
Enumeration Types Data and Memory Pointers Arrays Pointers and Arrays Records

Programming Abstraction in C++

Eric S. Roberts and Julie Zelenski

Stanford University
2010

Enumeration Types Data and Memory Pointers Arrays Pointers and Arrays Records

Chapter 2. Data Types

Enumeration Types Data and Memory Pointers Arrays Pointers and Arrays Records

Outline

1 Enumeration Types

2 Data and Memory

3 Pointers

4 Arrays

5 Pointers and Arrays

6 Records

Enumeration Types Data and Memory Pointers Arrays Pointers and Arrays Records

Introduction

Goal: Hierarchy of data types. Building new data types from
atomic data types.

Enumeration Types Data and Memory Pointers Arrays Pointers and Arrays Records

Introduction

Goal: Hierarchy of data types. Building new data types from
atomic data types.

Mechanisms for creating new types:

Pointers: Memory address of a value (may be an address
itself).

Arrays: Collection of data values of the same type.
Accessed by indices.

Records: Collection of data values (may be of different
types). Identified by names.

Enumeration Types Data and Memory Pointers Arrays Pointers and Arrays Records

Outline

1 Enumeration Types

2 Data and Memory

3 Pointers

4 Arrays

5 Pointers and Arrays

6 Records

Enumeration Types Data and Memory Pointers Arrays Pointers and Arrays Records

Enumeration types

Another atomic type defined by listing the elements in its
domain.

Example. Definition

enum directionT {North, East, South, West}

North, East, ...: Enumeration constants

Enumeration Types Data and Memory Pointers Arrays Pointers and Arrays Records

Enumeration types

Another atomic type defined by listing the elements in its
domain.

Example. Definition

enum directionT {North, East, South, West}

North, East, ...: Enumeration constants

variable declaration

directionT dir;

Enumeration Types Data and Memory Pointers Arrays Pointers and Arrays Records

Enumeration types (cont.)

Assigning integers to enumeration constants:

Automatic
North= 0, East= 1, ...

Enumeration Types Data and Memory Pointers Arrays Pointers and Arrays Records

Enumeration types (cont.)

Assigning integers to enumeration constants:

Automatic
North= 0, East= 1, ...

manual

enum coinT {
Penny = 1,
Nickel = 5,
Dime = 10,
Quarter = 25

};

Enumeration Types Data and Memory Pointers Arrays Pointers and Arrays Records

Enumeration types (cont.)

semi-automatic

enum monthT {
January = 1, February, March, April, May, June,
July, August, September, October, November, December

};

Enumeration Types Data and Memory Pointers Arrays Pointers and Arrays Records

Enumeration types (cont.)

semi-automatic

enum monthT {
January = 1, February, March, April, May, June,
July, August, September, October, November, December

};

You can perform integer operations on values of an
enumeration type

Example

directionT RightFrom(directionT dir) {
return directionT((dir + 1) % 4);

}

Enumeration Types Data and Memory Pointers Arrays Pointers and Arrays Records

Enumeration types (cont.)

semi-automatic

enum monthT {
January = 1, February, March, April, May, June,
July, August, September, October, November, December

};

You can perform integer operations on values of an
enumeration type

Example

directionT RightFrom(directionT dir) {
return directionT((dir + 1) % 4);

}

A general type class: scalar types (enumeration types,
characters, and various representations of integers).

Implicit conversion from a value of a scalar type into an integer.

Enumeration Types Data and Memory Pointers Arrays Pointers and Arrays Records

Outline

1 Enumeration Types

2 Data and Memory

3 Pointers

4 Arrays

5 Pointers and Arrays

6 Records

Enumeration Types Data and Memory Pointers Arrays Pointers and Arrays Records

Data and memory

Memory units:
bit (smallest)
byte (typically 8 bits, size of char)
word (size of int, 2 bytes or 4 bytes or others)

Enumeration Types Data and Memory Pointers Arrays Pointers and Arrays Records

Data and memory

Memory units:
bit (smallest)
byte (typically 8 bits, size of char)
word (size of int, 2 bytes or 4 bytes or others)

Memory addresses: Byte addressable, starting from 0

Enumeration Types Data and Memory Pointers Arrays Pointers and Arrays Records

Data and memory

Memory units:
bit (smallest)
byte (typically 8 bits, size of char)
word (size of int, 2 bytes or 4 bytes or others)

Memory addresses: Byte addressable, starting from 0

sizeof operator usage:
sizeof(int) sizeof x

returns the number of bytes.

