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Intro

Introduction

Another (better) term: quadrature

Problem: Given finite number of function values f(x;), x; € [a, b]
or the function f(x) can be evaluated at any x € [a, b], calculate

I(f) = /abf(x)dx.



Intro

Introduction (cont.)

Partition
a=X; <Xp<---<Xpyeg1 =D,

and denote h; = X1 — X;. Then
n Xi1
=34 |i:/ (x)dx
i=1 %i

Quadrature rule: Approximation of [;
Composite quadrature rule: Approximation of I(f) as a sum of [;



Rectangle

Rectangle rule

We use piecewise constant (degree zero polynomial) to
approximate f(x). In each interval [x;, X;+1], f(x) is evaluated at
the midpoint

Xj Xi .
yi = % i=1,..n,

then the rectangle (quadrature) rule is:

li = hif(y;)

i Xi+1



Rectangle

Rectangle rule (cont.)

The composite rectangle rule is:

A weighted sum of function values.

Often the major computation is the evaluation of the function.
Thus the complexity is measured by the number of function
evaluations.

In the rectangle rule

Function evaluations: n. Evaluated at midpoints y;.



Trapezoid

Trapezoid rule

We use piecewise linear interpolation (degree one polynomial)
to approximate f(x). In each interval [x;, X; ;1] the function is
evaluated at the endpoints:

F(xi) +f(Xi41)

Ii%hi 2

X Xi+1



Trapezoid

Trapezoid rule (cont.)

Composite trapezoid rule:

2
h1‘|‘h2

2
hn-i-l

(Xn) + Tf(xn+1)

T(f) — zn:hif(Xi) +f(xi+l)
i=1

hy
= Elf(xl) +
+ hn—l + hnf

2

f(Xz) + ...

A weighted sum of function values.

In the trapezoid rule,
Function evaluations: n + 1. Evaluated at endpoints x;



Error

Error in rectangle rule

Taylor expansion f(x) about the midpointy; = (X; + Xj11)/2:

Integrate the both sides and note that

p+1

Xj i
/ +1(x —y)Pdx = oz EVENP
X; 0 odd p



Error

Error in rectangle rule (cont.)

Then
Xit1
/ f(x)dx
X
= hif(y;) + ith'/(y.) + Lh_5fi\/(y.) 4.

P Y1920 '

When h; is small, the error
I(f) — R(f)

1 : 3¢l 1 & 5¢iv
~ ﬂiz—;hif (%)+M;hif (vi)

For equal spacing, h; = h, we have

h3 & h® ..
I(f) = R() =~ 57 > ") + 1555 > (i)
i=1 i=1




Error

Error in trapezoid rule

In order to make the error in the trapezoid rule comparable with
that in the rectangle rule, we expand f(x) at the midpoint y;.
Substituting x = x; and x = xj, 1 in the Taylor expansion, we
have

f(xi) = Y|)+Z 1)p2p|p,f(p (¥i)
f(xi—i-l) = y|)+22pp| |)
Thus

() + f(i41) y L e
HOLI0) () 4 Ch20 () + o () +



Error

Error in trapezoid rule (cont.)

Recall that in the case of rectangle rule, we had

Xit1
/ f(x)dx
Xi
1 3¢l 1 5¢iv
= hif(yi) + o0 + 755N i) + -
Combining the above two equations, we have
Xit1
/ f(x)dx
Xi
f(xi) +f(x 1 1 i
= hiw — Eh?f”( i) — mhiSfIV(yi) 4.

Then the error is

(1) = T() ~ 25 D) — o5 SR (y) + -
i=1 i=1



Compare

n 5

3 n_
(1)~ R() ~ by S1) + 705> (%)
i=1

(1)~ T(1) ~ 15 D1 (y) - 4802h5f'v ) + -
i=1

Usually rectangle rule (degree zero approximation) is more
accurate than trapezoid rule (degree one approximation).
Surprised?



Observe

h3 n h5 no.
I(f) — R(f) = ﬂzf”()ﬁ) + 7920 > V()
i—1

1
I(F) =T ()~ — 5 > hF(y) 4802h5f'v (i) + -

Using I(f) — R(f) ~ (T (f) — R(f)), we can estimate the error
in R(f) using T (f) and R(f). Similarly,

I(f) =T (f) = %(R(f) — T (f)) can be used to estimate the error
in T (f). (But they are approximations, it is possible that

R(f) — T(f) = 0 whereas I(f) — R(f) # 0).



Observe

3N 5 N

(1)~ R() ~ 3 S 1)+ 105 > ¥()
i=1

When each h; is cutin half, I(f) — Ry () ~ 2(1(F) = R(f)).
(Why?) Similarly for the trapezoid rule. Doubling the number of
panels in either the rectangle rule or the trapezoid rule, it can
be expected to roughly quadruple the accuracy.

This can be used to estimate the error as well as improving the
accuracy. (How?)



Example

Compute

/% sin(x)dx
0

m QCTrap(sin, 0.000, 1.571, m error

using the trapezoid rule.

3 0. 9480594489685199 5.2e-2
5 0.9871158009727753 1. 3e-2
9 0.9967851718861696 3. 2e-3
17 0. 9991966804850722 8. 0e-4

where m is the number of points, that is, m — 1 is the number of
intervals.



