Programming Abstraction in C++

Eric S. Roberts and Julie Zelenski

Stanford University
2010

Chapter 4. Using Abstract Data Types

Outline

e Vector Class
Q Grid Class

9 Stack Class

@ Queue Class

9 Map Class

@ Lexicon Class

e Scanner Class

@ [terators

Introduction

Abstract data type (ADT): A type defined in terms of its
behavior. (Rather than its representation, e.g., char is
represented by codes.)

Introduction

Abstract data type (ADT): A type defined in terms of its
behavior. (Rather than its representation, e.g., char is
represented by codes.)
Separating behavior from implementation

@ Simplicity. Hiding internal representation from the client.

@ Flexibility. Implementation can be changed as long as the
interface (behavior) remains the same.

@ Security. Protect the implementation from the client.

Introduction

Abstract data type (ADT): A type defined in terms of its
behavior. (Rather than its representation, e.g., char is
represented by codes.)
Separating behavior from implementation

@ Simplicity. Hiding internal representation from the client.

@ Flexibility. Implementation can be changed as long as the
interface (behavior) remains the same.

@ Security. Protect the implementation from the client.

Seven classes:
Vector, Grid, Stack, Queue, Map, Lexicon, Scanner.

Vector Class

Outline

e Vector Class

Vector Class

Vector class

A container class or collection class.
Interface

#i ncl ude "vector.h"
A naming convention. For example: gri d. h, st ack. h.

Generalization of one-dimensional array type

@ Variable size

@ Effective size available
@ Simple insert and delete
@ Bound checking

Vector Class

Vector class (cont.)

Constructor
Vect or <i nt > vec;

Specify the base type of a vector.

Vector Class

Vector class (cont.)

Constructor
Vect or <i nt > vec;
Specify the base type of a vector.

Methods. Table 4-1, p. 127.
Example.
vec. add(10),vec. renoveAt (0).

Vector Class

Vector class (cont.)

Constructor
Vect or <i nt > vec;
Specify the base type of a vector.

Methods. Table 4-1, p. 127.

Example.
vec. add(10),vec. renoveAt (0).

Question. How would you remove the last entry?

Vector Class

Idiom

Idiom: Going through a vector, p. 129

voi d PrintVector(Vector<int> & vec) {
cout << "["
for (int i =0; i < vec.size(); i++) {
if (i >0) cout << ", ";
cout << vec[i];
}
cout << "]" << endl;

}

Note. Passing by reference.

Vector Class

Idiom

Idiom: Going through a vector, p. 129

voi d PrintVector(Vector<int> & vec) {
cout << "[";
for (int i =0; i < vec.size(); i++) {
if (i >0) cout << ", ";
cout << vec[i];

}

cout << "]" << endl;

}

Note. Passing by reference.

Question:

Can you pass vec by value (without the ampersand)? If you
can, what are the differences?

Vector Class

Passing by reference

voi d AddArrayToVect or (Vector<i nt> & vec,
int array[], int n) {
for (int 1 =0; i <n; i++) {
vec.add(array[i]);

}

Vector Class

Passing by reference

voi d AddArrayToVect or (Vector<i nt> & vec,
int array[], int n) {
for (int 1 =0; i <n; i++) {
vec.add(array[i]);

}

Question:

Can you pass vec by value (without the ampersand)? If you
can, what are the differences?

Vector Class

Passing by reference

voi d AddArrayToVect or (Vector<i nt> & vec,
int array[], int n) {
for (int 1 =0; i <n; i++) {
vec.add(array[i]);
}

Question:

Can you pass vec by value (without the ampersand)? If you
can, what are the differences?

Almost always pass classes by reference.

Vector Class

Idiom

Idiom: Open a text file, p. 131

voi d AskUser Forlnput Fil e(string pront,
ifstream& infile) {
while (true) {

cout << pronpt;
string filenane = GetLine();
infile.open(filename.c_str());
if (linfile.fail()) break;
cout << "Unable to open " << filenane << endl;
infile.clear();

}

Note. Don't forgeti nfil e. cl ose() after reading/writing.

Vector Class

Idiom

Idiom: Open a text file, p. 131

voi d AskUser For | nputFil e(string pront,
ifstream& infile) {

while (true) {
cout << pronpt;
string filenane = GetLine();
infile.open(filename.c_str());
if (linfile.fail()) break;
cout << "Unable to open " << filenane << endl;
infile.clear();

}.

Note. Don't forgeti nfil e. cl ose() after reading/writing.