Enumeration Types Data and Memory Pointers Arrays Pointers and Arrays Records

Example. Memory allocation

char ch;
ch = ’A’;

ch1000
1001

1002

65

Enumeration Types Data and Memory Pointers Arrays Pointers and Arrays Records

Example (cont.)

int i;
i = 123;

i1000

1004

123

Enumeration Types Data and Memory Pointers Arrays Pointers and Arrays Records

Outline

1 Enumeration Types

2 Data and Memory

3 Pointers

4 Arrays

5 Pointers and Arrays

6 Records

Enumeration Types Data and Memory Pointers Arrays Pointers and Arrays Records

Pointers

Pointer: An address in memory, typically four bytes, for memory
of size up to 4GB.

Enumeration Types Data and Memory Pointers Arrays Pointers and Arrays Records

Pointers

Pointer: An address in memory, typically four bytes, for memory
of size up to 4GB.

lvalue: An expression that refers to an internal memory location
(can appear on the left side of an assignment).

lvalues: simple variables, x = 1.0

not lvalues: constants, arithmetic expressions (x + 1)

Enumeration Types Data and Memory Pointers Arrays Pointers and Arrays Records

Pointers

Pointer variables

int *p;
pointer-to-int, base type is int

char *cptr;
pointer-to-char, base type is char

Enumeration Types Data and Memory Pointers Arrays Pointers and Arrays Records

Pointers

Pointer variables

int *p;
pointer-to-int, base type is int

char *cptr;
pointer-to-char, base type is char

Operator & (address-of)

&x
memory address in which x (lvalue) is stored.

Enumeration Types Data and Memory Pointers Arrays Pointers and Arrays Records

Example. * and &

int x, y; (lvalues)
int *p1, *p2; (pointer-to-int)

p2

1000
1004
1008
1012

x

y
p1

Enumeration Types Data and Memory Pointers Arrays Pointers and Arrays Records

Example. * and &

int x, y; (lvalues)
int *p1, *p2; (pointer-to-int)

p2

1000
1004
1008
1012

x

y
p1

&x is 1000, &y is 1004

Enumeration Types Data and Memory Pointers Arrays Pointers and Arrays Records

Example. * and &

x = -42; y = 163;
p1 = &x; p2 = &y;

1004

1000
1004
1008
1012

x

y
p1
p2

−42

163

1000

Enumeration Types Data and Memory Pointers Arrays Pointers and Arrays Records

Example. * and &

Dereferencing
*p1 = 17

 171000
1004
1008
1012

x

y
p1
p2

163

1000

1004

Enumeration Types Data and Memory Pointers Arrays Pointers and Arrays Records

Example. * and &

Pointer assignment and value assignment
p1 = p2; and *p1 = *p2;

1000

1004

1008

1012

x

y
p1

p2

163

 17

1004

1004

1631000
1004
1008
1012

x

y
p1
p2

163

1000

1004

Enumeration Types Data and Memory Pointers Arrays Pointers and Arrays Records

Pointers

null pointer NULL

A special value that does not point to any valid data.

Enumeration Types Data and Memory Pointers Arrays Pointers and Arrays Records

Pointers

null pointer NULL

A special value that does not point to any valid data.

Do not dereference a null pointer
(do not use *NULL)

Enumeration Types Data and Memory Pointers Arrays Pointers and Arrays Records

Pointers

null pointer NULL

A special value that does not point to any valid data.

Do not dereference a null pointer
(do not use *NULL)

Do not use pointer variables whose values have not yet been
initialized.

Enumeration Types Data and Memory Pointers Arrays Pointers and Arrays Records

Outline

1 Enumeration Types

2 Data and Memory

3 Pointers

4 Arrays

5 Pointers and Arrays

6 Records

Enumeration Types Data and Memory Pointers Arrays Pointers and Arrays Records

Arrays

An array is characterized by

element type;

array size (number of elements).

Enumeration Types Data and Memory Pointers Arrays Pointers and Arrays Records

Arrays

An array is characterized by

element type;

array size (number of elements).

Declaration

type name[size]

Enumeration Types Data and Memory Pointers Arrays Pointers and Arrays Records

Arrays

An array is characterized by

element type;

array size (number of elements).

Declaration

type name[size]

style

Define a constant for array size.

Enumeration Types Data and Memory Pointers Arrays Pointers and Arrays Records

Arrays

Example

const int N_JUDGES = 5;
double scores[N_JUDGES];

Element selection

scores[0] = 9.2;

array name and index

Enumeration Types Data and Memory Pointers Arrays Pointers and Arrays Records

Passing arrays as parameters

Example.

double Mean(double array[], int n) {
double total = 0;

for (int i = 0; i < n; i++) {
total += array[i];

}
return total / n;

}

Enumeration Types Data and Memory Pointers Arrays Pointers and Arrays Records

Passing arrays as parameters

Example.

double Mean(double array[], int n) {
double total = 0;

for (int i = 0; i < n; i++) {
total += array[i];

}
return total / n;

}

use empty brackets (a pointer to the array, elements can
be modified);

pass the effective size as a parameter.

