Solving Linear Systems

Sanzheng Qiao

Department of Computing and Software
McMaster University

July, 2012

e Introduction

e Gaussian Elimination Methods
Generic Method

@ Matrix Notations

@ Gaussian Elimination Without Pivoting
@ Pivoting

@ Efficiency and Portability

9 Estimating Errors

e Software Packages

Intro

Introduction

Problem setting: Solve for x in the system of linear equations:
Ax =Db

A: n-by-n, nonsingular;

b: n-by-1.

Since A is nonsingular, this system has a unique solution for
any right-hand-side vector b.

Intro

Introduction (cont.)

In this part, we mainly discuss the methods for solving Ax = b
where A is a dense matrix, so that matrix A is stored in a two
dimensional array.

When A is very large and sparse, it is often stored in a special
data structure to avoid storing many zero entries. For example,
a tridiagonal matrix is stored in three vectors (diagonals). There
are methods for solving very large and sparse linear systems.
They will be discussed later.

Intro

Text book method 1: Cramer’s rule

Cramer’s rule is a standard text book method for solving linear
systems. The ith entry x; of the solution x is given by

X = det(Ai)/ det(A),

where A; is the matrix formed by replacing the ith column of A
by b.

Cramer’s rule is of theoretical importance. It gives the solution
in explicit form.

Intro

Text book method 1: Cramer’s rule (cont.)

The Cramer’s rule is impractical. It may be useful for very small
systems, suchasn =2 or 3.

Prohibitively inefficient. We need to compute n + 1
determinants of order n, each of which is a sum of n! products
and each product requires n — 1 multiplications. Total of
(n+1)-n!-(n— 1) floating-point multiplications or additions.

How long does it take to solve a system of order 30 on a
computer that can perform two billion floating-point addition or
multiplication operations (flops) per second?

Answer: 10%2/(2 x 10%) ~ 5 x 10?2 seconds!

Intro

Method 2: Compute A~%, then x = A~'b

Usually it is unnecessary and inefficient to compute A~%, and
the computed solution is inaccurate.
Example. Solve for x in 7x = 21 (n = 1)

In a floating-point system with 5 =10 and t = 4.
1/7 = 1.429 x 1071, then 21 x 0.1429 = 3.001 (one division
and one multiplication).

Whereas x = 21/7 = 3.000 (one division).

GE
©0000000

Example

Example. Assuming the floating-point system with g = 10 and
t = 4, and the linear system:

10 -7 07 [x
-3 2 6 X2 =
5 -1 5| | xs

Exact solution:

oA~

X1:O, Xo=-1, Xx3=1

GE
0®000000

Forward elimination

Stage 1. Forward elimination
Step 1. Eliminate x; in equations (2) and (3).

10 -7 O X1 7
-3 2 6 X2 = 4
5 -1 5 X3 6

—(-3/10) x (1) +(2) — (2)
—(5/10) x (1) +(3) = (3)
pivot: a;; = 10
multipliers: my; = —(—3/10), mz; = —(5/10).

GE
00®00000

Forward elimination (cont.)

The updated system:

10 -7 0 X1 7
0 -01 6 % | = | 6.1
0 25 5 X3 25

GE
000®0000

Matrix form

Use the multipliers to form an elementary matrix:

1 0O 1 00
Mi=|mym 1 0|=] 03 10],
M3 0 1 -05 0 1

then

10 -7 O 7
MiA=| 0O -01 6 Mib=| 6.1 |.
0 25 5 2.5

GE
[e]eleYe] Yelole)

Forward elimination (cont.)

Step 2. Eliminate x; in equation (3).

10 -7 0 Xy 7
0 01 6 x, | = | 6.1
0 255 X3 2.5

—(2.5/-0.1) x (2) + (3) — (3)
pivot: az; = —0.1, multiplier: mz, = 2.5/ — 0.1.

GE
00000800

Forward elimination (cont.)

The updated system:

10 -7 0 X1 7
0 -01 6 X2 | =] 6.1
0 0 155 X3 155

The original general linear system is reduced to an upper
triangular linear system.

