is close to hn,n. Heuristically, it is more effective than
choosing hn,n especially in the beginning.

What if the trailing 2-by-2 submatrix has a complex conjugate
pair of eigenvalues? The double shift strategy can be used to
overcome the difficulty. In general, the Francis QR method
using double implicit shift strategy can reduce an real
Hessenberg matrix into the real Schur form.
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Symmetric case

A symmetric matrix is diagonalizable: A = QΛQT,
Λ = diag(λ1, ..., λn).

QR method. This method is very efficient if only all eigenvalues
are desired or all eigenvalues and eigenvectors are desired and
the matrix is small (n ≤ 25).

1 Reduce A to symmetric tridiagonal. This costs 4
3n3 or 8

3n3

if eigenvectors are also desired.
2 Apply the QR iteration to the tridiagonal. On average, it

takes two QR steps per eigenvalue. Finding all
eigenvalues takes 6n2. Finding all eigenvalues and
eigenvectors requires 6n3.
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Example

A =





1 2 3 4
2 1 2 3
3 2 1 2
4 3 2 1





After tridiagonalization




1.0000 −5.3852 0 0
−5.3852 5.1379 −1.9952 0

0 −1.9952 −1.3745 0.2895
0 0 0.2895 −0.7634




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Example

µ β1 β2 β3

1 −0.6480 3.8161 0.2222 −0.0494
2 −0.5859 1.2271 0.0385 10−5

3 −0.5858 0.3615 0.0070 converge
4 −1.0990 0.0821 10−10

5 −1.0990 0.0186 converge
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Introduction

A = UΣV T

A: m-by-n real matrix (m ≥ n)
U: m-by-m orthogonal
V : n-by-n orthogonal
Σ: diagonal,diag(σi),
σ1 ≥ σ2 ≥ · · · ≥ σn ≥ 0

Singular values: σi

Left singular vectors: columns of U
Right singular vectors : columns of V
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Introduction

SVD reveals many important properties of a matrix A. For
example,

The number of nonzero singular values is the rank of A.
Suppose σk > 0 and σk+1 = 0, then rank(A) = k . If k < n,
the columns of A are linearly dependent. (A is rank
deficient.)

If σn > 0 (A is of full rank),

cond(A) =
σ1

σn
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A geometric interpretation

Transformation A: x → Ax

σ1 ≥ ‖Ax‖
‖x‖ ≥ σn
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Application: Linear least-squares problem

min
x

‖Ax − b‖2
2

also called linear regression problem in statistics.

SVD: A = UΣV T

‖Ax − b‖2
2 = ‖Σz − d‖2

2

where
d = UTb z = V Tx
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Application: Linear least-squares problem

Solution

zj =
dj

σj
if σj 6= 0

zj = anything if σj = 0

Usually, we set
zj = 0 if σj = 0

for minimum norm solution.

This allows us to solve the linear least-squares problems with
singular A.
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Application: Principal component analysis

Suppose that A is a data matrix. For example, each column
contains samples of a variable. It is frequently standardized by
subtracting the means of the columns and dividing by their
standard deviations.

If A is standardized, then ATA is the correlation matrix.

If the variables are strongly correlated, there are few
components, fewer than the number of variables, can predict all
the variables.
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Application: Principal component analysis

In terms of SVD, let
A = UΣV T

be the SVD of A. If A is m-by-n (m ≥ n), we partition
U = [u1, ..., um] and V = [v1, ..., vn]. Then we can write

A = σ1u1vT
1 + · · · + σnunvT

n.

If the variables are strongly correlated, there are few singular
values that are significantly larger than the others.
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Application: Principal component analysis

In other words, we can find an r such that σr ≫ σr+1. We can
use the rank r matrix

Ar = σ1u1vT
1 + · · · + σr urvT

r

to approximate A. In fact, Ar is the closest (in Frobenius norm)
rank r approximation to A. Usually, we can find r ≪ n.

It is also called low-rank approximation.

Principal component analysis is used in a wide range of fields.
In image processing, for example, A is a 2D image.
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Computing SVD

Note that

the columns of U are the eigenvectors of AAT (symmetric
and positive semi-definite);

the columns of V are eigenvectors of ATA.

The algorithm is parallel to the QR method for symmetric
eigenvalue decomposition.

We work on A instead of ATA.
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Computing the SVD

1 Bidiagonalize A using Householder transformations
(A → B is upper bidiagonal and BTB tridiagonal);

2 Implicit QR iteration
1 Find a Givens rotation G1 from the first column of BTB − µI;
2 Apply G1 to B;
3 Apply a sequence of rotations, left and right, to restore the

bidiagonal structure of B;

The shift µ is obtained by calculating the eigenvalues of the
2-by-2 trailing submatrix of BTB.
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Software packages

NETLIB LAPACK: sgees (Schur form), sgeev (eigenvalues
and eigenvectors), ssyev (symmetric and dense
eigenproblems), sstev (symmetric and tridiagonal
eigenproblems), sgesvd (SVD), sbdsqr (small and
dense SVD)

IMSL evcrg, evcsf, lsvrr

MATLAB/Octave schur, eig, svd

NAG f02agf, f02abf, f02wef
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Summary

Eigenvalue decomposition, Jordan and Schur canonical
forms

Condition number for eigenvalue

Householder transformation, Givens rotation

QR method

Singular value decomposition

Linear least-squares problem

Low-rank approximation
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