
A Brief History

Sanzheng Qiao

Department of Computing and Software

December, 2012



Batch processing

Systems that execute programs serially with no direct
interaction between the user and the computer.

The OS always resides in memory.

Single user, no execution and I/O overlap.

OS = a program to load and run user jobs, take dumps,

The CPU is often idle because I/O devices are much
slower than the CPU.



Example

P

P

CPU

Input

Output

I E O

I E O

I I

E E E

O O O

1

2

1 12 12

2 2 2

11 12 2

1 2

11 12 2

O11E11



Buffering

Overlap the I/O of one job with its own computation.
I/O Interrupts The interrupt handler signals the user process
upon the completion of I/O.

Synchronous. The user process makes an I/O request and
waits until the I/O completion. The user process must know
the I/O latency, so it knows how long it should wait.

Asynchronous. An I/O request returns without waiting for
the I/O completion. An I/O interrupt is scheduled at the
completion of I/O. The interrupt handler signals the user
process when the I/O is done. This allows concurrent I/O
operations to several devices.



Example

P
I E E O

1
1 12 12O11

CPU

Input

Output

I1

O11 O12

E E12

11

11



Multiprogramming

Systems that are designed to concurrently execute more than
one task.

P

P

CPU

Input

Output

I E O

I E O

I

E

O

1

2

1 12 12

2 2 2

11

1

11

O11

E 12

I 2

O12

E 2

O2

E11



Multiprogramming

Systems that are designed to concurrently execute more than
one task.

P

P

CPU

Input

Output

I E O

I E O

I

E

O

1

2

1 12 12

2 2 2

11

1

11

O11

E 12

I 2

O12

E 2

O2

E11

Issues:

Memory protection + relocation.

OS began to be an important science.



Timesharing or multitasking

Systems that allow multiple users (programs) to run
concurrently. The system switches from one user to another.
Examples, MULTICS at MIT and UNIX at Bell Lab (1970).
Example.

P

P

CPU

Input

Output

e i e o i e o i e o

E I E O I E O

e E e E e e

i I i i

o O o

0 1 1 1 2 2 2 3 3 3

0 1 1 1 2 2 2

0 0 1 1 2 3

1 1 2 3

1 1 3

1

2

E2 e2

I 2

o2O2



Timesharing or multitasking

Systems that allow multiple users (programs) to run
concurrently. The system switches from one user to another.
Examples, MULTICS at MIT and UNIX at Bell Lab (1970).
Example.

P

P

CPU

Input

Output

e i e o i e o i e o

E I E O I E O

e E e E e e

i I i i

o O o

0 1 1 1 2 2 2 3 3 3

0 1 1 1 2 2 2

0 0 1 1 2 3

1 1 2 3

1 1 3

1

2

E2 e2

I 2

o2O2

Issues:

Response time.

Thrashing.



Multiprocessor or multicore

High speed, better performance/price ratio, fault tolerant.
Symmetric multiprocessing (SMP). All processors run the same
OS, no master-slave relationship, share memory.



Multiprocessor or multicore

High speed, better performance/price ratio, fault tolerant.
Symmetric multiprocessing (SMP). All processors run the same
OS, no master-slave relationship, share memory.

Issues:

data consistency.

load balancing.

I/O bottle-neck.

Cache coherency An update to a variable in one cache must
be immediately reflected in all other caches that hold the
variable.



Real-time

Operations have time limits on the operation of a processor or
the flow of data. For example, sensor control.
Hard real-time system. Hard time limit on critical tasks.
Soft real-time system. A critical task get priority over other
tasks and retains that priority until it completes.