GE
00000080

Matrix form

Use the multipler to form an elementary matrix
1 0 O 1 0 0

10 -7 0 7
MoMjA=1| 0 -01 6 MoMib = | 6.1
5

then

0 0 15 155

GE
0000000e

Backward substitution

Stage 2. Backward substitution.
The upper triangular system:

10 -7 0 X1 7
0 -01 6 X2 | =1 61 |.
0O 0 155 X3 155

Solve for the solution vector backwards:

x3 = 155/155 = 1.000
X, = (6.1—6x3)/(—0.1) = —1.000
X1 = (7—(=7)xp —0x3)/10=0

GE
000

Properties of elementary matrix

It is simple to invert an elementary matrix:
1 00 1 0 O
Mit=| -my 1 0 M;'=]0 1 0
—-m3; 0 1 0 —m3p 1
It is simple to multiply elementary matrices:
1 0O O
MMy t=1| —-my 1 0
—mg; —mg 1

Notice the order.

GE
(o] To)

Putting things together

Triangularization of A:

(10 -7 0
MoMiA = | 0 —01 6] —u
0 0 155
[7
MoMib = | 6.1
| 155

A decomposition:
A=M;M;1U

GE
ooe

Putting things together (cont.)

The product

1 0 ©
MMy t=| —my; 1 0| =L,

—-mz; —-mz 1

is a lower triangular matrix.

In general, A = LU.
The LU decomposition. (L: lower triangular; U: upper triangular)

GE
®000000000000

Algorithm. Gaussian elimination without pivoting

Given an n-by-n matrix A, this algorithm computes lower
triangular L and upper triangular U so that A = LU. On return,
A is overwritten by L and U.

for k=1 to n-1
A(k+1:n, k) = A(k+1l:n,Kk)/A(k, k);
A(k+1:n, k+1:n) = A(k+1l:n, k+1l:n)
- A(k+1:n, k)*A(k, k+1:n);
end

L = eye(n,n) + tril(A, —1)
U = triu(A)

O@00000000000

Example

for k=1 to n-1
A(k+1:n, k) = A(k+1:n, k)/A(k, k);
A(k+1:n, k+1:n) = A(k+1:n, k+1:n)
- A(k+1:n, k) *A(k, k+1:n);
end

Original A

0O0@0000000000

Example

for k=1 to n-1
A(k+1:n, k) = A(k+1:n,k)/A(k, k);
A(k+1:n, k+1:n) = A(k+1:n, k+1:n)
- A(k+1:n, k) *A(k, k+1:n);
end

k = 1, calculate multipliers

10 -7 O
-03 2 6

05 -1 5

000@000000000

Example

for k=1 to n-1
A(k+1:n, k) = A(k+1:n, k)/A(k, k);
A(k+1:n, k+1:n) = A(k+1:n, k+1:n)
- A(k+1:n, k) *A(k, k+1:n);
end

k = 1, update submatrix

10 -7 O
-03 -0.1 6

05 25 5

0O000@00000000

Example

for k=1 to n-1
A(k+1:n, k) = A(k+1:n,k)/A(k, k);
A(k+1:n, k+1:n) = A(k+1:n, k+1:n)
- A(k+1:n, k) *A(k, k+1:n);
end

k = 2, calculate multiplier

10 -7 O
-03 -0.1 6

05 -25 5

0O0000@0000000

Example

for k=1 to n-1
A(k+1:n, k) = A(k+1:n, k)/A(k, k);
A(k+1:n, k+1:n) = A(k+1:n, k+1:n)
- A(k+1:n, k) *A(k, k+1:n);
end

k = 2, update submatrix

10 -7 0
-03 -0.1 6

0.5 25 155

0000008000000

Example

for k=1 to n-1
A(k+1l:n, k) = A(k+1:n, k)/A(k, k);
A(k+1:n, k+1:n) = A(k+1l:n, k+1:n)
- A(k+1:n, k)*A(k, k+1:n);
end

