Elements of Floating-point Arithmetic

Sanzheng Qiao

Department of Computing and Software
McMaster University

September, 2011

@ Floating-point Numbers
@ Representations
@ |EEE Floating-point Standards
@ Underflow and Overflow
@ Correctly Rounded Operations

e Sources of Errors
@ Rounding Error
@ Truncation Error
@ Discretization Error

e Stability of an Algorithm
e Sensitiviy of a Problem
e Fallacies

Floating-point Numbers

Outline

Q Floating-point Numbers
@ Representations
@ |EEE Floating-point Standards
@ Underflow and Overflow
@ Correctly Rounded Operations

Floating-point Numbers
0000000000

Two ways of representing floating-point

On paper we write a floating-point number in the format:
+dq.dy---dy x 8¢

O0<dy <6,0<di<p(>1)
t: precision
g: base (or radix), almost universally 2, other
commonly used bases are 10 and 16
e: exponent, integer

Floating-point Numbers
0O@00000000

Two ways of representing floating-point (cont.)

Examples:
1.0 x 1071

t = 2 (the last zero counts), 5 =10,e = -1

Floating-point Numbers
0O@00000000

Two ways of representing floating-point (cont.)

Examples:
1.0 x 1071

t = 2 (the last zero counts), 5 =10,e = -1

1.234 x 102
t=4,3=10,e=2

Floating-point Numbers
0O@00000000

Two ways of representing floating-point (cont.)

Examples:
1.0 x 1071

t = 2 (the last zero counts), 5 =10,e = -1
1.234 x 102
t=4,3=10,e =2

1.10011 x 2~4
t =6, 3 =2 (binary),e = -4

Floating-point Numbers
0O@00000000

Two ways of representing floating-point (cont.)

Examples:
1.0 x 1071

t = 2 (the last zero counts), 5 =10,e = -1
1.234 x 102
t=4,3=10,e =2

1.10011 x 2~4
t =6, 3 =2 (binary),e = -4

The precision t, the base 3, and the range of the exponent e
determine a floating-point number system.

Floating-point Numbers
[e]e] lelelelele]lo]e]

In memory, a floating-point number is stored in three
consecutive fields:

sign (1 bit)

exponent (depends on the range)

fraction (depends on the precision)

Floating-point Numbers
[e]e] lelelelele]lo]e]

In memory, a floating-point number is stored in three
consecutive fields:

sign (1 bit)

exponent (depends on the range)

fraction (depends on the precision)

In order for a memory representation to be useful, there must
be a standard.

Floating-point Numbers
[e]e] lelelelele]lo]e]

In memory, a floating-point number is stored in three
consecutive fields:

sign (1 bit)

exponent (depends on the range)

fraction (depends on the precision)

In order for a memory representation to be useful, there must
be a standard.

IEEE floating-point standards: single precision and double
precision.

Floating-point Numbers
[e]e]e] lelelele]lo]e]

Characteristics

A floating-point number system is characterized by four
(integer) parameters:

@ base (3 (also called radix)
@ precision t
@ exponent range emin < € < emax

Floating-point Numbers
0000@00000

Machine precision

A real number representing the accuracy.

Machine precision

Denoted by ¢y, defined as the distance between 1.0 and the
next larger floating-point number, which is 0.0...01 x 3°.

Floating-point Numbers

O000@00000

Machine precision

A real number representing the accuracy.

Machine precision

Denoted by ¢y, defined as the distance between 1.0 and the
next larger floating-point number, which is 0.0...01 x 3°.

Thus, ey = 5l_t.
Equivalently, the distance between two consecutive
floating-point numbers between 1.0 and 3. (The floating-point

numbers between 1.0 and § are evenly spaced,
1.0...000,1.0...001,1.0...010,...,1.1...111))

Floating-point Numbers
00000e0000

Machine precision (cont.)

How would you compute the underlying machine precision?

Floating-point Numbers
00000e0000

Machine precision (cont.)

How would you compute the underlying machine precision?

The smallest e such that 1.0 + ¢ > 1.0.

Floating-point Numbers
00000e0000

Machine precision (cont.)

How would you compute the underlying machine precision?

The smallest e such that 1.0 + ¢ > 1.0.

For 0 = 2:
eps = 1.0;
while (1.0 + eps > 1.0)
eps = eps/2;
end

2+ eps,

Floating-point Numbers
00000e0000

Machine precision (cont.)

How would you compute the underlying machine precision?

The smallest e such that 1.0 + ¢ > 1.0.

For 0 = 2:
eps = 1.0;
while (1.0 + eps > 1.0)
eps = eps/2;
end
2+ eps,

Examples. (6 = 2)
Whent =24, ¢y =222 ~12x 1077
Whent =53,y =272~ 2.2 x 10716

Floating-point Numbers
0000008000

Approximations of real numbers

Since floating-point numbers are discrete, a real number, for
example, v/2, may not be representable in floating-point. Thus
real numbers are approximated by floating-point numbers.

We denote
fi(x) = x.

as a floating-point approximation of a real number Xx.

Floating-point Numbers
0000000e00

Approximations of real numbers (cont.)

The floating-point number 1.10011001100110011001101 x 2~
can be used to approximate 1.0 x 10~1. The best single
precision approximation of decimal 0.1.

1.0 x 10~ 1 is not representable in binary.

Floating-point Numbers
0000000e00

Approximations of real numbers (cont.)

