Name $_$,018c) +1			
Student	Number			· · · · · · · · · · · · · · · · · · ·
		Instructor:	S.	Qiao

SFWR ENG 3X03/COMP SCI 4X03

Day Class

Duration of examination: two hours McMaster University Final Examination

December 2012

This examination paper includes 6 pages and 5 questions. You are responsible for ensuring that your copy of the paper is complete. Bring any discrepancy to the attention of your invigilator.

SPECIAL INSTRUCTIONS: This paper must be returned with your answers. Open book and notes, no electronics, use of McMaster standard (Casio-FX991) calculator is allowed.

1. (4 marks) The following segment of (Matlab) code computes $\sqrt{x^2+y^2}$:

$$n = sqrt(x*x + y*y);$$

Applying the scaling technique, modify the above code so that it avoids unnecessary overflow or underflow.

$$m = max(abs(x), abs(y));$$

 $x = x/m;$
 $y = y/m;$
 $y = y/m;$

2. The cubic spline function s(x) on the interval $[x_i, x_{i+1}]$ is defined by

$$s(x) = wy_{i+1} + \bar{w}y_i + h_i^2[(w^3 - w)\sigma_{i+1} + (\bar{w}^3 - \bar{w})\sigma_i], \quad i = 1, 2, ..., n-1,$$

where $h_i = x_{i+1} - x_i$,

$$w = (x - x_i)/h_i$$
, $\overline{w} = 1 - w$,

and, σ_i and σ_{i+1} are unknown parameters. Set up an equation corresponding to the continuity of s'(x) at x_i , 1 < i < n. In other words, $s'_-(x_i) = s'_+(x_i)$.

(a)
$$(4 \text{ marks}) s'_{+}(x_{i})$$
: on interval $[x_{\lambda}, x_{\lambda+1}]$

$$w' = 1/h_{\lambda}, \qquad \overline{w}' = -1/h_{\lambda}, \qquad w(x_{\lambda}) = 0, \quad \overline{w}(x_{\lambda}) = 1$$

$$S'_{+}(x_{\lambda}) = \frac{1}{3} \frac{1}{h_{\lambda}} \frac{1}{h_{\lambda}} - \frac{1}{3} \frac{1}{h_{\lambda}} \frac{1}{h_{\lambda}} + \frac{1}{h_{\lambda}} \frac{1}{h_{\lambda}}$$

(b)
$$(4 \text{ marks}) s'_{-}(x_{i})$$
: on $[x_{\lambda-1}, x_{i}]$
 $w' = 1/h_{\lambda-1}, \quad \overline{w}' = -1/h_{\lambda-1}, \quad w(x_{\lambda}) = 1, \quad \overline{w}(x_{\lambda}) = 0$
 $5'_{-}(x_{\lambda}) = \frac{1}{h_{\lambda}}/h_{\lambda-1} - \frac{1}{h_{\lambda-1}}/h_{\lambda-1} + \frac{1}{h_{\lambda-1}}[(3w(x_{\lambda})/h_{\lambda-1} - 1/h_{\lambda-1})\nabla_{\lambda} + (-3w(x_{\lambda})/h_{\lambda-1} + 1/h_{\lambda-1})\nabla_{\lambda-1}]$
 $= (\frac{1}{h_{\lambda}} - \frac{1}{h_{\lambda-1}})/h_{\lambda-1} + \frac{1}{h_{\lambda-1}}[2\sigma_{\lambda} + \overline{v_{\lambda-1}}]$
 $= \Delta_{\lambda-1} + h_{\lambda-1}(2\sigma_{\lambda} + \overline{v_{\lambda-1}})$

(c) (2 marks) The equation:

$$\Delta_{\lambda} - h_{\lambda}(\nabla_{\lambda+1} - 2\nabla_{\lambda}) = \Delta_{\lambda-1} + h_{\lambda-1}(2\nabla_{\lambda} + \nabla_{\lambda-1})$$

$$h_{\lambda-1}\nabla_{\lambda-1} + 2(h_{\lambda-1} + h_{\lambda})\nabla_{\lambda} + h_{\lambda}\nabla_{\lambda} = \Delta_{\lambda} - \Delta_{\lambda-1}$$
Continued on page 3

3. The error in the Simpson's rule is given by

$$I - S = -\frac{1}{2880} \sum_{i=1}^{n} h_i^5 f^{iv}(y_i) + \cdots$$

where $h_i = x_{i+1} - x_i$ and $y_i = (x_i + x_{i+1})/2$. Doubling the number of panels in the Simpson's rule can be expected to reduce the error in the composite trapezoidal rule by roughly the factor of 1/16. That is, if I is the exact integral, S_1 is the one-panel result, and S_2 is the two-panel result, then $I - S_2 \approx (I - S_1)/16$.