Final A

10 -7 0
-03 -01 6
05 —25 155

L = eye(n,n) + tril(A, —1)
U = triu(A)

GE
0000000800000

Solving triangular systems

Solve Ly = b:

b(1) = b(1)/L(1,1);

for k=2 to n
tmp = b(k) - L(k,1:k-1)*b(1:k-1);
b(k) = tnmp/L(k,Kk);

end

Initial

GE
0O0000000e0000

Solving triangular systems

Solve Ly = b:

b(1) = b(1)/L(1,1);

for k=2 to n
tmp = b(k) - L(k,1:k-1)*b(1l:k-1);
b(k) = tnp/L(k,K);

end

GE
000000000 e000

Solving triangular systems

Solve Ly = b:

b(1) = b(1)/L(1,1);

for k=2 to n
tmp = b(k) - L(k,1:k-1)*b(1:k-1);
b(k) = tnp/L(k,K);

end
1 0 0 7
L=] —-0.3 1 0|, b= 6.1
05 —-25 1 155

Solve Ux = b: Similar (backward).

GE
0000000000800

Operation counts

LU decomposition:

for k=1 to n-1
A(k+1:n, k) = A(k+1:n, k)/A(Kk, k);
A(k+1:n, k+1:n) = A(k+1:n, k+1:n)
- A(k+1:n, k) *A(k, k+1:n);
end

n—-1 2
/ (n k) +2(n — k)dk ~ Sn
1

GE
0000000000080

Operation counts

Solving triangular systems:

b(1l) = b(1)/L(1,1);

for k=2 to n
tmp = b(k) - L(k,1:k-1)*xb(1:k-1);
b(k) = tmp/L(k,Kk);

end

n
2/ 2(k — 1)dk ~ 2n?.
2

GE

000000000000 e

Operation counts

How long does it take to solve a system of order 30 on a
computer that can perform two billion floating-point addition or
multiplication operations (flops) per second?

Answer: (0.7 x 30% + 2 x 30%)/(2 x 10°%) ~ 10~° seconds!

GE
0000000000000 00O0O00000000

What is pivoting?

Change the (2,2)-entry of A slightly from 2 to 2.099 and b, in b
accordingly so that the exact solution is unchanged.

10 -7 O X1 7
~3 2.099 6 X, | = | 3.901
5 -1 5 X3 6

Exact solution: (0,—1,1)T.

GE
0@0000000000000O0O00000000

What is pivoting? (cont.)

Forward elimination (3 = 10, p = 4)

10 —7 0 X1 7
0 -0.001 6 X2 | = | 6.001
0 25 5 X3 25

pivot: 10, multipliers: 0.3, —0.5

10 -7 0 X1 7
0 -0.001 6 X2 | = 6.001
0 0 1.501 x 104 X3 1.500 x 104

pivot: —0.001; multiplier: 2500.

GE
00®0000000000O0O0O0O00000000

What is pivoting? (cont.)

Backward substitution
x3 = 1.501 x 10#/1.500 x 10* = 1.001
X2 = (6.001 — 6x3)/(—0.001) = 5.0

What went wrong?
Step 1: multipliers my; = 0.3, m3; = —0.5

1.000 x 101 —7.000 0 7.000
0 —1.000 x 10~3 6.000 6.001
0 +2.500 5.000 2.500

Exact, no rounding errors.

GE
000@00000000000O0O00000000

What is pivoting? (cont.)

Step 2: multiplier mg; = 2.500E + 3, exact.

1.000 x 10! —7.000 0 7.000
0 —1.000 x 103 6.000 6.001
0 0 1.501 x 10* 1.500 x 104

The rounding error in 1.501 x 10% (A(3, 3), the exact result is

15,005) or 1.500 x 10* (b3, the exact result is 15,005) equals
half of its ulp ((0.001 x 10%)/2 = 5), which has the same size

as the size of the solution.

GE
0000@00000000000O00000000

What is pivoting? (cont.)

Back solve:
computed exact
X3 1.001 1.0
Xo 6.00{6'6061.001 — _5.000 6.0(11({060>:<Ll.o —_10

Catastrophic cancellation.