The floating-point number 1.10011001100110011001101 x 2~
can be used to approximate 1.0 x 10~1. The best single
precision approximation of decimal 0.1.

1.0 x 10~ 1 is not representable in binary.

When approximating, some kind of rounding is involved.

Floating-point Numbers
0000000080

Error measurements: ulp and u

If the nearest rounding is applied and fl(x) = d;.d5...d; x 3¢,
then the absolute error is bounded by

f(x) — x| < 556,

half of the unit in the last place (ulp);

Floating-point Numbers
0000000080

Error measurements: ulp and u

If the nearest rounding is applied and fl(x) = d;.d5...d; x 3¢,
then the absolute error is bounded by

f(x) — x| < 556,

half of the unit in the last place (ulp);

the relative error is bounded by

() — x| _ 26 since [i(x)| > 1.0 x 7

Ifl(x)]

called the unit of roundoff denoted by u.

Floating-point Numbers
000000000 e

Unit of roundoff u

When g =2,u=2"

Floating-point Numbers
000000000 e

Unit of roundoff u

When g =2,u=2"
How would you compute u?

Floating-point Numbers
000000000 e

Unit of roundoff u

When g =2,u=2"
How would you compute u?

The largest number such that 1.0 + u = 1.0.

Also, when 3 = 2, the distance between two consecutive
floating-point numbers between 1/2 and 1.0
(1.0..0x271 ...,11..1x2711.0)

1.0+ 27t = 1.0 (Why?)

Floating-point Numbers
000000000 e

Unit of roundoff u

When g =2,u=2"
How would you compute u?

The largest number such that 1.0 + u = 1.0.

Also, when 3 = 2, the distance between two consecutive
floating-point numbers between 1/2 and 1.0
(1.0..0x271 ...,11..1x2711.0)

1.0+ 27t = 1.0 (Why?)

u=10;

while (1.0 + u > 1.0)
u = ul2;

end

u,

Floating-point Numbers
@®0000000000000O

Four parameters

Base g = 2.
single | double
precision t 24 53
€min —-126 | —1022
€max 127 1023
Formats:

single | double
Exponent width 8 bits | 11 bits
Format width in bits | 32 bits | 64 bits

Floating-point Numbers
(o] lelelelelelelelele oo o]e]

X#Yy=1/x#1/y?

How many single precision floating-point numbers in [1,2)?

Floating-point Numbers
(o] lelelelelelelelele oo o]e]

X#Yy=1/x#1/y?

How many single precision floating-point numbers in [1,2)?

1.00...00 — 1.11...11

223 evenly spaced.

Floating-point Numbers
(o] lelelelelelelelele oo o]e]

X#Yy=1/x#1/y?

How many single precision floating-point numbers in [1,2)?

1.00..00 — 1.11...11
223 evenly spaced.

How many single precision floating-point numbers in (1/2,1]?

1.00...01 x 271 — 1.00...00

223, evenly spaced.

Floating-point Numbers
[o]e] lelelelelelelele oo e]e]

X £y =1/x#1/y? (cont.)

How many single precision floating-point numbers in [3/2,2)?
(1/2) x 223

Floating-point Numbers
[o]e] lelelelelelelele oo e]e]

X £y =1/x#1/y? (cont.)

How many single precision floating-point numbers in [3/2,2)?
(1/2) x 223

How many single precision floating-point numbers in
(1/2,2/3]?

(1/3) x 228,

Floating-point Numbers
[o]e] lelelelelelelele oo e]e]

X £y =1/x#1/y? (cont.)

How many single precision floating-point numbers in [3/2,2)?
(1/2) x 223

How many single precision floating-point numbers in
(1/2,2/3]?

(1/3) x 228,

Since (1/2) x 222 > (1/3) x 223, there exist x #y € [3/2,2)
suchthatl/x =1/y € (1/2,2/3].

Floating-point Numbers
[eele] lelelelelelelelele e]e]

Hidden bit and biased representation

Since the base is 2 (binary), the integer bit is always 1. This bit
is not stored and called hidden bit.

Floating-point Numbers
[eele] lelelelelelelelele e]e]

Hidden bit and biased representation

Since the base is 2 (binary), the integer bit is always 1. This bit
is not stored and called hidden bit.

The exponent is stored using the biased representation. In
single precision, the bias is 127. In double precision, the bias is
1023.

Floating-point Numbers
[eele] lelelelelelelelele e]e]

Hidden bit and biased representation

Since the base is 2 (binary), the integer bit is always 1. This bit
is not stored and called hidden bit.

The exponent is stored using the biased representation. In
single precision, the bias is 127. In double precision, the bias is
1023.

Single precision 1.10011001100110011001101 x 2~4 is stored
as

0 01111011 10011001100110011001101

Floating-point Numbers
[eeJele] Telelelelelelelelele]

Special quantities

The special quantities are encoded with exponents of either
€max + 1 Or emin — 1. In single precision, 11111111 in the
exponent field encodes emax + 1 and 00000000 in the
exponent field encodes eqin — 1.

Floating-point Numbers
[eeJele] Telelelelelelelelele]

Special quantities

The special quantities are encoded with exponents of either
€max + 1 Or emin — 1. In single precision, 11111111 in the
exponent field encodes emax + 1 and 00000000 in the
exponent field encodes eqin — 1.

Signed zeros: +0

Binary representation:
X 00000000 00000000000000000000000

Floating-point Numbers
[eJe]elele] lelelelelelelelele]

Signed zeros

@ When testing for equal, 40 = —0, so the simple testi f (X
== 0) is predictable whether x is 40 or —0.

