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An optimization problem

Integer least squares (ILS) problem

min
x∈Z n

‖Ax − b‖2
2

A: real, full column rank
b: real



Introduction Applications Notions of Reduced Bases Examples

Example

A =

[

−1 4
−2 3

]

, b =

[

−0.4
4

]
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Example

A =

[

−1 4
−2 3

]

, b =

[

−0.4
4

]
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A naive approach

Solve for the real solution, then round it to its nearest integer.

A−1b =

[

−3.44
−0.96

]

→

[

−3
−1

]
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A naive approach

Solve for the real solution, then round it to its nearest integer.

A−1b =

[

−3.44
−0.96

]

→

[

−3
−1

]

Is this the ILS solution?
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Lattices and Bases

A brute force approach:
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Lattices and Bases

A brute force approach:

The set
L = {Az | z ∈ Z n}

is call the lattice generated by A.

Basis: Formed by the columns of A (generator matrix).



Introduction Applications Notions of Reduced Bases Examples

Lattices and bases

For a given lattice, its basis is not unique.

B =

[

−1 2
−2 −1

]
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Lattices and bases

Two bases are related by AZ = B:

[

−1 4
−2 3

] [

1 2
0 1

]

=

[

−1 2
−2 −1

]

Z : Unimodular matrix, a nonsingular integer matrix whose
inverse is also integer. (An integer matrix whose determinant is
±1.)
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Lattices and bases

Two bases are related by AZ = B:

[

−1 4
−2 3

] [

1 2
0 1

]

=

[

−1 2
−2 −1

]

Z : Unimodular matrix, a nonsingular integer matrix whose
inverse is also integer. (An integer matrix whose determinant is
±1.)

For any two generator matrices A and B of the same lattice,
|det(A)| = |det(B)|, called the determinant (volume) of the
lattice.
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Naive approach revisited

B−1b =

[

−1.52
−0.96

]

→

[

−2
−1

]
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Naive approach revisited

B−1b =

[

−1.52
−0.96

]

→

[

−2
−1

]

A closer (closest) lattice point (1.077 vs 1.166).
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Naive approach revisited

B−1b =

[

−1.52
−0.96

]

→

[

−2
−1

]

A closer (closest) lattice point (1.077 vs 1.166).

Finding a closest vector (CVP) is an NP problem.
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Lattice basis reduction

Lattice basis reduction problem:

Given a basis for a lattice, find a basis consisting of short
vectors.

Lattice basis reduction algorithm:

Given a basis matrix A, compute a unimodular matrix Z that
transforms the basis into a new basis matrix B = AZ whose
column vectors (basis vectors) are short.
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Wireless communication

Source signal (code) s, integer vector.

Communication channel is represented by H, real/complex
matrix.

Noise is represented by v , real vector.

The received signal
y = Hs + v

Given H and y , find s (decoding) using the naive approach
called zero forcing (fast).
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Wireless communication

Source signal (code) s, integer vector.

Communication channel is represented by H, real/complex
matrix.

Noise is represented by v , real vector.

The received signal
y = Hs + v

Given H and y , find s (decoding) using the naive approach
called zero forcing (fast).

When H is reduced, we have better chance of recovering s
(lattice aided decoding).
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Cryptography

Lattice based cryptosystems:

GGH (Goldreich, Goldwasser, Halevi) public-key cryptosystem.

Private key: A reduced basis matrix, e.g., diagonal, A.

Public key: An ill-conditioned basis matrix B = AZ .
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Cryptography

Lattice based cryptosystems:

GGH (Goldreich, Goldwasser, Halevi) public-key cryptosystem.

Private key: A reduced basis matrix, e.g., diagonal, A.

Public key: An ill-conditioned basis matrix B = AZ .

Encrypt: e = Bc + v , c clear text, v noise.

Decrypt: A−1e → Zc.
(B−1e gives wrong result.)
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Cryptography

Lattice based cryptosystems:

GGH (Goldreich, Goldwasser, Halevi) public-key cryptosystem.

