
Intro Polynomial Piecewise Cubic Spline Software Summary

Interpolation

Sanzheng Qiao

Department of Computing and Software
McMaster University

July, 2012

Intro Polynomial Piecewise Cubic Spline Software Summary

Outline

1 Introduction

2 Polynomial Interpolation

3 Piecewise Polynomial Interpolation

4 Natural Cubic Spline

5 Software Packages

Intro Polynomial Piecewise Cubic Spline Software Summary

Introduction

Problem setting: Given (x0, y0), (x1, y1), ..., (xn , yn),
x0 < x1 < · · · xn, for example, a set of measurements, construct
a function f :

f (xi) = yi , i = 0, 1, ..., n

Desirable properties of f :

smooth: analytic and |f ′′(x)| not too large (the first and
second derivatives are continuous).

simple: polynomial of minimum degree, easy to evaluate.

Intro Polynomial Piecewise Cubic Spline Software Summary

Example

Measurements of the speed of sound in ocean water

0 2000 4000 6000 8000 10000 12000
4860

4880

4900

4920

4940

4960

4980

5000

5020

5040

5060

depth (ft)

sp
ee

d
(f

t/s
ec

)

Intro Polynomial Piecewise Cubic Spline Software Summary

Example

Interpolation

0 2000 4000 6000 8000 10000 12000
4860

4880

4900

4920

4940

4960

4980

5000

5020

5040

5060

depth (ft)

sp
ee

d
(f

t/s
ec

)

Intro Polynomial Piecewise Cubic Spline Software Summary

Polynomial Interpolation

Advantages: easy to evaluate and differentiate

Weierstrass Approximation Theorem:

If f is any continuous function on the finite closed
interval [a,b], then for every ǫ > 0 there exists a
polynomial pn(x) of degree n = n(ǫ) such that

max
x∈[a,b]

|f (x) − pn(x)| < ǫ.

Impractical (degree is often too high)

Intro Polynomial Piecewise Cubic Spline Software Summary

A straightforward approach

A polynomial of degree n is determined by its n + 1 coefficients.

Given (x0, y0), ..., (xn , yn) to be interpolated, we construct the
linear system (Vandermonde matrix):











1 x0 · · · xn
0

1 x1 · · · xn
1

...
... · · ·

...
1 xn · · · xn

n





















a0

a1
...

an











=











y0

y1
...

yn











solve for the coefficients of the polynomial

pn(y)(x) = a0 + a1x + · · · + anxn

Intro Polynomial Piecewise Cubic Spline Software Summary

Vandermonde matrix

When x0, ..., xn are distinct, the Vandermonde matrix is
nonsingular. Thus the system has a unique solution
(coefficients of the interpolating polynomial).

Example. Given two points (28, 0.4695) and (30, 0.5000), we
have the system

[

1 28
1 30

] [

a0

a1

]

=

[

0.4695
0.5000

]

and the solution
[

a0

a1

]

=
1
2

[

30 −28
−1 1

] [

0.4695
0.5000

]

=

[

0.04250
0.01525

]

.

Intro Polynomial Piecewise Cubic Spline Software Summary

Vandermonde matrix

problem:

The coefficient (Vandermonde) matrix is often ill-conditioned

question

What is the condition number of the Vandermonde matrix
constructed by xi = 2000 + i , i = 0, 1, ..., 7?

Answer: 1.87 × 1037

Intro Polynomial Piecewise Cubic Spline Software Summary

Lagrange form (conceptually simple)

Basis of polynomials: {lj (x)} (j = 0, 1, ..., n) of degree n such
that

lj(xi) =

{

1, if i = j
0, otherwise

construct
lj(x) =

∏

i 6=j

x − xi

xj − xi

Thus

pn(y)(x) =

n
∑

j=0

lj(x)yj

Intro Polynomial Piecewise Cubic Spline Software Summary

Example

Given three points: (28, 0.4695), (30, 0.5000), (32, 0.5299),
construct a second degree interpolating polynomial in the
Lagrange form:

p2(x) =
(x − 30)(x − 32)

(28 − 30)(28 − 32)
0.4695

+
(x − 28)(x − 32)

(30 − 28)(30 − 32)
0.5000

+
(x − 28)(x − 30)

(32 − 28)(32 − 30)
0.5299

p2(31) = 0.5150 ≈ sin(31◦)

Hard to evaluate.

Intro Polynomial Piecewise Cubic Spline Software Summary

Horner’s rule

Evaluating a0x3 + a1x2 + a2x + a3

Horner’s form: ((a0x + a1)x + a2)x + a3

v = a(0);
for (i = 1:n)

v = v*x + a(i);
end

The optimal (most efficient and accurate) way of evaluating
a0xn + ... + an (not in the Lagrange form).

Intro Polynomial Piecewise Cubic Spline Software Summary

Dangers of polynomial interpolation

An example. Runge’s function (continuous derivatives of all
order)

y(x) =
1

1 + 25x2 on [−1, 1]

equally spaces x0 = −1, x1, · · · , xn = 1

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−4

−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

0.5

1
Equal Spacing (n = 13)

It is often best not to use global polynomial interpolation.