@ The relation 1/(1/x) = x holds when x = 4-oc.
@ log(+0) = —oo and log(—0) = NaN; sign(4+-0) = 1 and
sign(—0) = —1.

Floating-point Numbers
[e]e]elelele] lelolelelelelele]

Signed zeros

Ifz=-1,+/1/z =i,butl/yz = —i.
V1/z #1/y/7!

Floating-point Numbers
[e]e]elelele] lelolelelelelele]

Signed zeros

Ifz=-1,+/1/z =i,butl/yz = —i.
V1/z #1/y/7!

Why? Square root is multivalued, can’t make it continuous in
the entire complex plane. However, it is continous for
z=cosf+isinf, —w <0 <, if a brabch cut consisting of all
negative real numbers is excluded from the consideration.

With signed zeros, for the numbers with negative real part,

—X +i(+0), x > 0, has a square root of i\/x; —x +i(—0) has a
square root of —i+/X.

Floating-point Numbers
[e]e]elelele] lelolelelelelele]

Signed zeros

Ifz=-1,+/1/z =i,butl/yz = —i.
V1/z #1/y/7!

Why? Square root is multivalued, can’t make it continuous in
the entire complex plane. However, it is continous for
z=cosf+isinf, —w <0 <, if a brabch cut consisting of all
negative real numbers is excluded from the consideration.

With signed zeros, for the numbers with negative real part,

—X +i(+0), x > 0, has a square root of i\/x; —x +i(—0) has a
square root of —i+/X.

z=-1=-1+i(4+0),1/z = -1+i(-0), then
Vijz=-i=1/vz

Floating-point Numbers
[e]e]elelele] lelolelelelelele]

Signed zeros

Ifz=-1,+/1/z =i,butl/yz = —i.
V1/z #1/y/7!

Why? Square root is multivalued, can’t make it continuous in
the entire complex plane. However, it is continous for
z=cosf+isinf, —w <0 <, if a brabch cut consisting of all
negative real numbers is excluded from the consideration.

With signed zeros, for the numbers with negative real part,

—X +i(+0), x > 0, has a square root of i\/x; —x +i(—0) has a
square root of —i+/X.

z=-1=-1+i(4+0),1/z = -1+i(-0), then
Vijz=-i=1/yz
However, +0 = —0, and 1/(+0) # 1/(—0). (Shortcoming)

Floating-point Numbers
[e]e]elelelele] Tolelelelelele]

Infinities

Infinities: +oo
Binary Representation:
X 11111111 00000000000000000000000

Floating-point Numbers
[e]e]elelelele] Tolelelelelele]

Infinities

Infinities: +oo
Binary Representation:
X 11111111 00000000000000000000000

@ Provide a way to continue when exponent gets too large,
x2 = oo, when x?2 overflows.

® Whenc # 0, ¢c/0 = +c0.

@ Avoid special case checking, 1/(x + 1/x), a better formula
for x /(x? + 1), with infinities, there is no need for checking
the special case x = 0.

Floating-point Numbers
[e]e]elelelelole] lelelelelele]

NEL

NaNs (not a number)

Binary representation:
X 11111111 nonzero fraction

Floating-point Numbers
[e]e]elelelelole] lelelelelele]

NEL

NaNs (not a number)

Binary representation:
X 11111111 nonzero fraction

Provide a way to continue in situations like

Operation \ NaN Produced By

+ 00 + (—o0)
* 0% o0
/ 0/0, co/o0

REM X REM 0, co REM y
sqrt sqrt(x) when x <0

Floating-point Numbers
[e]e]elelelelolele]l lelelelele]

Example for NaN

The function zer o(f) returns a zero of a given quadratic

polynomial f .
If
f=x24x+1,
d =1-4 <0, thus vd = NaN and
M = NaN,
2a

no zeros.

Floating-point Numbers
0000000000 ®O000

Denormalized numbers

Denormalized Numbers

Binary representation:
X 00000000 nonzero fraction

Floating-point Numbers
0000000000 ®O000

Denormalized numbers

Denormalized Numbers

Binary representation:

X 00000000 nonzero fraction

When e = e, — 1 and the bits in the fraction are by, bs, ..., by,
the number being represented is 0.bsbs...b; x 28+ (no hidden
bit)

Floating-point Numbers
0000000000 ®O000

Denormalized numbers

Denormalized Numbers

Binary representation:
X 00000000 nonzero fraction

When e = e, — 1 and the bits in the fraction are by, bs, ..., by,
the number being represented is 0.bsbs...b; x 28+ (no hidden
bit)
@ Guarantee the relation: X =y <= x -y =0
@ Allow gradual underflow. Without denormals, the spacing
abruptly changes from 3—t+138min to gemin which is a factor
of gt—1.

Floating-point Numbers
0000000000 0®O0O

Example for denormalized numbers

Complex division

a+ib ac+hbd Jribc—ad
c+id c2+d? c2+d?’

Floating-point Numbers
0000000000 0®O0O

Example for denormalized numbers

Complex division

a+ib ac+hbd Jribc—ad
c+id c2+d? c2+d?’

Underflows when a, b, ¢, and d are small.