Private key: A reduced basis matrix, e.g., diagonal, A.

Public key: An ill-conditioned basis matrix B = AZ .

Encrypt: e = Bc + v , c clear text, v noise.

Decrypt: A−1e → Zc.
(B−1e gives wrong result.)

Lattice basis reduction is an NP problem.
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Matrix representation

Given a generator matrix A, compute the QRZ decomposition

A = QRZ−1

Q: orthonormal columns, preserving vector length
R: upper triangular
Z : unimodular
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Matrix representation

Given a generator matrix A, compute the QRZ decomposition

A = QRZ−1

Q: orthonormal columns, preserving vector length
R: upper triangular
Z : unimodular

Thus QR is the QR decomposition of AZ , reduced (the
columns of R or AZ are short).
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Hermite reduction

Hermite-reduced, also called size-reduced.
Hermite, 1850.

Hermite-reduced

A lattice basis {b1, b2, . . . , bn} is called size-reduced if its QR
decomposition satisfies

|ri ,i | ≥ 2|ri ,j |, for all 1 ≤ i < j ≤ n,
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Hermite reduction

Hermite-reduced, also called size-reduced.
Hermite, 1850.

Hermite-reduced

A lattice basis {b1, b2, . . . , bn} is called size-reduced if its QR
decomposition satisfies

|ri ,i | ≥ 2|ri ,j |, for all 1 ≤ i < j ≤ n,

The off-diagonal of R is small.
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HKZ reduction

HKZ-reduced, strengthened Hermite-reduced.
Korkine and Zolotarev, 1873.

HKZ-reduced

A lattice basis {b1, b2, . . . , bn} is called HKZ-reduced if it is
size-reduced and for each trailing (n − i + 1) × (n − i + 1),
1 ≤ i < n, submatrix of R in the QR decomposition, its first
column is a shortest nonzero vector in the lattice generated by
the submatrix.
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HKZ reduction

HKZ-reduced

ri ,i ri ,i+1 · · · ri ,n

ri+1,i+1 · · · ri+1,n
. . .

...
rn,n
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LLL reduction

LLL-reduced
Lenstra, Lenstra, and Lovász, 1982

LLL-reduced

A lattice basis {b1, b2, . . . , bn} is called LLL-reduced if it is
size-reduced and R in the QR decomposition satisfies

r2
i+1,i+1 + r2

i ,i+1 ≥ ω r2
i ,i
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HKZ and LLL

HKZ-reduced and LLL-reduced

ri ,i ri ,i+1 · · · ri ,n

ri+1,i+1 · · · ri+1,n
. . .

...
rn,n
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HKZ and LLL

HKZ-reduced and LLL-reduced

ri ,i ri ,i+1 · · · ri ,n

ri+1,i+1 · · · ri+1,n
. . .

...
rn,n

LLL-reduced is weaker than HKZ-reduced, HKZ-reduced
implies LLL-reduced for any ω: 0; .25 < ω < 1.0

Easier to compute (fast).

Practically, it produces reasonably short bases.
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Minkowski minima

Minkowski, 1891
Short vectors

Minkowski minima

We say that λk , 1 ≤ k ≤ n, is the k-th successive minimum wrt
a lattice if λk is the lower bound of the radius λ of the sphere
||Bz||2 ≤ λ that contains k linearly independent lattice points.
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Minkowski minima

Minkowski, 1891
Short vectors

Minkowski minima

We say that λk , 1 ≤ k ≤ n, is the k-th successive minimum wrt
a lattice if λk is the lower bound of the radius λ of the sphere
||Bz||2 ≤ λ that contains k linearly independent lattice points.

λ1: the length of a shortest nonzero lattice vector b1
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Minkowski minima

Minkowski, 1891
Short vectors

Minkowski minima

We say that λk , 1 ≤ k ≤ n, is the k-th successive minimum wrt
a lattice if λk is the lower bound of the radius λ of the sphere
||Bz||2 ≤ λ that contains k linearly independent lattice points.