Study revfil e. cpp,p. 130.

A text file as | i nes, an object of Vect or <stri ng>.

Grid Class

Outline

9 Grid Class

Grid Class

Grid class

Generalization of two-dimensional array.

@ Variable dimensions.
Constructor

Gri d<doubl e> matri x(3, 2);

Specify row and column dimensions, in addition to the base
type.

Methods. Table 4-2, p. 132

Grid Class

Example

CheckFor W n for the tic-tac-toe game, p. 133.

bool CheckForWn(Gid<char> & board, char mark) {

for (int i =0; i <3; i++) {
if (CheckLine(board, mark, i, 0, 0, 1)) return true;
if (CheckLine(board, mark, 0, i, 1, 0)) return true;

if (CheckLine(board, mark, 0, 0, 1, 1)) return true;
return (CheckLi ne(board, mark, 2, 0, -1, 1));

@ check rows

@ check columns

@ check diagonal

@ check antidiagonal

Stack Class

Outline

9 Stack Class

Stack Class

Stack class

Behavior: Last in, first out (LIFO). Only the top is accessible to
the client.

Fundamental operations: push, pop

Stack Class

Stack class

Behavior: Last in, first out (LIFO). Only the top is accessible to
the client.
Fundamental operations: push, pop

Applications. Nested function calls:

main() {
call function F

}

function F() {
call function G

}

Stack Class

Stack class (cont.)

Function G is called last and returns first.

main

local variablesfor F

local variablesfor G

Stack Class

Stack class (cont.)

Constructor
St ack<doubl e> cal cul at or;
Specify a base type.

Methods. Table 4-3, p. 135.

Stack Class

Stack class (cont.)

Constructor
St ack<doubl e> cal cul at or;
Specify a base type.
Methods. Table 4-3, p. 135.
Example. Scientific calculator (HP C-13)
50.0 » 1.5 + 3.8/ 2.0

Reverse Polish notation (RPN):

50.0 15[*]3.8 2.0

Stack Class

RPN and stack

When the | ENTER | button is pressed, the previous value is
pushed on a stack.

When an operator button is pressed
@ Pushing the previous value
@ Popping two values
@ Applying the operation to the two values
@ Pushing the result on the stack

Stack Class

Example

50.0 15[*]3.8 2.0

Stack content, p. 136.

Stack Class

Example

50.0 15[*]3.8 2.0

Stack content, p. 136.
Question. What is the key sequence for

50.0 « (1.5 + 3.8) / 2.0

Think the stack content.

Stack Class

Example

50.0 15[*]3.8 2.0

Stack content, p. 136.
Question. What is the key sequence for

50.0 « (1.5 + 3.8) / 2.0

Think the stack content.

An RPN calculator simulator, pp. 137-138.

Queue Class

Outline

@ Queue Class

Queue Class

Queue class

Behavior. First in, first out (FIFO). Only the head and tail are
accessible to the client.

Fundamental operations: enqueue, dequeue

Constructor

Queue<i nt > queue;

Methods. Table 4-4, p. 139.

Application. Printer queue.

Queue Class

Example

Check-out line simulation.
Models

@ Discretize time to serialize events.

@ Arrival process: Poisson distribution. Average probability of
a customer arriving in a particular time interval.
Parameter: ARRI VAL_PROBABI LI TY
Implementation:
RandonmChance(ARRI VAL _PROBABI LI TY)

@ Service time: Uniformly distributed within a range.
Parameters: M N_.SERVI CE_TI ME, MAX_SERVI CE_TI ME
Implementation: Random nt eger (M N.SERVI CE_TI ME,
MAX_SERVI CE_TI ME)

Queue Class

Check-out line simulation (cont.)

@ Simulating time.

Parameter: SI MULATI ONCTI MVE
Implementation:

for (int t =0; t < SIMILATIONTIME t++) {
i f (RandonChance(ARRI VAL_PROBABI LI TY)) {
queue. enqueue(t);
}

if (serviceTineRemaining > 0) {

servi ceTi neRenai ni ng- - ;

i f (serviceTineRemai ning == 0) nServed++;
} else {

total Wit =t - queue.dequeue();

servi ceTi meRemai ni ng =

Random nteger(MN_..., MAX ...);

}

total Length += queue. si ze();

Map Class

Outline

9 Map Class

Map Class

Map class

Behavior. An association between a key (tag) and an
associated value (can be a complicated structure). A
generalization of Vect or .

Fundamental operations: put, get

Application. Symbol table, an association between a variable
name and its value.

