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Background

Kinetic Energy

Definition
The energy which an object possesses due to its motion

@ It is defined as the work needed to accelerate a body of a
given mass from rest to its stated velocity

@ In classical mechanics, the kinetic energy Ej of a point object
is defined by its mass m and velocity v:

1
E. = Emv2
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Background

Potential Energy

Definition
The energy of an object or a system due to the position of the
body or the arrangement of the particles of the system

@ The amount of gravitational potential energy possessed by an
elevated object is equal to the work done against gravity in
lifting it

@ Thus, for an object at height h, the gravitational potential
energy E, is defined by its mass m, and the gravitational
constant g:

E, = mgh
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Background

Lagrangian Mechanics

@ An analytical approach to the derivation of E.O.M. of a
mechanical system

@ Lagrange's equations employ a single scalar function, rather
than vector components

@ To derive the equations modeling an inverted pendulum all we
need to know is how to take partial derivatives
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Background

Lagrangian

Definition

In classical mechanics, the natural form of the Lagrangian is
defined as £ = Ex — E,,

@ E.O.M. can be directly derived by substitution using
EulerLagrange equation:

a oLy _oc
dt \ g9 /) 00
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Inverted Pendulum Problem

@ The pendulum is a stiff bar of length L which is supported at
one end by a frictionless pin

@ The pin is given an oscillating vertical motion s defined by:

s(t) = Asinwt



Inverted Pendulum

Inverted Pendulum Problem

@ The pendulum is a stiff bar of length L which is supported at
one end by a frictionless pin

@ The pin is given an oscillating vertical motion s defined by:

s(t) = Asinwt

Problem

Our problem is to derive the E.O.M. which relates time with the
acceleration of the angle from the vertical position
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Derivation Without Oscillator

From the figure on previous page we know

x=Lsind X = Lcos (06

y = Lcosé y = —Lsin ()0

Recall the definition of the Lagrangian

L=E —E

1
L= Emv2 — mgy
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Setup Continued...

Velocity is a vector representing the change in position, hence

v2:>'<2+}'/2

= 1202 cos? 0 + L%0%sin% 0
= 126?(cos? 0 + sin® 0)
— 1262
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Velocity is a vector representing the change in position, hence
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Derivation Without Oscillator

Setup Continued...

Velocity is a vector representing the change in position, hence

v2:>'<2+}'/2

= 1202 cos? 0 + L%0%sin% 0
= 126?(cos? 0 + sin® 0)
— 1262

Substituting into the equation for the Lagrangian we get

1
L= imv2 — mgy

1 :
L= EmLzﬁ2 — mgL cos 6



Derivation Without Oscillator

Setup Continued...

Recall the Euler-Lagrange equation

A oLy _oc
dt \ g9 /) 09

We shall now compute both sides of the equation and solve for 6
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Derivation Without Oscillator

Computing %

1

L= EmL292 — mglL cos 6
gg =0+ mgLsinf

= mgLsin6
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dt

Computing 4 (ﬂ)

a0

1 .
L= EmLzﬁ2 — mgL cos 6

We compute in two steps:
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Computing 4 (ﬂ)

dt \ a9

1 .
L= EmLzﬁ2 — mgL cos 6
We compute in two steps:

% = ml20 -0
a0

= mlL29



Derivation Without Oscillator

Computing % (%)

1 .
L= EmL292 — mgL cos 6
We compute in two steps:

% = ml20 -0
a0

= mlL29
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Derivation Without Oscillator

Applying Euler-Lagrange Equation

Now that we have both sides of the Euler-Lagrange Equation we

can solve for
a(ocy _oc
dt \ 90 ) 00

mL26 = mglsin 6

é:%sinﬁ

Which is the equation presented in the assignment.
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Derivation With Oscillator

With the oscillator we must modify the equation for y

x=Lsin6 x = Lcos(0)0
y=Lcosf+ Asinwt  y = —Lsin(0)0 + Aw coswt

Again, we use the definition of the Lagrangian

L=E —E

1
L= Emv2 — mgy
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Setup Continued...

Velocity is a vector representing the change in position, hence
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Setup Continued...

