Programming Abstraction in C++

Eric S. Roberts and Julie Zelenski

Stanford University
2010.

Chapter 1. An Overview of C++

Chapter 1. An Overview of C++

You should read Chapter 1. We won'’t teach the basic syntax
and constructs. We'll just highlight some of the common
programming idioms and C++ characteristics.

Outline

e Structure of a C++ program
9 Variables, values, and types
e Statements

e Functions

Structure of a C++ program

Outline

9 Structure of a C++ program

Structure of a C++ program

Structure of a C++ program

Comments
@ Program: Operation of the program as a whole.
@ Function: What the function does.

/ = multiline
* comments
* [

/I single line comments

Structure of a C++ program

Structure of a C++ program (cont.)

Library inclusions

#include "private library"
#include <system library>

header files containing definitions.

Structure of a C++ program

Structure of a C++ program (cont.)

Library inclusions

#include "private library"
#include <system library>

header files containing definitions.

constant definitions

Structure of a C++ program

Structure of a C++ program (cont.)

Library inclusions

#include "private library"
#include <system library>
header files containing definitions.
constant definitions

function prototypes

Structure of a C++ program

Structure of a C++ program (cont.)

Library inclusions

#include "private library"
#include <system library>
header files containing definitions.
constant definitions

function prototypes

main

Structure of a C++ program

Structure of a C++ program (cont.)

Library inclusions

#include "private library"
#include <system library>
header files containing definitions.
constant definitions

function prototypes

main

function definitions

Structure of a C++ program

Example

Program comments

* File: powertab.cpp

* This program generates a table comparing
* values of the functions n"2 and 2°n.

Structure of a C++ program

Example

Program comments

* File: powertab.cpp

* This program generates a table comparing
* values of the functions n"2 and 2°n.
*/

Library inclusions
#include "genlib.h"

#include <iostream>
#include <iomanip>

Structure of a C++ program

Example (cont.)

section comment
[* Constants
* LOWER_LIMIT -- starting value for the table

* UPPER_LIMIT -- final value for the table
*/

Structure of a C++ program

Example (cont.)

section comment
/ * Constants

K mmm—————

* LOWER_LIMIT -- starting value for the table
* UPPER_LIMIT -- final value for the table

«/

constant definitions

Iy
o

const int LOWER_LIMIT
const int UPPER_LIMIT

Structure of a C++ program

Example (cont.)

function prototype

/= Private function prototypes */
int RaiselntToPower(int n, int k);

Structure of a C++ program

Example (cont.)

main program

int main() {
cout << " | 2| N " << endl
cout << " N | N | 2 " << end;
cout << "emoo|-mome|--ooe- " << endl

for (int n = LOWER_LIMIT; n <= UPPER_LIMIT; n++) {
cout << setw(3) << n << " |
cout << setw(4) << RaiselntToPower(n, 2) << " |
cout << setw(5) << RaiselntToPower(2, n) << endl;

}

return O;

Structure of a C++ program

Example (cont.)

function comments

Function: RaiselntToPower
Usage: p = RaiselntToPower(n, k);

* % X X

* This function returns n to the kth power.
*/

Structure of a C++ program

Example (cont.)

function definition

int RaiselntToPower(int n, int k) {
int result;

result = 1;
for (inti = 0; i < k; i++) {
result *= N,

}

return result;

Structure of a C++ program

Example (cont.)

function definition

int RaiselntToPower(int n, int k) {
int result;

result = 1;

for (inti = 0; i < k; i++) {
result *= N,

}

return result;

Style: Page 6

Variables, values, and types

Outline

9 Variables, values, and types

Variables, values, and types

Variables and values

Declaration: four properties
@ type: (int i; double x; char c;)
@ name: Naming conventions

@ start with a letter or underscore, others are letters, digits, or
underscores, no spaces or special characters

@ No reserved keywords (Table 1-1, p. 11)

@ Case sensitive

Variables, values, and types

Variables and values

Declaration: four properties
@ type: (int i; double x; char c;)
@ name: Naming conventions

@ start with a letter or underscore, others are letters, digits, or
underscores, no spaces or special characters

@ No reserved keywords (Table 1-1, p. 11)

@ Case sensitive

Examples

variables: totalTime
functions: RaiselntToPower
constants: UPPERLIMIT

Variables, values, and types

Variables and values

Declaration: four properties (cont.)

@ life time: How long a varible persists. The lifetime of a
variable declared in a function (local variable) is the time
when the function is active

@ scope: accessibility. The scope of a local variable extends
to the end of the block where it is declared.

Variables, values, and types

Variables and values

Declaration: four properties (cont.)

@ life time: How long a varible persists. The lifetime of a
variable declared in a function (local variable) is the time
when the function is active

@ scope: accessibility. The scope of a local variable extends
to the end of the block where it is declared.