λ1: the length of a shortest nonzero lattice vector b1

Is there always a basis {b1, b2, . . . , bn} so that ‖bi‖ = λi

simultaneously?
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Minkowski minima

No.
Consider a lattice formed by columns of













2 0 0 0 1
0 2 0 0 1
0 0 2 0 1
0 0 0 2 1
0 0 0 0 1













.

Minkowski minima λ1 = ... = λ5 = 2.
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Minkowski minima

No.
Consider a lattice formed by columns of













2 0 0 0 1
0 2 0 0 1
0 0 2 0 1
0 0 0 2 1
0 0 0 0 1













.

Minkowski minima λ1 = ... = λ5 = 2.

The columns of 2I5 do not form a basis for the lattice
(determinants do not equal).
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Minkowski reduction

Minkowski-reduced

A lattice basis {b1, b2, . . . , bn} is called Minkowski-reduced if
for each bk , k = 1, ..., n, ‖bk‖2 is the lower bound of the radius
ρ of the sphere ||Bz||2 ≤ ρ that contains k lattice vectors that
can be extended to a basis for the lattice.
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Minkowski reduction

Minkowski-reduced

A lattice basis {b1, b2, . . . , bn} is called Minkowski-reduced if
for each bk , k = 1, ..., n, ‖bk‖2 is the lower bound of the radius
ρ of the sphere ||Bz||2 ≤ ρ that contains k lattice vectors that
can be extended to a basis for the lattice.

Properties

bi is a shortest nonzero vector in the sublattice
generated by {bi , bi+1, . . . , bn};

λ1 = ||b1||2 ≤ ||b2||2 ≤ · · · ≤ ||bn||2;

||bi ||2 ≥ λi for 1 ≤ i ≤ n.
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Minkowski reduction

Another (weaker or equivalent?) notion

Minkowski-reduced

A lattice basis {b1, b2, . . . , bn} is called Minkowski-reduced if
for each bi , i = 1, 2, . . . , n, its length

||bi ||2 = min(||b̂i ||2, ||b̂i+1||2, . . . , ||b̂n||2)

over all sets {b̂i , b̂i+1, . . . , b̂n} of lattice points such that
{b1, b2, . . . , bi−1, b̂i , b̂i+1, . . . , b̂n} form a basis for the lattice.
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Minkowski reduction

Another (weaker or equivalent?) notion

Minkowski-reduced

A lattice basis {b1, b2, . . . , bn} is called Minkowski-reduced if
for each bi , i = 1, 2, . . . , n, its length

||bi ||2 = min(||b̂i ||2, ||b̂i+1||2, . . . , ||b̂n||2)

over all sets {b̂i , b̂i+1, . . . , b̂n} of lattice points such that
{b1, b2, . . . , bi−1, b̂i , b̂i+1, . . . , b̂n} form a basis for the lattice.

In words, each bi , for i = 1, 2, . . . , n − 1, is a shortest nonzero
lattice vector such that {b1, b2, . . . , bi} can be extended to a
basis for the lattice.
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Examples





1 −1
2 −1

2
0 1 −1

2
0 0 1





HKZ, thus LLL, reduced, but not Minkowski-reduced.
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Examples





1 −1
2 −1

2
0 1 −1

2
0 0 1





HKZ, thus LLL, reduced, but not Minkowski-reduced.

B =





1 −1
2 0

0 1 1
2

0 0 1



 =





1 −1
2 −1

2
0 1 −1

2
0 0 1









1 0 1
0 1 1
0 0 1





Minkowski-reduced, also HKZ-reduced.
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Examples













2 0 0 0 1
0 2 0 0 1
0 0 2 0 1
0 0 0 2 1
0 0 0 0 1













Minkowski-reduced, but not LLL-reduced for ω > 0.5, thus not
HKZ-reduced.
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Next talk

Preview

Algorithms for computing reduced bases.
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Thank you!
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Thank you!

Questions?
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