Floating-point Numbers
000000000000 ®OO

Example for denormalized numbers

Smith’s formula

+b(d b-a(d :
§+d2d§8 +|c+32d§8 if |d| <|c|

b+ d . —a+b(c/d)
Sralel) i) if |d] > [cf

Floating-point Numbers
000000000000 ®OO

Example for denormalized numbers

Smith’s formula

+b(d b-a(d :
§+d2d§8 +|c+32d§8 if |d| <|c|

b+ d . —a+b(c/d)
Sralel) i) if |d] > [cf

Fora = 23%min, b = (3®min ¢ = 43%min and d = 23%min, the result
is 0.5 with denormals (a + b(d /c) = 2.53°min) or 0.4 without
denormals (a + b(d/c) = 23¢mn).

Floating-point Numbers
000000000000 ®OO

Example for denormalized numbers

Smith’s formula

+b(d b-a(d :
§+d2d§8 +|c+32d§8 if |d| <|c|

b+ d . —a+b(c/d)
d+§5§§d§ +1 da—l-c(((:%)) if |d| > [c|

Fora = 23%min, b = (3®min ¢ = 43%min and d = 23%min, the result
is 0.5 with denormals (a + b(d/c) = 2.53%in) or 0.4 without
denormals (a + b(d/c) = 23¢mn).

It is typical for denormalized numbers to guarantee error
bounds for arguments all the way down to 3¢min,

Floating-point Numbers
000000000000 0eO

IEEE floating-point representations

Exponent Fraction Represents
e=¢emn—1 f=0 +0
e=¢emn—1 f#£0 0.f x 2Cmin

€min < € < emax 1f x2°
e =e€emax+1 f=0 +oo
e=e€max+1 f#£0 NaN

Floating-point Numbers
0000000000000

Examples (IEEE single precision)

@ 110000001 11100000000000000000000
represents: —1.111, x 212°9-127 — _75,,

@ 0 00000000 11000000000000000000000
represents: 0.11, x 27126

© 011111111 00100000000000000000000
represents: NaN

¢ 111111111 00000000000000000000000
represents: —oo.

Floating-point Numbers

Underflow

An arithmetic operation produces a humber with an exponent
that is too small to be represented in the system.

Example.
In single precision,
a=3.0x10"%

a * a underflows.
By default, it is set to zero.

Floating-point Numbers

Overflow

An arithmetic operation produces a humber with an exponent
that is too large to be represented in the system.

Example.
In single precision,
a=3.0x10%,

a * a overflows.
In IEEE standard, the default result is oco.

Floating-point Numbers
lele] lele]

Avoiding unnecessary underflow and overflow

Sometimes, underflow and overflow can be avoided by using a
technique called scaling.

Floating-point Numbers
lele] lele]

Avoiding unnecessary underflow and overflow

Sometimes, underflow and overflow can be avoided by using a
technique called scaling.
Given x = (a,b)",a = 1.0 x 10%°, b = 1.0, compute

¢ =[]z = va*+ b2

Floating-point Numbers
lele] lele]

Avoiding unnecessary underflow and overflow

Sometimes, underflow and overflow can be avoided by using a
technique called scaling.

Given x = (a,b)",a = 1.0 x 10%°, b = 1.0, compute

c = |x|]2 = vaz + b2,

scaling: s = max{|al,|b|} = 1.0 x 10%°

a<a/s (1.0),

b« b/s (1.0 x 1073%9)

t=+vasxa+bxb (1.0)

Cc —txs (1.0 x10%)

Floating-point Numbers
lelele] lo]

Example: Computing 2-norm of a vector

Compute

2 2 2
X2 + X2 + ...+ X3

Floating-point Numbers
lelele] lo]

Example: Computing 2-norm of a vector

Compute

2 2 2
X2 + X2 + ...+ X3

Efficient and robust:

Avoid multiple loops:
searching for the largest; Scaling; Summing.

Floating-point Numbers
lelele] lo]

Example: Computing 2-norm of a vector

Compute

2 2 2
X2 + X2 + ...+ X3

Efficient and robust:

Avoid multiple loops:

searching for the largest; Scaling; Summing.
Result: One single loop

Technique: Dynamic scaling

Floating-point Numbers
lelelele]]

Example: Computing 2-norm of a vector

scale = 0.0;
ssq = 1.0;
for i=1 to n
if (x(i) !'=0.0)
if (scal e<abs(x(i))
tnmp = scal e/ x(i);

ssq = 1.0 + ssqg*tnp*tnp;
scal e = abs(x(i));
el se
tmp = x(i)/scale;
Ssq = ssq + tnpxtnp;
end
end

end
nrm2 = scal exsqrt(ssq);

Floating-point Numbers
e0

Correctly rounded operations

Correctly rounded means that result must be the same as if it
were computed exactly and then rounded, usually to the
nearest floating-point number. For example, if & denotes the
floating-point addition, then given two

floating-point numbers a and b,

a®b=fl(a+b).

Floating-point Numbers
e0

Correctly rounded operations

Correctly rounded means that result must be the same as if it
were computed exactly and then rounded, usually to the
nearest floating-point number. For example, if & denotes the
floating-point addition, then given two

floating-point numbers a and b,

a®b=fl(a+b).

Example
f=10,t=4
a=1.234x10%and b =5.678 x 1073

Floating-point Numbers
e0

Correctly rounded operations

Correctly rounded means that result must be the same as if it
were computed exactly and then rounded, usually to the
nearest floating-point number. For example, if & denotes the
floating-point addition, then given two

floating-point numbers a and b,

a®b=fl(a+b).