GE
00000@0000000000O000000000

What is pivoting? (cont.)

Error in the result can be as large as half of the ulp of the
largest intermediate results.

Solution:

Avoid large intermediate results (entries in the lower-right
submatrices).

Avoid small pivots (causing large multipliers).

How?

Interchange equations (rows).

000000e000000000O000000000

Pivoting

Forward elimination step 2:

10 —7 0 X1 7
0 -0.001 6 X2 | = | 6.001
0 25 5 X3 25

Matrix form:
0
0
1

1 0
A—MA M =] 03 1
~05 0

GE
0000000 e00000000O00000000

Pivoting (cont.)

Interchange equations (rows) (2) and (3) to avoid small pivot,

10 -7 0 Xy 7
0 25 5 x, | =| 25
0 -0.001 6 X3 6.001

Matrix form:

A —P,M1A Py = [

oo
= O O

o+~ O
| E—

pivot: 2.5, multiplier: 4 x 10~4

GE
0000000080000 000O000000000

Pivoting (cont.)

The updated system:

10 -7 O X1 7
0 25 5 x, | =| 25
0 0 6.002 X3 6.002

Matrix form:

1 0 0
A — MaPoMiA, M= | 0 1 0
0 4x10% 1

GE
0000000000000 00O000000000

Pivoting (cont.)

The updated system:

10 -7 0 X1 7
0 25 5 X2 = 25
0 0 6.002 X3 6.002

Backward substitution:

X3 = 6.002/6.002 =1.000
X = (2.5—5x%3)/2.5=—1.000
X1 = (7 — (—7)X2 — OX3)/1O =0

GE
0000000000 e00000O000000000

LU decomposition

MoP,MiA=U, (M;'P;M;HU =A

1 00 (100
Mll{os 1 o} P,=P, =0 0 1]
05 0 1 (010
1 0 0]
M;t= |0 1 0
0 —4x107* 1

GE
0000000000000 00O000000000

LU decomposition (cont.)

But

1 0 0
M tPoM; = | —03 —4x107% 1
0.5 1 0

is not lower triangular.

However,
1 0 0
(PoMtPM; P =| 05 1 0
-03 —-4x107% 1

is lower triangular and elementary! Call it L.

(P2MtPoM; U = PoA is an LU decomposition of P,A, (row)
permuted A.

GE
00000000000 0e®O000O000000000

LU decomposition (cont.)

Consider
X 1 00
Myt :=PM'P,=| 05 1 0
-03 0 1

equivalent to interchanging my; and ma;.

In general, suppose that M,P,M,P,;A = U, that is,
A =PiM;*P,M, U, then

P2P1A = ((P2MP2)M; MU

An LU decomposition of permuted A.

GE
0000000000000 e00O000000000

LU decomposition (cont.)

In n-dimensional case, M,,_1Pn_1---M>sP>2M{P1A = U. Then

A = PMPoMt P oML P M U

= PiMPoMy Y PsMI P oPr g
(Pn-1M;5Pr-1)M 5 U

= P1..Pn_1(Pn_1...PaM'P2..Py_1) - -
(Pn—1M;5Pr-1)M 5 U

LU decomposition P,_;...P1A = LU of permuted A.

In programming, A is overwritten by L and U and L is stored in
the lower part of A. When we interchange rows of A, we also
interchange corresponding (entire) rows of L.

GE
0000000000000 OeO0O000000000

Pivoting (cont.)

