Programming Abstraction in C++

Eric S. Roberts and Julie Zelenski

Stanford University
2010

Chapter 5. Introduction to Recursion

Outline

@ Factorial Function
9 Fibonacci Sequence
9 Additive Sequences
e Other Examples
e Binary Search

@ Mutual Recursion

Introduction

A technigue in which large problems are solved by reducing
them to smaller problems of the same form.

Introduction

A technigue in which large problems are solved by reducing
them to smaller problems of the same form.

What is large? What is small?

A measurement of the size of the problem.

Introduction

A technigue in which large problems are solved by reducing
them to smaller problems of the same form.

What is large? What is small?

A measurement of the size of the problem.

The smaller problems must be of the same form as the large
problem.

Factorial Function

Outline

Q Factorial Function

Factorial Function

Factorial function

The function f(n) = n!.

Function prototype
int Fact(int n);
An iterative (nonrecursive) implementation

int Fact(int n) {
i nt product;

product = 1;

for (int i =1; i <=n; i++) {
product *=1i;

}

return product;

Factorial Function

Factorial function (cont.)

The recursive formulation: n! = n* (n — 1)!

A large problem (size n) is reduced to a smaller problem (size
n — 1) of the same form (factorial).

Stopping point (simple case, trivial case): 0! =1

Factorial Function

Factorial function (cont.)

The recursive formulation: n! = n* (n — 1)!

A large problem (size n) is reduced to a smaller problem (size
n — 1) of the same form (factorial).

Stopping point (simple case, trivial case): 0! =1

A recursive definition

nl— 1 ifn=0
" | n(n—1)! otherwise

Factorial Function

A recursive implementation

int Fact(int n) {
if (n==20) {
return 1;
} else {
return n = Fact(n-1);

}

Factorial Function

Tracing the recursive process

mai n
n
n * Fact(3)
n n * Fact(2)
n n * Fact (1)
n n * Fact(0)
n@ return 1

A stack of frames.

Fibonacci Sequence

Outline

9 Fibonacci Sequence

Fibonacci Sequence

Fibonacci sequence

The sequence: ty, ty, 1o, ...

th=th1+th2, to=0,1t=1

Fibonacci Sequence

Fibonacci sequence

The sequence: ty, ty, 1o, ...

th=th1+th2, to=0,1t=1
A recursive definition

po4n ifnisOorl
"7 th_1+th_p otherwise

Fibonacci Sequence

Fibonacci sequence (cont.)

Function prototype

int Fib(int n);

A recursive implementation

int Fib(int n) {
if (n<2) {
return n;
} else {
return (Fib(n - 1) + Fib(n - 2));
}

Figure 5-1, p. 184.

Fibonacci Sequence
Redundancy

Fi b(5) calls Fi b(4) and Fi b(3)
Fi b(4) calls Fi b(3) and Fi b(2)
Fi b(3) calls Fi b(2) and Fi b(1) ---

Fibonacci Sequence

Redundancy

Fi b(5) calls Fi b(4) and Fi b(3)
Fi b(4) calls Fi b(3) and Fi b(2)
Fi b(3) calls Fi b(2) and Fi b(1) ---

one callto Fi b(4)
two calls to Fi b(3)
three calls to Fi b(2)
five calls to Fi b(1)
three calls to Fi b(0)

Fibonacci Sequence

Redundancy

Fi b(5) calls Fi b(4) and Fi b(3)
Fi b(4) calls Fi b(3) and Fi b(2)
Fi b(3) calls Fi b(2) and Fi b(1) ---

one callto Fi b(4)
two calls to Fi b(3)
three calls to Fi b(2)
five calls to Fi b(1)
three calls to Fi b(0)

Is recursion inefficient?

Additive Sequences

Outline

9 Additive Sequences

Additive Sequences

Additive sequence

A generalization of the Fibonacci sequence.
Giventg and ty, t, = t,_1 + th_o.
Function prototype

Addi ti veSequence(int n, int tO, int tl);

Additive Sequences

Additive sequence

A generalization of the Fibonacci sequence.
Giventg and ty, t, = t,_1 + th_o.
Function prototype

Addi ti veSequence(int n, int tO, int tl);

The Fibonacci sequence is a special case where tg = 0 and
t, = 1.

Wrapper function

int Fib(int n) {
return AdditiveSequence(n, 0, 1)

}

Additive Sequences

Additive sequence (cont.)

An observation:
The nth term in an additive sequence

t07 t17 t27 t37
is the (n — 1)st term in the additive sequence

t,t,t3,... o=t+1nh

Additive Sequences

Additive sequence (cont.)

An observation:
The nth term in an additive sequence
t07 tla t27 t37
is the (n — 1)st term in the additive sequence

t,t,t3,... o=t+1nh
Implementation
i nt AdditiveSequence(int n, int t0, int tl1) {
if (n ==20) return to;
if (n ==1) return t1,
return AdditiveSequence(n-1, t1, t0 + t1);
}

Still a recursion, but no redundant calls!

Additive Sequences

Additive sequence (cont.)