(a) (5 marks) Derive an estimation for $I - S_2$ using S_1 and S_2 . That is, find the factor α in $I - S_2 \approx \alpha(S_2 - S_1)$.

$$I-S_{2} \approx \frac{1}{16}I - \frac{1}{16}S_{1}$$

$$\frac{15}{16}(I-S_{2}) \approx \frac{1}{16}(S_{2}-S_{1})$$

$$I-S_{2} \approx \frac{1}{15}(S_{2}-S_{1})$$

(b) (6 marks) Apply the Simpson's rule to

$$\int_0^{\pi} (\sin(x)) dx$$

with one panel $[0,\pi]$ for S_1 and two panels $[0,\pi/2]$ and $[\pi/2,\pi]$ for S_2

$$S_1 = \frac{\pi}{6} \left(\sin 0 + 4 \sin \left(\frac{\pi}{2} \right) + \sin \pi \right)$$

$$= \frac{4\pi}{6} \approx 2.09$$

$$S_{2} = \frac{\pi}{12} \left(\sin 0 + 4 \sin \frac{\pi}{4} + 2 \sin \frac{\pi}{2} + 4 \sin \frac{3\pi}{4} + \sin \pi \right)$$

$$= \frac{\pi}{12} \left(2\sqrt{2} + 2 + 2\sqrt{2} \right) \approx 2.00$$

4. Consider the second-order differential equation

$$y'' = -3y' - y$$
, $y(0) = 0$ and $y'(0) = 3$,

(a) (5 marks) Express this second-order ODE as an equivalent system of two first-order ODEs, including the initial conditions for the system.

$$U = \begin{bmatrix} 0 \\ 0' \end{bmatrix}$$

$$U' = \begin{bmatrix} u_2 \\ -3u_2 - u_1 \end{bmatrix} \qquad U(0) = \begin{bmatrix} 0 \\ 3 \end{bmatrix}$$

(b) (5 marks) Perform one step of the forward Euler's method for this ODE system using a stepsize of h=0.1.

$$U_{+} = \begin{bmatrix} 0 \\ 3 \end{bmatrix} + h \begin{bmatrix} u_{2} \\ -3u_{2} - u_{1} \end{bmatrix}$$

$$= \begin{bmatrix} 0 \\ 3 \end{bmatrix} + \begin{bmatrix} 0.3 \\ -0.9 \end{bmatrix}$$

$$= \begin{bmatrix} 0.3 \\ 2.1 \end{bmatrix}$$

(c) (5 marks) Perform one step of the backward Euler's method for this ODE system using a stepsize of h = 0.1.

$$\begin{bmatrix} u_1 \\ u_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 3 \end{bmatrix} + h \begin{bmatrix} u_2 \\ -3u_2 - u_1 \end{bmatrix}$$
$$= \begin{bmatrix} 0 \\ 3 \end{bmatrix} + 0.1 \begin{bmatrix} 0 & 1 \\ -1 & -3 \end{bmatrix} \begin{bmatrix} u_1 \\ u_2 \end{bmatrix}$$

Solve

$$\begin{bmatrix} 1 & -0.1 \end{bmatrix} \begin{bmatrix} u_1 \\ 0.1 & 1.3 \end{bmatrix} = \begin{bmatrix} 0 \\ 3 \end{bmatrix}$$

$$\begin{bmatrix} u_1 \\ u_2 \end{bmatrix} = \begin{bmatrix} 0.229 \\ 2.29 \end{bmatrix}$$

5. (10 marks) Carry out one iteration of Newton's method for finding a zero of the function:

$$f(x) = x - \cos x,$$

with starting point $x_0 = 1.0$.

$$X_0 = 1.0$$

$$x' = x^{o} - \frac{f_{(x^{o})}}{f_{(x^{o})}}$$

$$= 1.0 - \frac{1.0 - \cos(1.0)}{1 + \sin(1.0)}$$

$$=1.0-\frac{0.460}{1.84}$$