Algorithm. Gaussian elimination with partial pivoting.

for k=1 to n-1
find the pivot: max(|A(k:n,k)]|);
record the pivoting row index in p(k);
i nterchange rows A(k,:) and A(p(k),:);
A(k+1l:n, k) = A(k+1:n, k)/A(k, k);
A(k+1:n, k+1:n) = A(k+1:n, k+1:n)
- A(k+1:n, k)*A(k, k+1:n);
end

0000000000000 00eO00000000

Example

Original

-3 2.099 6 1
10 -7 O p=| 2
5 -1 5 X

0000000000000 00Oe00000000

Example

k =1, pivot

-3 2.099 6 2
10 -7 O p=| 2
5 -1 5 X

0000000000000 00O0OeO000000

Example

k =1, permute P,

10 -7 O 2
-3 2.099 6 p=
5 -1 5 X

N

0000000000000 00O0OOe000000

Example

k = 1, Multipliers M,

10 -7 0 2
—-0.3 2.099 6 p=
0.5 -1 5 X

N

0000000000000 00O0O000e00000

Example

k =1, update

10 —7 0 2
—-0.3 -0.001 6 p=
0.5 2.5 5 X

N

0000000000000 00O0O000e0000

Example

k = 2, pivot

10 —7 0 2
—-0.3 -0.001 6 p=1 3
0.5 2.5 5 X

00000000000 0O0OO0O0O0000e000

Example

k =2, permute P,

10 -7 0
05 25 5 p=
~0.3 -0.001 6 x

W N
I

0000000000000 O00O0O00000e00

Example

k = 2, multiplier M,

10 -7 0 2
0.5 25 5 p=| 3
~0.3 —0.0004 6 X

00000000000 0O0OO0O0O000000e0

Example

k = 2, update

10 -7 0 2

0.5 25 5 p=1] 3
—0.3 —0.0004 6.002 X

Note. In the above example, the last entry of the pivot vector p

is not used. It can be used for computing det(A), see
deconp. m

00000000000 0O0OO0O0O0000000e

Example

[1 0 0 10 -7 0
LU = 0.5 1 0 0 25 5
| —0.3 -0.0004 1 0 0 6.002
10 -7 O
= 5 -1 5],
| —3 2.009 6
permuted A

-3 2.009 6 2
P2P1 10 -7 0 p= 3
5 -1 5 3

GE

Basic Linear Algebra Subroutines (BLAS)

Operations in GE with pivoting:

imax: find the index of max(|A(k : n,k)|)

swap: interchange A(k,:) and A(p(k), :)

scal: scalar-vector multiplication:
Ak, K)"IAKk +1:n,k)

axpy: ax +y, vector update:
Ak +1:n,j)—A(k,j)A(k +1:n,k), for
j=k+1:n

Errors

Introduction

Estimating the error in the computed solution.
Computed solution: X

Exact solution: x

Relative forward error: ||x — X||/||X||

But we usually don’t know X.

Check the residual r = b — AX?

A contrived example.

3=10,t=3
115 100 [x] [215
141 122 | [xp | | 263

Errors

Introduction (cont.)

Gaussian elimination with partial pivoting
Interchange two rows; multiplier: 1.15/1.41 = 0.816;

141 1.22 X1 | | 2.63
0 0.004 X | | 0.00
X2 =0.00, X; =2.63/1.41 = 1.87.
Residual: ry =0.01,r, = 0.

Exact solution: x; = x, = 1.

Small residual does not imply small error in solution.]

Errors

Introduction (cont.)

Check the pivots?

If the pivots are small, A is nearly singular; however, A might be
nearly singular but none of the pivots are small.

How do we estimate the error in the computed solution?

It depends on the stability of the algorithm and the sensitivity of
the problem (solving linear systems).

Gussian elimination with partial pivoting is practically stable.
Sensitivity of the problem of solving linear systems?

Errors

Condition of a matrix

The sensitivity of the solution x to the perturbations on A and b.
Measure of nearness of singularity.

Vector norms:

IIx|| > 0,ifx #0

10 =0

llex || = |c]| ||x]|, for all scalars c

I+ Yyl < [IxI[+ llyll
Examples.

1/2
Xl = (32 bxl2)*
X[l = > [Xa]

[1X]loo = maxi (|xi)

Errors

Condition of a matrix (cont.)