Intro Polynomial Piecewise Cubic Spline Software Summary

Piecewise Polynomial Interpolation

Given the partition

α = x1 < x2 < · · · < xn = β,

interpolate on each [xi , xi+1] with a low degree polynomial.

Linear
Li(z) = ai + bi(z − xi), z ∈ [xi , xi+1]

ai = yi , bi =
yi+1 − yi

xi+1 − xi
, 1 ≤ i ≤ n − 1

Intro Polynomial Piecewise Cubic Spline Software Summary

Algorithm. Piecewise linear interpolation

Given vectors x and y with interpolating points, this function
returns the piecewise linear interpolation coefficients in the
vectors a and b.

function [a,b] = pwL(x,y)
n = length(x);
a = y(1:n-1);
b = diff(y)./diff(x);

Intro Polynomial Piecewise Cubic Spline Software Summary

Evaluation

Given the piecewise linear interpolation L(z) represented by
the coefficient vectors a, b, how do we evaluate this function at
z ∈ [α, β]?

First, we locate [xi , xi+1] such that z ∈ [xi , xi+1]. Then, we
evaluate L(z) using Li(z).

Search method: binary search, since xi are sorted.

Observation: If [xi , xi+1] is associated with the current z, then it
is likely that this subinterval will be the one for the next value.

Intro Polynomial Piecewise Cubic Spline Software Summary

Algorithm. Locate

Idea: Use the previous subinterval as a guess. If not, do binary
search.
Given the vector x of breakpoints and a scalar z between x1

and xn, this function locates i so that xi ≤ z ≤ xi+1. The
optional g is a guess.

function i = Locate(x,z,g)
if nargin==3 % try the guess

if (x(g)<=z)&(z<=x(g+1))
i = g;
return % quick return

end
end

Intro Polynomial Piecewise Cubic Spline Software Summary

Algorithm. Locate (cont.)

n = length(x);
if z==x(n)

i = n-1; % quick return
else % binary search

left = 1; right = n;
while right > left+1

mid = floor((left + right)/2);
if z < x(mid)

right = mid;
else

left = mid;
end

end
i = left;

end

Intro Polynomial Piecewise Cubic Spline Software Summary

Algorithm. pwLEval

Given a piecewise linear interpolation coefficient vectors a and
b from pwL and its breakpoints in x , this function returns the
values of the interpolation evaluated at the points in z.

function v = pwLEval(a,b,x,z)
m = length(z);
v = zeros(m,1);
g = 1;
for j=1:m

i = Locate(x,z(j),g);
v(j) = a(i) + b(i)*(z(j) - x(i));
g = i;

end

Intro Polynomial Piecewise Cubic Spline Software Summary

Example

y =
1

(x − 0.3)2 + 0.01
+

1
(x − 0.9)2 + 0.04

− 6

0

20

40

60

80

100

0 0.5 1 1.5 2 2.5 3

Interpolation of humps(x) with PWL, n = 10

Intro Polynomial Piecewise Cubic Spline Software Summary

Problem setting

Given (x1, y1), (x2, y2), ..., (xn , yn), find s(x):

in each subinterval [xi , xi+1], s(x) is cubic

s(xi) = yi , i = 1, ..., n

s′(x) and s′′(x) are continuous at x2, x3, ..., xn−1

s′′(x1) = s′′(xn) = 0
The second derivative of s(x) is zero at the end points
means that s(x) is linear at the end points.

Intro Polynomial Piecewise Cubic Spline Software Summary

A straightforward approach

Suppose ai + bix + cix2 + dix3 on [xi , xi+1], i = 1, ..., n − 1.
4(n − 1) unknowns to be determined.

Interpolation:
ai + bixi + cix2

i + dix3
i = yi , i = 1, ..., n − 1

ai + bixi+1 + cix2
i+1 + dix3

i+1 = yi+1, i = 1, ..., n − 1

Continuous first derivative (consider [xi−1, xi] and [xi , xi+1]):
bi−1 + 2ci−1xi + 3di−1x2

i = bi + 2cixi + 3dix2
i , i = 2, ..., n − 1

Continuous second derivative:
2ci−1 + 6di−1xi = 2ci + 6dixi , i = 2, ..., n − 1

Two end conditions:
2c1 + 6d1x1 = 0 and 2cn−1 + 6dn−1xn = 0

Total of 4(n − 1) equations, a dense system.

Intro Polynomial Piecewise Cubic Spline Software Summary

A clever approach: Constructing s(x)

In the subinterval [xi , xi+1], let hi = xi+1 − xi and introduce new
variables:

w = (x − xi)/hi , w̄ = 1 − w .

Note: w(xi) = 0, w(xi+1) = 1 and w̄(xi) = 1, w̄(xi+1) = 0,
(linear Lagrange polynomials).
Thus wyi+1 + w̄yi is the (linear) Lagrange interpolation on
[xi , xi+1].

Construct

s(x) = wyi+1 + w̄yi + h2
i [(w

3 − w)σi+1 + (w̄3 − w̄)σi]

where σi to be determined, so that the properties (the first and
second derivatives are continuous) are satisfied.