Enumeration Types Data and Memory Pointers Arrays Pointers and Arrays Records

Example: gymjudge.cpp, p. 61

/*
* File: gymjudge.cpp

* ------------------

* This program averages a set of gymnastic scores.

*/

#include <iostream>
#include "genlib.h"
#include "simpio.h"

Enumeration Types Data and Memory Pointers Arrays Pointers and Arrays Records

Example: gymjudge.cpp

/* constants */
const int MAX_JUDGES = 100;
const double MIN_SCORE = 0.0;
const double MAX_SCORE = 10.0;

/* Private function prototypes */
void ReadAllScores(double scores[], int nJudges);
double GetScores(int judge);
double Mean(double array[], int n);

Enumeration Types Data and Memory Pointers Arrays Pointers and Arrays Records

Example: gymjudge.cpp

int main() {
double scores[MAX_JUDGES];

cout << "Enter number of judges: " << endl;
int nJudges = GetInteger();

if (nJudges > MAX_JUDGES) Error("Too many judges");

ReadAllScores(scores, nJudges);

cout << "The average score is " << Mean(scores, nJudges) << endl;

return 0;
}

Enumeration Types Data and Memory Pointers Arrays Pointers and Arrays Records

Example: gymjudge.cpp

int main() {
double scores[MAX_JUDGES];

cout << "Enter number of judges: " << endl;
int nJudges = GetInteger();

if (nJudges > MAX_JUDGES) Error("Too many judges");

ReadAllScores(scores, nJudges);

cout << "The average score is " << Mean(scores, nJudges) << endl;

return 0;
}

Remarks

Basic structure: Declaration and initialization - input -
compute - output;

Robustness: Handle all possible inputs.

Enumeration Types Data and Memory Pointers Arrays Pointers and Arrays Records

Example: gymjudge.cpp

/*
* Function: ReadAllScores
...

*/

void ReadAllScores(double scores[], int nJudges) {
for (int i = 0; i < nJudges; i++) {

scores[i] = GetScore(i + 1);
}

}

Use empty brackets when passing an array as a parameter
(pointer). Elements are modified.

Enumeration Types Data and Memory Pointers Arrays Pointers and Arrays Records

Example: gymjudge.cpp

/*
* Function: GetScore
...

*/

double GetScore(int judge) {
while (true) {

cout << "Score for judge #" << judge << ": " << endl;
double score = GetReal();
if (score >= MIN_SCORE && score <= MAX_SCORE) return score;
cout << "That score is out of range. Try again." << endl;

}
}

Robustness, bullet-proof your program;

Loop-and-half structure.

Enumeration Types Data and Memory Pointers Arrays Pointers and Arrays Records

Multidimensional arrays

Array of arrays.

Enumeration Types Data and Memory Pointers Arrays Pointers and Arrays Records

Multidimensional arrays

Array of arrays.

Two-dimensional arrays for matrices (rectangle structure).

Example:
double mat[3][2]

An array of three arrays, each of which is an array of two
floating-point numbers, representing a three-by-two matrix.

Enumeration Types Data and Memory Pointers Arrays Pointers and Arrays Records

Multidimensional arrays (cont.)

Internal structure (row orientation)

mat[2][1]

mat[0][0]

mat[0][1]

mat[1][0]

mat[1][1]

mat[2][0]

Enumeration Types Data and Memory Pointers Arrays Pointers and Arrays Records

Initializing arrays

double mat[3][2] = {
{ 1.0, 2.0 },
{ 2.0, 1.0 },
{ 3.0, 2.0 }

};

matrix:




1.0 2.0
2.0 1.0
3.0 2.0





Enumeration Types Data and Memory Pointers Arrays Pointers and Arrays Records

Multidimensional arrays (cont.)

In C++, it is more efficient to access elements in rows than in
columns.

for (int i = 0; i < m; i++) {
for (int j = 0; j < n; j++) {

... mat[i][j] ...
}

}

is more efficient than

for (int j = 0; j < n; j++) {
for (int i = 0; i < m; i++) {

... mat[i][j] ...
}

}

Enumeration Types Data and Memory Pointers Arrays Pointers and Arrays Records

Outline

1 Enumeration Types

2 Data and Memory

3 Pointers

4 Arrays

5 Pointers and Arrays

6 Records

Enumeration Types Data and Memory Pointers Arrays Pointers and Arrays Records

Pointers and arrays

int intList[5];

intList is identical to &intList[0]

&intList[i] is the same as intList +
i*sizeof(int)

the prototype
int SumIntArray(int array[], int n)
works the same way as
int SumIntArray(int *array, int n)

int intList[5] allocates five consecutive words,
whereas int *p allocates one word for an address

a pointer allows you to create a new array as the program
runs (dynamic allocation, later)

Enumeration Types Data and Memory Pointers Arrays Pointers and Arrays Records

Outline

1 Enumeration Types

2 Data and Memory

3 Pointers

4 Arrays

5 Pointers and Arrays

6 Records

Enumeration Types Data and Memory Pointers Arrays Pointers and Arrays Records

Records

A coherent collection of components of possibly different types.
Each of these components is called a field or member of the
record.