Example

5=10,t=4

a=1.234 x10°and b = 5.678 x 103
Exact: a+ b = 1.239678

Floating-point Numbers
e0

Correctly rounded operations

Correctly rounded means that result must be the same as if it
were computed exactly and then rounded, usually to the
nearest floating-point number. For example, if & denotes the
floating-point addition, then given two

floating-point numbers a and b,

a®b=fl(a+b).

Example

6=10,t =4

a=1234x10%andb =5.678 x 103
Exact: a +b =1.239678
Floating-point: fl(a + b) = 1.240 x 10°

Floating-point Numbers
oe

Correctly rounded operations

IEEE standards require the following operations are correctly
rounded:

@ arithmetic operations +, —, %, and /

@ square root and remainder

@ conversions of formats (binary, decimal)

Sources of Errors

9 Sources of Errors
@ Rounding Error
@ Truncation Error
@ Discretization Error

Sources of Errors
@®000000:!

Rounding error

Due to finite precision arithmetic, a computed result must be
rounded to fit storage format.

Example

f=10,p=4(u=0.5x1079)
a=1.234x10°b=5678x10"3

X =a+b =1.239678 x 10° (exact)

X =fl(a+b) = 1.240 x 10°

the result was rounded to the nearest computer number.

Sources of Errors
@®000000:!

Rounding error

Due to finite precision arithmetic, a computed result must be
rounded to fit storage format.

Example

f=10,p=4(u=0.5x1079)
a=1.234x10°b=5678x10"3

X =a+b =1.239678 x 10° (exact)

X =fl(a+b) = 1.240 x 10°

the result was rounded to the nearest computer number.

Rounding error: fl(a+b) = (a+ b)(1 +€), |e] < u.

Sources of Errors
@®000000:!

Rounding error

Due to finite precision arithmetic, a computed result must be
rounded to fit storage format.

Example

f=10,p=4(u=0.5x1079)
a=1.234x10°b=5678x10"3

X =a+b =1.239678 x 10° (exact)

X =fl(a+b) = 1.240 x 10°

the result was rounded to the nearest computer number.
Rounding error: fl(a+b) = (a+ b)(1 +€), |e] < u.

1.240 = 1.239678(1 + 2.59... x 1074), [2.59... x 1074| < u

Sources of Errors
(o] Telelelele]

Effect of rounding errors

Top:y = (x — 1)®
Bottom: y = x8 — 6x5 + 15x% — 20x3 4 15x%2 — 6x + 1

x10™ x10™ x107
1 15
6
1
05 4
05 2
0 o
05 -2
-05 -
-1 4
-6
-15
0.99 1 101 0995 1 1.005 0998 1 1002
x10™*

05
0
-0.5
4 -15 &l -
0.99 1 101 0.995 1 1.005 0998 1 1002

Two ways of evaluating the polynomial (x — 1)®

Sources of Errors
[oJe] Jelelele]

Real to floating-point

double x = 0. 1;

What is the value of x stored?

Sources of Errors
[oJe] Jelelele]

Real to floating-point

double x = 0. 1;

What is the value of x stored?

1.0 x 1071 =1.100110011001100110011... x 2~4

Sources of Errors
[oJe] Jelelele]

Real to floating-point

double x = 0. 1;

What is the value of x stored?

1.0 x 1071 =1.100110011001100110011... x 2~4

Decimal 0.1 cannot be exactlly represented in binary. It must be
rounded to

1.10011001100...110011010 x 2~4
> 1.10011001100...11001100110011...

slightly larger than 0.1.

Sources of Errors
000@000:!

Real to floating-point

doubl e x, vy, h;
X 1/ 2;
h 0.1;

for i=1 to 5
X = X + h;

end

y =1.0 - x;

y>0 or y<0 or y=07?

Sources of Errors
000@000:!

Real to floating-point

doubl e x, vy, h;
X 1/ 2;
h 0.1;

for i=1 to 5
X = X + h;

end

y =1.0 - x;

y>0 or y<0 or y=07?

Answer:y ~ 1.1 x 10716 >0

Sources of Errors
0000@00:!

Real to floating-point (cont.)

Why?

0.5 = 1.00000000...00 x 271
h = 0.00110011...11010 x 271

Sources of Errors
0000@00:!

Real to floating-point (cont.)

Why?

0.5 = 1.00000000...00 x 271
h = 0.00110011...11010 x 271

Rounding errors in floating-point addition.

Sources of Errors
00000@0!

Integer to floating-point

Java converts an integer into its mathematically equivalent
floating-point number.

l ong k
long d

1801439850948199; \\
k - (long)((double) k);

Note 1801439850948199 = 254 + 1
d =07?

Sources of Errors
00000@0!

Integer to floating-point

Java converts an integer into its mathematically equivalent
floating-point number.

l ong k
long d

1801439850948199; \\
k - (long)((double) k);

Note 1801439850948199 = 254 + 1
d =07?
No, d = 1!

Sources of Errors
000000

Integer to floating-point

Why?

Sources of Errors
000000

Integer to floating-point

Why?

k = 1.00...0001 x 2°*
(doubl) k = 1.00...00 x 2°*

Sources of Errors
L]

Truncation error

When an infinite series is approximated by a finite sum,
truncation error is introduced.
Example. If we use

x2 x3 x"
1+X+E+§+”'+m
to approximate
x_ 1 2 X3 ¥
e TR THR R =y I

then the truncation error is
Xn+1 Xn+2
|
(n+1) (n+2)

Sources of Errors
@00

Discretization error

When a continuous problem is approximated by a discrete one,
discretization error is introduced.
Example. From the expansion

f(x +h) =f(x) + hf'(x) + Z—Z!f”(g),

for some ¢ € [x, x + h], we can use the following approximation:

V() = f(x + hg —f(x) ~ (%),

The discretization error is Egis = [f”(£)|h/2.

