CS/SE 3SH3 Midterm 2013 Pagel”

Name
Student Number

Instructor: S. Qiaé)

CS/SE 3SH3
Day Class
Duration of examination: 50 minutes
McMaster University Midterm Examination Feb\ruary 2013

This examination paper includes 5 pages and 8 questions. You are responsible for ensuring
that your copy of the paper is complete. Bring any discrepancy to the attention of your
invigilator.

SPECIAL INSTRUCTIONS: This paper must be returned with your answers. Use of
McMaster standard (Casio-FX991) calculator only is allowed.

1. (2 marks) Which of the following statements is false? If you think all the choices are true, you
may answer none.
A time-sharing operating system

(a) allows many users to share the computer simultaneously
(b) provides short response time
(c) is a logical extension of multiprogramming

(d) does not provide direct communication between the user and the system
Answer: Ok
2. (5 marks) List five entries in a PCB (process control block):
(&) vd
() stock pownter
© stotrus
(@) open Siles

©) oddress space

next page ...

CS/SE 3SH3 Midterm 2013 Page 2’

3. (3 marks) A process can be in one of the five states: finish (terminated), new, ready, running,
and wait. What are the possible state(s) following the state running?

Answer: Jinash . \-G‘I;:dy’ Wit

4. (2 marks) Which of the following statements is false? If you think all the choices are true, you
may answer none. :
When a process terminates, it must

(a) close open files

(b) notify its parent

(c) notify its siblings (processes having the same parent)

(d) deallocate memory

Answer: (C

5. (3 marks) Including the initial parent process, how many processes are created by the following
program?

#include <stdio.h>
#include <unistd.h>

int main() {
© /* fork a child process */

fork();

/* fork another child process */
fork(); '

/* and fork another */ .

fork();

return 0;
} i
Answer: 8

next page ...

CS/SE 3SH3 Midterm 2013 : Page3

6. (3 marks) The following multithreaded C program using the Pthreads API computes the sum-
mation sum = Y%, i. The upper bound N is provided on the command line, argv[1].

#include <pthread.h>
#include <stdio.h>

int sum; /* shared by the thread(s) */
* void *runner(void *param);

int main(int argc, char *argv[]) {

pthread_t tid; /* thread id */ e
pthread_attr_t attr; /* thread attributes */

/* set the default attributes */
pthread_attr_init(&attri);

/* create a thread */

pthread_create(&tid, &attri, rumner, argv[1i]);
/* wait for the thread to exit */
pthread_join(tid, NULL);

printf("sum = %d\n", sum);

}
void *runnef(void *param) {

int i, upper = atoi(param);
sum = 0;

for (i = 1; i <= upper; i++)
sum += 1i;

pthread_exit(0);

Which of the-following statements is true? If you think all the choices are false, you may answer
none. ‘

(a) the child thread tid computes and prints the result

(b) the parent thread main cox/ﬂputes the prints the result

(c) the child thread tid comfnifes the result and the parent thread main prints the result
(d) the parent thread main computes the result and the child thread tid prints the result

Answer: C

next page ...

CS/SE 3SH3 Midterm 2013 Page4d

7. (4 marks) Suppose in a certain operating system two processes called OBSERVER and RE-
PORTER share a variable called count. When OBSERVER observes an event it increments count.
Periodically, REPORTER is run to print out the number of events that OBSERVER has observed
since the last time REPORTER was run and reset count to 0. Initially, count is 0. The code for
each process is:

OBSERVER: while (true) {

01 observe an event
02 . lw $7, count % load count into register 7
03 add $7, $7, one Y’ add one to register 7
04 sw $7, count % store register 7 in count
} .
REPORTER: while (true) {
RO print (count)
R1 1w $6, count
R2 mv $6, zero % move zero to register 6
R3 : sw $6, count
}

Will the number of events observed necessarily be reported accurately? If so, why? If not, give
an execution sequence that causes an inaccurate report.

Answer:). Consider Thae Q@ﬁmmm_& Q.xec;i,g‘i’;‘gm E@?”‘"@V‘Q&T

o}, 01,03, o4., ot 02,03, RO, 04, R1 R2 R3

Tuwo evewks aie obze wwk bt ew\y one TS te?c:ﬂ“‘"”’?‘\

next page ...

CS/SE 3SH3 Midterm 2013

8. (6 marks) Given the Nachos 4.02 semaphore constructor:

Semaphore: : Semaphore (char* debugName, int initialValue)

{
name = debugname;
value = initialValue;
queue = new List<Thread *>;

Complete the implementation of the semaphore operation P():
void
Semaphore: :P()
t
Interrupt *interrupt = kernel->interrupt;

Thread *currentThread = kernel->currentThread;

// disable interrupts
IntStatus oldLevel = interrupt->SetLevel (Int0ff);

if (value <= 0) { // semaphoré not available

quene = Appernd (Current Thread) ;

current Threod > Sleep(FALSE);
)

} else {

\)O\\Lke =

}

// re-enable interrupts
(void) interrupt->SetLevel(oldLevel);

END