We rarely, if ever, use global variables (declared outside any
function).

Variables, values, and types

Variables and values

Variables must be declared before they are used.

Variables, values, and types

Variables and values

Variables must be declared before they are used.

All values have a type, and every variable has a declared type.
Example: 2 (int), 2.0 (double)

Variables, values, and types

Variables and values

Variables must be declared before they are used.

All values have a type, and every variable has a declared type.
Example: 2 (int), 2.0 (double)

Local variable can be declared anywhere with a block of
statements.

Example:
for (int i = 0; ...) {

}

Variables, values, and types

Data types

Two attributes: Domain and operations.

Variables, values, and types

Data types

Two attributes: Domain and operations.

Atomic types
@ integer: short ,int , long
@ floating-point: float , double , long double
@ text: char (ASCII code, Table 1-2, p. 14), string
@ Boolean: bool

Variables, values, and types

Operations

@ Precedence and associativity (Table 1-4, p. 17).
Example:
7+6/3 * 2o0r7 + (6 / 3) * 2)
In general, put extra parentheses.

Variables, values, and types

Operations

@ Precedence and associativity (Table 1-4, p. 17).
Example:
7+6/3 * 2o0r7 + (6 / 3) * 2)
In general, put extra parentheses.

@ Mixing types (automatic conversion, Table 1-5, p. 18).
Example: 9 / 4.0
Values are promoted to the richer type.

Variables, values, and types

Operations

@ Precedence and associativity (Table 1-4, p. 17).
Example:
7+6/3 * 2o0r7 + (6 / 3) * 2)
In general, put extra parentheses.

@ Mixing types (automatic conversion, Table 1-5, p. 18).
Example: 9 / 4.0
Values are promoted to the richer type.

@ Type casts: int nhum, den; double (num) / den;

Variables, values, and types

Operations

@ Assignments: multiple assignments (n1 = n2 = 0).
It works because an assignment is an expression that has
as its result the value assigned.
shorthand assignments (x += 2)

Variables, values, and types

Operations

@ Assignments: multiple assignments (n1 = n2 = 0).
It works because an assignment is an expression that has
as its result the value assigned.
shorthand assignments (x += 2)

@ Increments and decrements (i++ , ++i , j--)
Be sure you understand their meanings. (P. 22)

Variables, values, and types

Operations

@ Assignments: multiple assignments (n1 = n2 = 0).
It works because an assignment is an expression that has
as its result the value assigned.
shorthand assignments (x += 2)

@ Increments and decrements (i++ , ++i , j--)
Be sure you understand their meanings. (P. 22)

@ Boolean
relational operators: ==, I= , <, >, <=, >=
short-circuit evaluatlon.
if (y!=0) & & (x % y == 0))
logical operators: ! , &&, ||
bitwise operators: &, |
Don’t confuse Boolean logic with bitwise operators.

Statements

Outline

e Statements

Statements

Simple I/O

Simplified I/O
#include "simpio.h"

Stream manipulators, Table 1-3, p. 16
#include <iomanip>

Statements

Simple I/O

Simplified I/O
#include "simpio.h"

Stream manipulators, Table 1-3, p. 16
#include <iomanip>

cout << "Enter an integer: " << endl;

int n1 = GetInteger();

cout << "Enter a floating-point: " << endl;
float x = GetReal();

Statements

Statements

@ Simple statements

a=>b+ ¢
@ Compound statements (blocks): indentation (four spaces)
{
y =X
X += 1;
}

@ Terminator ;

Statements

Control statements: if

if (condition) statement
The test must always be enclosed in parentheses.

if (condition) statement else statement

if (n % 2 == 0) {

cout << "That number is even." << endl;
} else {

cout << "That number is odd." << endl;

}

Statements

Control statements: if

if (condition) statement
The test must always be enclosed in parentheses.

if (condition) statement else statement

if (n % 2 == 0) {

cout << "That number is even." << endl;
} else {

cout << "That number is odd." << endl;

}

Any non-zero expression is true
if (X) meansthe sameasif (x != 0)

Statements

Control statements: switch

switch (d) {

case 0: cout << "zero"; break;
case 1: cout << "one"; break;
case 2: cout << "two"; break;
case 3: cout << "three"; break;
case 4: cout << "four"; break;
case 5: cout << "five"; break:
case 6: cout << "six"; break;
case 7: cout << "seven"; break;
case 8: cout << "eight"; break;
case 9: cout << "nine"; break;

default: Error("lllegal call to PrintOneDigit");