Sources of Errors
(o] ToJ

Example

Let f(x) = eX, compute y(1).

Sources of Errors
(o] ToJ

Example

Let f(x) = eX, compute y(1).
The discretization error is
h

Edis = —\ ") <3 h elth ~ or for small h.

Sources of Errors
(o] ToJ

Example

Let f(x) = eX, compute y(1).
The discretization error is

Edis = —\ "©l=3 Neten o g for small h.
The computed yn(1):
. e(tN+a)(1 4+ 6) —e(1+ 1+
Gin(1) = ((1+e2) —e(l+es)) 64)(1 o).

h

Sources of Errors
(o] ToJ

Example

Let f(x) = eX, compute y(1).
The discretization error is

Edis = —\ "©l=3 Neten o g for small h.
The computed yn(1):
. e(tN+a)(1 4+ 6) —e(1+ 1+
Gin(1) = ((1+e2) —e(l+es)) 64)(1 o).

h

lei| < u.
The rounding error is

~ 7u
Eround = Yh(l) - yh(l) ~ Fe.

Sources of Errors
(ool J

Example (cont.)

The total error:

h 7u
Etotal = Edis + Eround =~ (E + F) €

Total error in the computed yp,(1).

Sources of Errors
(ool J

Example (cont.)

The total error:

2 h

|

Total error in the computed yp,(1).

The optimal h: hgpe = V12u = \/u.

h 7u
Etotal = Edis + Eround =~ <_ + _> €

Stability of an Algorithm

e Stability of an Algorithm

Stability of an Algorithm

Backward errors

Recall that

adb=flla+b)=(a+b)(1+n), [n<u

Stability of an Algorithm

Backward errors

Recall that

adb=flla+b)=(a+b)(1+n), [n<u

In other words, 5
adb=a+b

where & = a(1 +) and b = b(1 + 7), for |5| < u, are slightly
different from a and b respectively.

Stability of an Algorithm

Backward errors

Recall that

adb=flla+b)=(a+b)(1+n), [n<u

In other words, 5
adb=a+b

where & = a(1 +) and b = b(1 + 7), for |5| < u, are slightly
different from a and b respectively.

The computed sum (result) is the exact sum of slightly different
a and b (inputs).

Stability of an Algorithm

Example

f=10,p=4(u=0.5x 1079
a=1.234x10° b =5678 x 103
a®b=1.240 x 10°, a+ b = 1.239678

1.240 = 1.239678(1 + 2.59... x 1074), |2.59... x 10~4| < u
1.240 = a(1 +2.59... x 107%) + b(1 + 2.59... x 10~%)

Stability of an Algorithm

Example

f=10,p=4(u=0.5x 1079
a=1.234x10° b =5678 x 103
a®b=1.240 x 10°, a+ b = 1.239678

1.240 = 1.239678(1 + 2.59... x 1074), |2.59... x 10~4| < u
1.240 = a(1 +2.59... x 107%) + b(1 + 2.59... x 10~%)

The computed sum (result) is the exact sum of slightly different
a and b (inputs).

Stability of an Algorithm

Backward errors (cont.)

A general example
Sh=X1 DX D - D Xp

The computed result (x; @ - - - @ Xy) is the exact result of the

problem with slightly perturbed data. (X1(1 + 71), ..., Xn(1 + 7n)).
Backward errors:

Im| < 1.06(n — 1)u
;| < 1.06(n—i+1)u,i=2,3,..,n

Stability of an Algorithm

Backward errors (cont.)

A general example
Sh=X1 DX D - D Xp

The computed result (x; @ - - - @ Xy) is the exact result of the
problem with slightly perturbed data. (X1 (1 + 1), ..., Xn(1 4 7n)).
Backward errors:

Im| < 1.06(n — 1)u

il <1.06(n—i+1u,i=2,3,..,n

If the backward errors are small, then we say that the algorithm
is backward stable.

Sensitiviy of a Problem

e Sensitiviy of a Problem

Sensitiviy of a Problem

Introduction

Example: a+b
a=123,b=045s=a+b=1.68

Sensitiviy of a Problem

Introduction

Example: a+b
a=123,b=045s=a+b=1.68

Slightly perturbed R
a=a(l+0.01),b=0b(1+0.001),s=a+b=1.69275

Sensitiviy of a Problem

Introduction

Example: a+b
a=123,b=045s=a+b=1.68

Slightly perturbed R
a=a(l+0.01),b=0b(1+0.001),s=a+b=1.69275

Relative perturbations in data (a and b) are at most 0.01.