Velocity is a vector representing the change in position, hence

v2:>'<2—|-)'/2

= 1262 cos? 0 + L20%sin? 0 — 2ALwsin A cos (wt)f + A%w? cos? (wt)
= 120%(cos? 0 + sin 0) — 2ALw sin 6 cos (wt)f 4+ A%w? cos? (wt)
= 126% — 2ALwsin 6 cos (wt)d + A%w? cos? (wt)



Derivation With Oscillator

Setup Continued...

Velocity is a vector representing the change in position, hence

v2:>'<2—|-)'/2

= 1262 cos? 0 + L20%sin? 0 — 2ALwsin A cos (wt)f + A%w? cos? (wt)
= 120%(cos? 0 + sin 0) — 2ALw sin 6 cos (wt)f 4+ A%w? cos? (wt)
= 126% — 2ALwsin 6 cos (wt)d + A%w? cos? (wt)

Substituting into the equation for the Lagrangian we get

1
L= Emv2 — mgy

L= %mL292 — mALwsin 8 cos (wt)f

1
+ EmA2w2 cos? (wt) — mgl cos — mgAsin (wt)



Derivation With Oscillator

Setup Continued...

Velocity is a vector representing the change in position, hence

v2:>'<2—|-)'/2

= 1262 cos? 0 + L20%sin? 0 — 2ALwsin A cos (wt)f + A%w? cos? (wt)
= 120%(cos? 0 + sin 0) — 2ALw sin 6 cos (wt)f 4+ A%w? cos? (wt)
= 126% — 2ALwsin 6 cos (wt)d + A%w? cos? (wt)

Substituting into the equation for the Lagrangian we get

1
L= Emv2 — mgy

L= %mL292 — mALwsin 8 cos (wt)f

1
+ EmA2w2 cos? (wt) — mgl cos — mgAsin (wt)



Derivation With Oscillator

Computing %

1 . .
L= 5mL292 — mALwsin 6 cos (wt)d

1
+ EmA2w2 cos? (wt) — mgl cos§ — mgAsin (wt)



Derivation With Oscillator

Computing %

1 . .
L= 5mL292 — mALwsin 6 cos (wt)d

1
+ EmA2w2 cos? (wt) — mgl cos§ — mgAsin (wt)

% =0 — mALw cos 6 cos (wt)d + 0 + mglLsinf — 0

= —mALw cos 0 cos (wt)f + mglsin @



Derivation With Oscillator

Computing % (%)

1 . .
L= 5mL202 — mALwsin  cos (wt)f
1
+ EmAzw2 cos? (wt) — mgl cos§ — mgAsin (wt)

We compute in two steps:



Derivation With Oscillator

Computing % (%)

1 . .
L= 5mL202 — mALwsin  cos (wt)f
+ %mAzw2 cos? (wt) — mgl cos§ — mgAsin (wt)

We compute in two steps:

gg = mL2%0 — mALwsinf cos (wt) +0—0—0

= mL2%0 — mALw sin 6 cos (wt)



Derivation With Oscillator

Computing % (%)

1 . .
L= 5mL202 — mALwsin  cos (wt)f
1
+ EmAzw2 cos? (wt) — mgl cos§ — mgAsin (wt)

We compute in two steps:

gg = mL2%0 — mALwsinf cos (wt) +0—0—0

= mL2%0 — mALw sin 6 cos (wt)
d ; .
P (?95) = mL?0 — mALw cos 0 cos (wt)f + mALw? sin fsin (wt)
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can solve for 6
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Applying Euler-Lagrange Equation

Now that we have both sides of the Euler-Lagrange Equation we

can solve for
A oLy _oc
dt \ 96 /) 06

mlL20 — mALw cos 6 cos (wt)f + mALw? sin O sin (wt)

—mALw cos 6 cos (wt)f + mgLsinf



Derivation With Oscillator

Applying Euler-Lagrange Equation

Now that we have both sides of the Euler-Lagrange Equation we

can solve for
A oLy _oc
dt \ 96 /) 06

mlL20 — mALw cos 6 cos (wt)f + mALw? sin O sin (wt)

—mALw cos 6 cos (wt)f + mgLsinf

L6 + Aw?sin 0 sin (wt) = gsin 6
LG = gsin® — Aw?sin O sin (wt)

L1
0= Z(g — Aw?sin (wt)) sin 0
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