Statements

Control statements: switch

switch (d) {

case 0: cout << "zero"; break;
case 1: cout << "one"; break;
case 2: cout << "two"; break;
case 3: cout << "three"; break;
case 4: cout << "four"; break;
case 5: cout << "five"; break:
case 6: cout << "six"; break;
case 7: cout << "seven"; break;
case 8: cout << "eight"; break;
case 9: cout << "nine"; break;

default: Error("lllegal call to PrintOneDigit");

use break and default

Statements

Control statements: while

Digit sum

sum = 0;

while (n > 0) {
sum +=n % 10;
n /= 10;

Statements

Control statements: while

Digit sum

sum = 0;

while (n > 0) {
sum +=n % 10;
n /= 10;

}

Solving the loop-and-half problem with while (true) and
break

while (true) {

if (value == sentinel) break;

Statements

Control statements: while

Digit sum

sum = 0;

while (n > 0) {
sum +=n % 10;
n /= 10;

}

Solving the loop-and-half problem with while (true) and
break

while (true) {
if (value == sentinel) break;
}

Programming style: Use at most one break in any given loop.

Statements

Example

Echo an integer until —1
const int SENTINEL = -1;

while (true) {
cout << " ?2 "
int value = Getinteger();
if (value == SENTINEL) break;
cout << value << endl;

Statements

Control statements: for

for (int t = 10; t >= 0; t--) {
cout << t << endl;

}

Statements

Control statements: for

for (int t = 10; t >= 0; t--) {
cout << t << endl;
}

The expressions init, test, and step are each optional, but the
semicolons must appear.

@ Ifinit is missing, no initialization;

@ Iftest is missing, assumed to be true ;

@ If step is missing, no action between loop cycles.

Statements

Control statements: for

for (int t = 10; t >= 0; t--) {
cout << t << endl;

}

The expressions init, test, and step are each optional, but the
semicolons must appear.

@ Ifinit is missing, no initialization;

@ Iftest is missing, assumed to be true ;

@ If step is missing, no action between loop cycles.

Use for loop for straightforward iterative tasks;
while loop for indefinite iteration.

Functions

Outline

e Functions

Functions

Functions

Prototype and definition must match exactly.

Functions

Functions

Prototype and definition must match exactly.
function-calling mechanism

© Evaluate arguments;

@ Creat a frame on the stack for local variables, including
arguments;

© Copy the values of the arguments in order;

© Execute the function;

© Return the value of the function, if any;

© Discard the frame for the function;

@ Continue the calling function with the returned value, if any.

Functions

Function (cont.)

Call by value.

void SetToZero(int x) {
x = 0;

}

X = 1;
SetToZero(x);
cout << x << endl

Functions

Function (cont.)

Call by value.

void SetToZero(int x) {
x = 0;

}

X = 1;
SetToZero(x);
cout << x << endl

Functions

Function (cont.)

Call by value.

void SetToZero(int x) {
x = 0;

}

X = 1;
SetToZero(x);
cout << x << endl

Functions

Function (cont.)

Call by value.

void SetToZero(int x) {
x = 0;

}

X = 1;
SetToZero(x);
cout << x << endl

Functions

Function (cont.)

Call by reference.

void SetToZero(int & x) {

x = 0;
}
X =1
SetToZero(x);

cout << x << endl

Functions

Function (cont.)

Call by reference.

void SetToZero(int & x) {

x = 0;
}
X =1
SetToZero(x);

cout << x << endl

X FFCO |FFB4

X 1 FFCO

Function (cont.)

Call by reference.

void SetToZero(int & x) {

x = 0;
}
X =1
SetToZero(x);

cout << x << endl

FFCD

FFB4

FFQO

Functions

Functions

Function (cont.)

In general

@ If you only use the value of an argument in the function (on
the right-side of assignments), call it by value.

@ If you want to reflect the change of the value of an
argument in the function to the caller (on the left-side of
assignments), call it by reference.

Functions

Example

Program decomposition: Input-Computation-Output

Functions

Example

Program decomposition: Input-Computation-Output

Solving quadratic equations
ax?+bx+c=0, a#0.

Textbook formula

W P Vvb? — 4ac
B 2a

Functions

Example

Program decomposition: Input-Computation-Output

Solving quadratic equations
ax?+bx+c=0, a#0.

Textbook formula

W P Vvb? — 4ac
N 2a
Computer method
2c c

X1 = . Xp = —.
' Tp_dgn(b)vb?Z _dac - ax

Functions

Example (cont.)

void SolveQuadEqgn(double a, doule b, double c,

double &x1, double &x2) {
if (a == 0)
Error("Coefficient a is zero.");

double disc = b *x b-4 * ax* ¢

if (disc < 0)
Error("Solutions are complex.");
if (disc == 0) {
x1 =x2=-b/ (2 *a);
} else {
x1 = 2+c / (-b - sign(b) * sqrt(disc));

x2 =c/ (a = xi1);

	Structure of a C++ program
	Variables, values, and types
	Statements
	Functions