Sensitiviy of a Problem

Introduction

Example: a+b
a=123,b=045s=a+b=1.68

Slightly perturbed R
a=a(l+0.01),b=0b(1+0.001),s=a+b=1.69275

Relative perturbations in data (a and b) are at most 0.01.
Causing a relative change in the result |S — s|/|s| ~ 0.0076,

Sensitiviy of a Problem

Introduction

Example: a+b

a=123,b=045s=a+b=1.68

Slightly perturbed R
a=a(l+0.01),b=0b(1+0.001),s=a+b=1.69275

Relative perturbations in data (a and b) are at most 0.01.
Causing a relative change in the result |S — s|/|s| ~ 0.0076,
which is about the same as the perturbation 0.01

Sensitiviy of a Problem

Introduction

Example: a+b
a=123,b=045s=a+b=1.68

Slightly perturbed R
a=a(l+0.01),b=0b(1+0.001),s=a+b=1.69275

Relative perturbations in data (a and b) are at most 0.01.
Causing a relative change in the result |S — s|/|s| ~ 0.0076,
which is about the same as the perturbation 0.01

The result is insensitive to the perturbation in data.

Sensitiviy of a Problem

Introduction

a=123,b=-121,s=a+b=0.02

Sensitiviy of a Problem

Introduction

a=123,b=-121,s=a+b=0.02

Slightly perturbed R
a=a(1+0.01),b=Db(1+0.001),s=a+b=0.03109

Sensitiviy of a Problem

Introduction

a=123,b=-121,s=a+b=0.02

Slightly perturbed R
a=a(1+0.01),b=Db(1+0.001),s=a+b=0.03109

Relative perturbations in data (a and b) are at most 0.01.

Sensitiviy of a Problem

Introduction

a=123,b=-121,s=a+b=0.02

Slightly perturbed R
a=a(l+0.01),b=>b(1+0.001),s=a+b=0.03109
Relative perturbations in data (a and b) are at most 0.01.
Causing a relative change in the result |s — s|/|s| ~ 0.5545,

Sensitiviy of a Problem

Introduction

a=123,b=-121,s=a+b=0.02
Slightly perturbed R
a=a(1+0.01),b=Db(1+0.001),s=a+b=0.03109

Relative perturbations in data (a and b) are at most 0.01.
Causing a relative change in the result |s — s|/|s| ~ 0.5545,
which is more than 55 times as the perturbation 0.01

Sensitiviy of a Problem

Introduction

a=123,b=-121,s=a+b=0.02

Slightly perturbed R
a=a(1+0.01),b=Db(1+0.001),s=a+b=0.03109

Relative perturbations in data (a and b) are at most 0.01.
Causing a relative change in the result |s — s|/|s| ~ 0.5545,
which is more than 55 times as the perturbation 0.01

The result is sensitive to the perturbation in the data.

Sensitiviy of a Problem

Perturbation analysis

Example: a+b

|a(l + da) + b(1+dp) — (a+b)|
|a+ b]

|al + |b] _
S ol 0, d =max(da,dp).

Sensitiviy of a Problem

Perturbation analysis

Example: a+b

|a(l + da) + b(1+dp) — (a+b)|
|a+ b]

|al + |b] _
S ol 0, d =max(da,dp).

Condition number: (|al + |b|)/|a + b|, magnification of the
relative error.

relative error in result
relative error in data

ond

Condition number is a measurement (an upper bound) of the
sensitivity of the problem to changes in data.

Sensitiviy of a Problem

Example

Two methods for calculating z(x +y):

zeXx®dzy and z(XaYy)

Sensitiviy of a Problem

Example

Two methods for calculating z(x +y):

zeXx®dzy and z(XaYy)

B=10,t=4

x =1.002,y = —0.9958, z = 3.456
Exact z(x +y) = 2.14272 x 1072

z® (x ©y) = fI(3.456 % 6.200 x 10~3)
—2.143 x 1072

error; 2.8 x 10°6

Sensitiviy of a Problem

Example

Two methods for calculating z(x +y):

zeXx®dzy and z(XaYy)

B3=10,t=4

x =1.002,y = —0.9958, z = 3.456
Exact z(x +y) = 2.14272 x 1072

z® (X ®y) = fl(3.456 % 6.200 x 10~3)
=2.143 x 102

error; 2.8 x 10°6

(z@x)®(z®y)) = fl(3.463 — 3.441)
=2.200 x 1072

error: 5.7 x 104

More than 200 times!

Sensitiviy of a Problem

Example (cont.)

Backward error analyses

ZOXDZRY
= (2x(1+e) +2zy(1+€))(1+€s)
= zZ(1+e)(x(1+e1) +y(l+e2)), || <u

Sensitiviy of a Problem
Example (cont.)

Backward error analyses

ZOXDZRY
= (2x(1+e) +2zy(1+€))(1+€s)
= zZ(1+e)(x(1+e1) +y(l+e2)), || <u

zZe(xoy)
= Z((x +y)(1 +€e1))(1 + ea)
= zZ(1+e)(x(1+e1) +y(l+e1)), |6l <u

Sensitiviy of a Problem

Example (cont.)

Backward error analyses

ZOXDZRY
= (2x(1+e) +2zy(1+€))(1+€s)
= zZ(1+e)(x(1+e1) +y(l+e2)), || <u

zZe(xoy)
= Z((x +y)(1 +€e1))(1 + ea)
= zZ(1+e)(x(1+e1) +y(l+e1)), |6l <u

Both methods are backward stable.

Sensitiviy of a Problem
Example (cont.)

Perturbation analysis

Z(1+07)(x(1+0x) +y(1+9y))

zX(1 + 0z + 6x) +zy(1 + 0z + dy)

= zZ(X+VY)+2zx(0; + ox) +zy(5; + dy)

= Z(X +Y)(L + (92 + 6x) + (dy —)/ (x/y +1))

%

12(1+07)(X(1 + 0x) + Y (L +dy)) — z(x +Y)|
Z(x +)|

2
< p—
< <2+ |§+1|>5, & = max(|dx/|, [y |, [z])

Sensitiviy of a Problem

Example (cont.)