An observation:
The nth term in an additive sequence

t07t17t27t37"'
is the (n — 1)st term in the additive sequence
f1,t0,13,... =1+t

Implementation
i nt AdditiveSequence(int n, int t0, int tl1) {

if (n ==20) return to;

if (n ==1) return t1,

return AdditiveSequence(n-1, t1, t0 + t1);
}

Still a recursion, but no redundant calls!
Question: What happensiftheif (n == 1) checkis
missing?

Additive Sequences

Additive sequence (cont.)

What makes the difference?

Additive Sequences

Additive sequence (cont.)

What makes the difference?

@ Fi b(int n) onp. 184 makes two overlapping recursive
calls;

@ Fi b(int n) onp. 186 makes one recursive call.

Additive Sequences

Additive sequence (cont.)

What makes the difference?

@ Fi b(int n) onp. 184 makes two overlapping recursive
calls;

@ Fi b(int n) onp. 186 makes one recursive call.

Note. Deep recursion can cause stack overflow.

Other Examples

Outline

e Other Examples

Other Examples

Palindrome

A recursive formulation
@ The first and last characters are the same.

@ The substring generated by removing the first and last is a
Palindrome.

Other Examples

Palindrome

A recursive formulation
@ The first and last characters are the same.

@ The substring generated by removing the first and last is a
Palindrome.

Stopping points (trivial cases, simple cases):

Since we remove two characters (first and last) at a time, we
end up with either a single-character string or an empty string.

Other Examples

Palindrome (cont.)

An implementation

bool IsPalindrone(string str) {
int len = str.length();

if (len <= 1) {
return true;
} else {
return ((str[0] == str[len - 1]) &&
I sPal i ndrome(str.substr(1, len - 2)));

Other Examples

Improving efficiency

Using
@ the positions of the first and last in the currently active
substring.

@ a wrapper.

Advantages of CheckPal i ndr one, p. 189:
@ Calculate the length of the input string once;
@ Avoid calling subst r to make copy of substring.

| sPal i ndr ome, Figure 5-4, p. 189.

Other Examples

Improving efficiency

Using

@ the positions of the first and last in the currently active
substring.

@ a wrapper.

Advantages of CheckPal i ndr one, p. 189:
@ Calculate the length of the input string once;
@ Avoid calling subst r to make copy of substring.

| sPal i ndr ome, Figure 5-4, p. 189.

Why wrapper function?

Hide implementation. The interface of | sPal i ndr one is
unlikely to be changed.

Binary Search

Outline

e Binary Search

Binary Search

Binary search

Search for an element in an integer array sorted in ascending
order.

Binary Search

Binary search

Search for an element in an integer array sorted in ascending
order.
A recursive formulation:

Split the array in the middle, search the left half or right half
depending on the given value.

Binary Search

Binary search

Search for an element in an integer array sorted in ascending
order.
A recursive formulation:
Split the array in the middle, search the left half or right half
depending on the given value.
Stopping point

@ The mid-entry is the element.

@ No elements in the active part of the array.

Binary Search

Binary search

Search for an element in an integer array sorted in ascending
order.
A recursive formulation:
Split the array in the middle, search the left half or right half
depending on the given value.
Stopping point

@ The mid-entry is the element.

@ No elements in the active part of the array.

Wrapper:

int FindintInSortedArray(int key, int array[], int n) {
return BinarySearch(key, array, 0, n-1);

}

Binary Search

Binary search (cont.)

int BinarySearch(int key, int array[],
int low, int high) {
if (low> high) return -1;

int md= (low+ high) / 2;
if (key == array[md] return md;
if (key < array[md]) {
return BinarySearch(key, array, low, md - 1);
} else {
return BinarySearch(key, array, md + 1, high);

}

Mutual Recursion

Outline

@ Mutual Recursion

Mutual Recursion

Mutual recursion

A general recursion.

Example.

f callsgandgcallsf.

Function | sEven, Figure 5-6, p. 192.

Mutual Recursion

Mutual recursion (cont.)

bool [|sEven(unsigned int n) {

if (n==0) {
return true
} else {

return 1sCdd(n - 1);

}
}

bool [sOdd(unsigned int n) {
return !l sEven(n);

}

Mutual Recursion

Mutual recursion (cont.)

bool [|sEven(unsigned int n) {
if (n==0) {
return true;
} else {
return IsGdd(n - 1);

}
}

bool [sOdd(unsigned int n) {
return !l sEven(n);

}

Questions:
What happensifi f (n == 0) checkis missing in | sEven?
What happensifif (n == 1) checkis addedto | sGdd?

Mutual Recursion

Thinking recursively

@ Your program should look like

Standard recursion paradigm

if (test for sinple case) {
sol ve sinple case
} else {
call this function with smaller size

}

Mutual Recursion

Thinking recursively (cont.)

@ Find out all possible simple cases (stopping points). The
recursion should end with a simple case.

@ Test your program for the simple (trivial) cases.

@ Determine a measurement of the size of the problem.
Decompose a big problem into smaller problems of the
same form. Apply the recursive leap of faith to make sure
your program generates the complete solution.

	Factorial Function
	Fibonacci Sequence
	Additive Sequences
	Other Examples
	Binary Search
	Mutual Recursion