Think of a matrix as a linear transformation between two vector
spaces.
The range of possible change:

|AX]]

M = max—— = Al
x#0 [|X|]
A
x#0 |||

When A is singular, m = 0.
Examples of matrix norms.
1Al = max; (3 [ayl)
1A]le = max; (37 lag])

Errors

Condition of a matrix

Measurement: cond(A) = M /m
If A'is singular, m = 0, cond(A) = cc.
If A is nonsingular,

Al
e L AL

m
x£0 [|AX| yzo |yl

Condition for inverting A

cond(A) = [|A]| [|A~]

Errors

Condition of a matrix (cont.)

Perturbing b:
AX +Ax)=b+ Ab

Since Ax = b and A(Ax) = Ab,
[bll < Mllx]| and [|Ab]| > mi|Ax]|

Thus
|Ab]|

1x)
< cond(A)———
ST

A relative error magnification factor.

How do we get |[A~1||?

Errors

Estimating ||A~2|;

Basic idea:

Determine a vector e (all components 1 or —1) so that the
solution for ATAz = e is heuristically large.

Given PA = LU (AT = UTLTP and ATA = UTLTLU), determine
e so that the solution w for UTw = e is heuristically large;
solve fory in LTy = w;

solve for z in Az =y;

normalize ||z[|1/[ly |1 ~ A1

Cost:
If the LU decomposition PA = LU (O(n?)) is available,
it requires solving four triangular systems (O(n?)).

Errors

Example revisited

115 1.00 2.15
A= { 141 1.22] b= { 2.63}

Exact solution: x = [1 1]T
Computed solution: X = [1.87 0.00]", 3 = 10, t = 3.

Errors

Example revisited

The computed solution is the exact solution of

A_ [215/187 1.00

263/187 1.22]’ and b

The perturbation

. —4
AA:A—A%[ZG?XJ'O 0]

358x107% 0

Relative change in A:

[AA]]

=l —15%x102%:=pu
A

Errors

Example revisited

Relative error in the computed solution:

Almost 100% error, that is, zero digit accuracy.

The condition number
cond(A) ~ 8.26 x 10?
Almostu—! = gt

[— X]|
%l

< pcond(A)u

The relative change in A is magnified by cond(A).

Errors

@ The solution computed by GE with partial pivoting can be
viewed as the exact solution of a slightly perturbed
coefficient matrix. The relative perturbation is usually pu,
where p is a constant of the same size as 5. In other
words, in practice, GE with partial pivoting is stable.

@ The relative error in the computed solution (by GE with
partial pivoting) is roughly of the size cond(A)u.

@ In practice, the entries in the coefficient matrix A and the
right-hand-side vector b contain measurement errors. In
the computed solution, The measurement error is roughly
magnified by cond(A). For example, if the measurement
accuracy is four decimal digits and the condition number is
about 102, then we expect the computed solution has two
decimal digit accuracy.

Software

Software packages

Direct methods for general linear systems
NETLIB LAPACK: sgetrf, sgetrs, sgecon

Direct methods for symmetric and positive definite systems
NETLIB LAPACK: spotrf, spotrs

Direct methods for symmetric and indefinite systems
NETLIB LAPACK: ssytrf, ssytrs

Direct methods for sparse systems
NETLIB SuperLU, SPARSE
MATLAB colmmd, symmmd, symrcm

Summary

Summary

@ Gaussian elimination with pivoting (deconp, sol ve):
Working on one matrix, matrix update. Improve instability
by avoiding small pivots (controlling the sizes of
intermediate results)

@ Error estimates: Condition number of a matrix.

Summary

References

[1] George E. Forsyth and Michael A. Malcolm and
Cleve B. Moler. Computer Methods for
Mathematical Computations. Prentice-Hall, Inc.,
1977.

Ch 3.

[2] Nicholas J. Higham. Accuracy and Stability of
Numerical Algorithms. Second Edition. SIAM.
Philadelphia, PA, 2002.

Ch 28. (A Gallery of Test Matrices)

	Introduction
	Gaussian Elimination Methods
	Generic Method
	Matrix Notations
	Gaussian Elimination Without Pivoting
	Pivoting
	Efficiency and Portability

	Estimating Errors
	Software Packages
	Summary