Perturbation analysis

Z(1+07)(x(1+0x) +y(1+9y))

zX(1 + 0z + 6x) +zy(1 + 0z + dy)

= zZ(X+VY)+2zx(0; + ox) +zy(5; + dy)

= Z(X +Y)(L + (92 + 6x) + (dy —)/ (x/y +1))

%

12(1+07)(X(1 + 0x) + Y (L +dy)) — z(x +Y)|
Z(x +)|

2
< - =
< <2+ |§+1|>5, & = max(|dx|, |8y |, |0])

The condition number can be large if y =~ —x and dx # dy.

Sensitiviy of a Problem

Example (cont.)

Forward error analysis

ZOXBZRY
= z(1+e3)(X(1+e1) +Y(1+e2))
~ zZ(X+Y)L+ (s +e)+(2—ea)/(x/y+1)), &l <u

2 u
BT

(Zoxozey)—zXx+y)l _ 5.
z(x +y) -

Sensitiviy of a Problem

Example (cont.)

Forward error analysis (cont.)

zo(X®y)~z(X+y)1+e +e3), gl <u
ze(xay)-—z(X+Yy)l

< 2u
1z(x +y) B

Sensitiviy of a Problem

Summary

forward error < cond - backward error J

@ If we can prove the algorithm is stable, in other words, the
backward errors are small, say, no larger than the
measurement errors in data, then we know that large
forward errors are due to the ill-conditioning of the problem.

@ If we know the problem is well-conditioned, then large
forward errors must be caused by unstable algorithm.

@ Condition number is an upper bound. It is possible that a
well-designed stable algorithm can produce good results
even the problem is ill-conditioned.

Sensitiviy of a Problem

Example revisited

=10t =4

X =1.002,y = —0.9958, z = 3.456
Exact z(x +y) = 2.14272 x 1072
z®(x @y) = fl(3.456 x 6.200 x 1073)
=2.143 x 1072

error: 2.8 x 1076

(z@x)®(z®y)) = fl(3.463 — 3.441)
=2.200 x 1072

error: 5.7 x 10~4

More than 200 times!

Why?

Sensitiviy of a Problem

Example revisited

(z@x)®(z®y)) = fl(3.463 — 3.441)

=2.200 x 1072

error: 5.7 x 10~*

Cancellation in subtracting two computed (contaminated)
numbers. (Catastrophic)

Sensitiviy of a Problem

Example revisited

(z@x)®(z®y)) = fl(3.463 — 3.441)
= 2.200 x 1072
error: 5.7 x 104

Cancellation in subtracting two computed (contaminated)
numbers. (Catastrophic)

z® (x @y) = fl(3.456 x 6.200 x 1073)
—2.143 x 1072
error: 2.8 x 106

Cancellation in subtracting two original (not contaminated)
numbers. (Benign)

Sensitiviy of a Problem

Example revisited

(z@x)®(z®y)) = fl(3.463 — 3.441)
= 2.200 x 1072
error: 5.7 x 104

Cancellation in subtracting two computed (contaminated)
numbers. (Catastrophic)

z® (x @y) = fl(3.456 x 6.200 x 1073)

=2.143 x 1072

error: 2.8 x 106

Cancellation in subtracting two original (not contaminated)
numbers. (Benign)

Catastrophic cancellation v.s. benign cancellation. J

Sensitiviy of a Problem

A classic example of avoiding cancellation

Solving quadratic equation
ax?+bx+c=0

Text book formula:

W P Vvb? — 4ac
B 2a

Computational method:

2C c

— . X
“b_signb)vbZ _4dac’ - ax

X1

Sensitiviy of a Problem

Question

Suppose ¢ = 10 and t = 8 (single precision), solve
ax®+bx +c¢ =0,

where
a=1 b=-10° and c=1,

using the both methods.

Fallacies

e Fallacies

Fallacies

Fallacies

@ Cancellation in the subtraction of two nearly equal
numbers is always bad.

@ The final computed answer from an algorithm cannot be
more accurate than any of the intermediate quantities, that
is, errors cannot cancel.

@ Arithmetic much more precise than the data it operates
upon is needless and wasteful.

@ Classical formulas taught in school and found in
handbooks and software must have passed the Test of
Time, not merely withstood it.

Summary

Summary

@ A computer number system is determined by four
parameters: Base, precision, €min, and emax

@ |EEE floating-point standards, single precision and double
precision. Special quantities: Denormals, +o00, NaN, +0,
and their binary representations.

@ Error measurements: Absolute and relative errors, unit of
roundoff, unit in the last place (ulp)

@ Sources of errors: Rounding error (computational error),
truncation error (mathematical error), discretization error
(mathematical error). Total error (combination of rounding
error and mathematical errors)

@ Issues in floating-point computation: Overflow, underflow,
cancellations (benign and catastrophic)

@ Error analysis: Forward and backward errors, sensitivity of
a problem and stability of an algorithm

	Floating-point Numbers
	Representations
	IEEE Floating-point Standards
	Underflow and Overflow
	Correctly Rounded Operations

	Sources of Errors
	Rounding Error
	Truncation Error
	Discretization Error

	Stability of an Algorithm
	Sensitiviy of a Problem
	Fallacies
	Summary