Intro Polynomial Piecewise Cubic Spline Software Summary

Properties of s(x)

Using w ′ = 1/hi and w̄ ′ = −1/hi , we can verify
1 s(xi) = yi , s(xi+1) = yi+1, independent of σ, that is, s(x)

interpolates (xi , yi).
2 s′′(x) = 6wσi+1 + 6w̄σi , linear Lagrange interpolation at

the points (xi , 6σi) and (xi+1, 6σi+1).

Clearly s′′(xi) = 6σi , which implies that s′′(x) is continuous.

Is s′(x) continuous?

Intro Polynomial Piecewise Cubic Spline Software Summary

Properties of s(x) (cont.)

It remains to determine σi so that s′(x) is continuous.
Consider, on [xi , xi+1],

s′(x) =
yi+1 − yi

hi
+ hi [(3w2 − 1)σi+1 − (3w̄2 − 1)σi]

Let ∆i = (yi+1 − yi)/hi .
On [xi , xi+1], w(xi) = 0 and w̄(xi) = 1,

s′
+(xi) = ∆i + hi(−σi+1 − 2σi).

Intro Polynomial Piecewise Cubic Spline Software Summary

Properties of s(x) (cont.)

On [xi−1, xi],

s′(x) =
yi − yi−1

hi−1
+ hi−1[(3w2 − 1)σi − (3w̄2 − 1)σi−1]

and w(xi) = 1, w̄(xi) = 0. Thus

s′
−(xi) = ∆i−1 + hi−1(2σi + σi−1).

Intro Polynomial Piecewise Cubic Spline Software Summary

Making s′(x) continuous

Setting
s′
+(xi) = s′

−(xi), i = 2, 3, ..., n − 1,

we get n − 2 equations:

hi−1σi−1 + 2(hi−1 + hi)σi + hiσi+1 = ∆i − ∆i−1

for i = 2, 3, ..., n − 1.

Solve for σ2, ..., σn−1, recalling that σ1 = σn = 0 (natural cubic
spline).

Intro Polynomial Piecewise Cubic Spline Software Summary

Matrix form

diagonal: [2(h1 + h2), · · · , 2(hn−2 + hn−1)]
supper/subdiagonal: [h2, · · · , hn−2]
unknowns: [σ2, · · · , σn−1]

T

right-hand side: [∆2 − ∆1, · · · ,∆n−1 − ∆n−2]
T

The matrix is

symmetric

tridiagonal

diagonally dominant (|ai ,i | >
∑

j 6=i |ai ,j |), when
x1 < x2 < · · · < xn

Can apply Gaussian elimination without pivoting, working on
(two) three vectors with O(n) operations.

Intro Polynomial Piecewise Cubic Spline Software Summary

Modeling a problem

Note. Had we taken the straightforward approach to
determining the coefficients of the piecewise cubic polynomials,
four coefficients for each of n − 1 cubic polynomials, we would
have ended up with a large (4(n − 1) × 4(n − 1)) and dense
system requiring O(n3) operations.

Now we have an O(n) method.

Intro Polynomial Piecewise Cubic Spline Software Summary

Evaluating s(x)

If s(x) is evaluated many times, arrange s(x) so that

s(x) = yi + bi(x − xi) + ci(x − xi)
2 + di(x − xi)

3

and rearrange it in the Horner’s form, for xi ≤ x ≤ xi+1 and
calculate and store bi , ci , di (instead of σi)

bi =
yi+1 − yi

hi
− hi(σi+1 + 2σi)

ci = 3σi di =
σi+1 − σi

hi

for i = 1, 2, ..., n − 1

Intro Polynomial Piecewise Cubic Spline Software Summary

Algorithm. Natural cubic spline

ncspline

Given a vector x with breakpoints and vector y with function
values, this algorithm computes the coefficients b, c, d of
natural spline interpolation.

1 Compute hi and ∆i ;
2 Form the tridiagonal matrix (two arrays) and the right hand

side;
3 Solve for σi ;
4 Compute the coefficients b, c, and d .

Intro Polynomial Piecewise Cubic Spline Software Summary

Software packages

IMSL csint, csdec, csher, csval

MATLAB polyfit, spline, ppval

NAG e01aef, e01baf, e01bef, e02bbf, e01bff

Octave interp1

Intro Polynomial Piecewise Cubic Spline Software Summary

Summary

Polynomial interpolation: General idea and methods,
Lagrange interpolation

Piecewise polynomial interpolation: Construction of
piecewise polynomial (linear and cubic), evaluation of a
piecewise function, ncspline, seval

Intro Polynomial Piecewise Cubic Spline Software Summary

References

[1] George E. Forsyth and Michael A. Malcolm and
Cleve B. Moler. Computer Methods for
Mathematical Computations. Prentice-Hall, Inc.,
1977.
Ch 4.

	Introduction
	Polynomial Interpolation
	Piecewise Polynomial Interpolation
	Natural Cubic Spline
	Software Packages
	Summary