Map Class

Map class

Behavior. An association between a key (tag) and an
associated value (can be a complicated structure). A
generalization of Vect or .

Fundamental operations: put, get

Application. Symbol table, an association between a variable
name and its value.

Constructor
Map<doubl e> synbol Tabl e;

Note. The base type is the type of value, not tag.
For simplicity, the type of tag is always string.

Map Class

Map class

Behavior. An association between a key (tag) and an
associated value (can be a complicated structure). A
generalization of Vect or .

Fundamental operations: put, get

Application. Symbol table, an association between a variable
name and its value.

Constructor
Map<doubl e> synbol Tabl e;

Note. The base type is the type of value, not tag.
For simplicity, the type of tag is always string.

Methods. Table 4-5, p.147.

Map Class

Map class

Behavior. An association between a key (tag) and an
associated value (can be a complicated structure). A
generalization of Vect or .

Fundamental operations: put, get

Application. Symbol table, an association between a variable
name and its value.

Constructor
Map<doubl e> synbol Tabl e;

Note. The base type is the type of value, not tag.
For simplicity, the type of tag is always string.

Methods. Table 4-5, p.147.
Example. Airport codes. Figure 4-6, p. 150.

Lexicon Class

Outline

@ Lexicon Class

Lexicon Class

Lexicon class

Behavior. A list of alphabetically ordered words.

Fundamental operations: add, containsWord

Lexicon Class

Lexicon class

Behavior. A list of alphabetically ordered words.
Fundamental operations: add, containsWord
Constructors

Lexi con wordLi st;
Lexi con english("EnglishWrds.dat");

Note. No parameterized type (always string)

Formats of the data file

@ text file, list of words, one word per line
@ precompiled data file

Lexicon Class

Lexicon class (cont.)

Methods. Table 4-6, p. 152.

Example. t wol et t ers. cpp, p. 153.
Check every possible two-letter combinations (262), if it is
contained in Engl i shwWor ds. dat .

Lexicon Class

Lexicon class (cont.)

Methods. Table 4-6, p. 152.

Example. t wol et t ers. cpp, p. 153.

Check every possible two-letter combinations (262), if it is
contained in Engl i shwWor ds. dat .

Why Lexicon now that we have Map?

Lexicon Class

Lexicon class (cont.)

Methods. Table 4-6, p. 152.

Example. t wol et t ers. cpp, p. 153.

Check every possible two-letter combinations (262), if it is
contained in Engl i shwWor ds. dat .

Why Lexicon now that we have Map?

Efficiency.

Scanner Class

Outline

e Scanner Class

Scanner Class

Scanner class

Behavior. Divide up a string into tokens
@ A sequence of consecutive alphanumeric characters, or

@ A single-character string consisting of a space or
punctuation mark.

Fundamental operation: hasMoreTokens, nextToken
Constructor

Scanner scanner;
No base type. (Always string.)

Methods. Table 4-7, p. 157.

Scanner Class

Idiom: Scan a file

ifstreaminfil e;
Scanner scanner;

AskUser For I nputFile("Input file: ", infile);
scanner. setlnput(infile);
whi | e (scanner. hasMoreTokens()) {
string word = scanner. next Token();
do something with the token ...

}

infile.close();

Iterators

Outline

e [terators

Iterators

Iterators

Iterator: A subclass (of Vect or, Gri d, Map, Lexi con,
Scanner).

Behavior. Stepping through the elements of a collection class.

Fundamental operations: hasNext, next

Iterators

Iterators (cont.)

Idiom: iterator, p. 158

Lexicon::lterator iter = english.iterator();
while (iter.hasNext()) {
string word = iter.next();
code to work with the word ...

}

Lexi con: : lterator Asubclass of Lexi con

i t er An object of the class Lexi con: : I terator

i ter.next () Returns a value of type string (Lexi con) or
base type (Vect or or Gri d or Map).

Iterators

f or each mechanism

Usage

Idiom: f or each

foreach (string word in english) {
if (word.length() == 2) {
cout << word << endl|

}

Iterators

f or each mechanism

Usage

Idiom: f or each

foreach (string word in english) {
if (word.length() == 2) {
cout << word << endl ;

}

It is simple and easy to use, but you should understand the
mechanism. The type of wor d (string) must match the base
type of the class (Lexicon) of which engl i sh is an object.

	Vector Class
	Grid Class
	Stack Class
	Queue Class
	Map Class
	Lexicon Class
	Scanner Class
	Iterators