Enumeration Types Data and Memory Pointers Arrays Pointers and Arrays Records

Records

A coherent collection of components of possibly different types.
Each of these components is called a field or member of the
record.

Defining a new structured type

1 Define a structure, Including fields, names and types of the
fields. This structure defines a model, but does not reserve
any storage;
struct employeeRecordT {

string name;
string title;
string ssn;
double salary;
int withholding;

};

2 Declare variables of the new type.
employeeRecordT empRec;

Enumeration Types Data and Memory Pointers Arrays Pointers and Arrays Records

Records

Field selection
empRec.title (recordName.fieldName)
an lvalue

Enumeration Types Data and Memory Pointers Arrays Pointers and Arrays Records

Records

Field selection
empRec.title (recordName.fieldName)
an lvalue

Initializing records

empRec.name = "Ebenezer Scrooge";
empRec.title = ...

or

employeeRecordT empRec = {
"Ebenezer Scrooge", ...

};

Enumeration Types Data and Memory Pointers Arrays Pointers and Arrays Records

Pointers to records

Often variables that hold structured data are declared to be
pointers to records.

employeeRecordT *empPtr;

Enumeration Types Data and Memory Pointers Arrays Pointers and Arrays Records

Pointers to records

Often variables that hold structured data are declared to be
pointers to records.

employeeRecordT *empPtr;

Field selection

empPtr->salarymeans (*empPtr).salary

Enumeration Types Data and Memory Pointers Arrays Pointers and Arrays Records

Pointers to records

Often variables that hold structured data are declared to be
pointers to records.

employeeRecordT *empPtr;

Field selection

empPtr->salarymeans (*empPtr).salary

What does *empPtr.salarymean?

Enumeration Types Data and Memory Pointers Arrays Pointers and Arrays Records

Allocation

Static allocation: Global variables that persist throughout
the entire program.

Automatic allocation: Local variables inside a function,
allocated on the system stack and freed when the function
returns.

Dynamic allocation: Variables created while the program is
running, allocated on the heap, the pool of memory
available to a program.

Enumeration Types Data and Memory Pointers Arrays Pointers and Arrays Records

Allocation

Example

employeeRecordT *empList = new employeeRecordT[1000];

Enumeration Types Data and Memory Pointers Arrays Pointers and Arrays Records

Allocation

Example

employeeRecordT *empList = new employeeRecordT[1000];

Allocates an array of 1000 employee records in the heap and
returns the pointer to the first record.

Enumeration Types Data and Memory Pointers Arrays Pointers and Arrays Records

Deallocation

Coping with memory limitations.

Free pieces of memory when you are finished using them.

double *dptr = new double;
int *arr = new int[45];

...
delete dptr;
delete[] arr;

Enumeration Types Data and Memory Pointers Arrays Pointers and Arrays Records

Deallocation

Coping with memory limitations.

Free pieces of memory when you are finished using them.

double *dptr = new double;
int *arr = new int[45];

...
delete dptr;
delete[] arr;

Don’t worry about it for this course.

Enumeration Types Data and Memory Pointers Arrays Pointers and Arrays Records

Examples

Declared arrays and dynamic arrays

double dblArray[10];

Memory is allocated automatically as part of declaration
process. The elements are allocated as part of the frame for
the function (on the stack). The size must be a constant.

Enumeration Types Data and Memory Pointers Arrays Pointers and Arrays Records

Examples

Declared arrays and dynamic arrays

double dblArray[10];

Memory is allocated automatically as part of declaration
process. The elements are allocated as part of the frame for
the function (on the stack). The size must be a constant.

double *dblList;
dblList = new double[10];

Memory is not allocated until new is invoked. The elements are
allocated on the heap. The size can be a variable.

Enumeration Types Data and Memory Pointers Arrays Pointers and Arrays Records

Examples (cont.)

Dynamic array of n pointers to employeeRecordT

employeeRecordT **list;
list = new employeeRecordT*[n];
list[0] = new employeeRecordT;

	Enumeration Types
	Data and Memory
	Pointers
	Arrays
	Pointers and Arrays
	Records