Simpson’s

Simpson’s rule

Recall the rectangle rule

o AL
( f)— Zhs // | Mzh?flv(yi)—’_
i=1

and the trapezoid rule
3 5
T =10+ Zh f( y.)+4802h ¥ (yi)

Combining the above two equations (canceling the O(h?)
term), we get a more accurate method (Simpson’s rule):
2 1

S(f) = §R(f) + §T(f)

= I 2880 Zhsfw i)+



Simpson’s

Simpson’s rule (cont.)

Simpson'’s rule:

2 X X1y ERICORRIGTEY;

i =3t 3 2

Composite Simpson’s rule:

S(f) = z: %hi [f(xi) +4f(%) + f(Xit1)

Function evaluations: 2n + 1
Error

(1)~ S() = 5 SoPF () +
i=1



Simpson’s

@ Simpson'’s rule can also be derived by using piecewise
gquadratic (degree two) approximation.

@ Actually, Simpson’s rule is exact for cubic function (one
extra order of accuracy), since the error term involves the
fourth derivatives.

@ Doubling the number of panels in Simpson’s rule can be
expected to reduce the error by roughly the factor of 1/16.



Extrapolation

A general technique: Richardson’s extrapolation

Idea: Combining two approximations (e.g., R(f) and T (f))
which have similar error terms to achieve a more accurate
approximation (e.g., S(f)).
Example. Combining S(f) and S, (f) to obtain an

2

approximation which has error of order hi7. This gives the
Romberg quadrature.

What are the weights?

Answer: i—gs%(f) — &S(f)




Adaptive

What is adaptive quadrature?

Given a predetermined tolerance ¢, the algorithm automatically
determines the panel sizes so that the computed approximation
Q satisfies

<€

Q- /abf(x)dx

Software interface: quad(fname, a, b, tol)

Why adaptive?

The algorithm uses large panel sizes for smooth parts and
small panel sizes for the parts where the function changes
rapidly. Thus the prescribed accuracy is attained at as small a
cost in computing time. (Measured by the number of function
evaluations.)



Adaptive

Basic idea

Compute two approximations (Simpson’s rule):
one-panel formula

P, = % f(xi)+ 4f(x; + %) +f(x; + hy)

two-panel formula

h

Qi:E

[ 10x) + 4106+ o)+ 210 + )

+ 4f (x; + 3Thi) +f(xi + hy)]



Adaptive

Basic idea (cont.)

Note
@ From P; to Q;, we need only two function evaluations
f(x + 2) and f(x; + 30
@ Q; can be viewed as the sum of two P’s from two
subintervals of length h; /2
Compare P; and Qj to obtain an estimate of their accuracy.

|i—Pi:Chi5fiv(Xi+%)—|—---

i —Qi=c (%)5 [f“’(xi - %) + V(% + 3Thi) +--



Adaptive

Error estimation

Using the approximation
fiV(Xi + %) + fiV(Xi + 3Thl) ~ 2fiV(Xi + m),
we have
i — Qi ~2¢c il 5f‘V(x- +ﬁ)+-~-
| | 2 | 2
Thus we have a relation between the errors in Q; and P;:

|i—Qi%%(|i—Pi)+“‘

Reformulate the above

|i—Qi%7241_1(Qi—Pi)+“‘

Now the accuracy of Q; is expressed in terms of Q; — P;



Adaptive

Bisect each subinterval until

1 h;
24_1|QI IDI‘—b_a

Then

/bf(x)dx - zn:Qi‘
a i=1

IN
N
N
G
=
INNgh
QO
e

IN
o
| |
D
g
=
I
)



Adaptive

function [I, err] = AdaptQuad(fname,a,b,tol,maxLev)

i f maxLev==
too many | evels of recursion, quit;
conmput e one-panel quadrature R1;
comput e two-panel quadrature R2;
use R1 and R2 to estimate error in R2;
if the estinated error < tol
return R2 and estinated error;
el se
[11, errl] =
Adapt Quad(fnane, a, m d, tol/2, maxLev-1);
[12, err2] =
Adapt Quad(fnane, m d, b, tol /2, maxLev-1);
I =11 +12;
err = errl + err2;



Adaptive

Example

Compute
1

T 1

Z = —— d
4 /0 1+ x2 X
using the adaptive rectangle rule.
Adapt QRec(’ datan’, 0, 1, 0. 0001, 10) : 0.785396
estimated error: 7.28 x 107°
actual error: 2.23 x 10~




2D quadrature

Consider a 2D integral

b ,d
I :/ / f(x,y)dydx
a Cc

d
g(x) :/c f(x,y)dy.

Applying the composite trapezoid rule to

/abg(x)dx

we get the numerical integration

and let

m—1
g(xi) +9(Xit1)
; R 1 h, .



2D quadrature (cont.)

Written in vector form:

where w,] =[1/2,1,...,1,1/2].



2D quadrature (cont.)

Again, applying the composite trapezoid rule to each g(x;), we
get

d n_lfx.’y. +fx’y
00) = [ 1xy)ay = 3 TEAVETOY)y,
In vector form

g(xi) ~ hy[f(xiayl)v '--,f(XiaYn)]Wy
where wy = [1/2,1,...,1,1/2].



2D quadrature (cont.)

Finally, we have the numerical integration, in matrix-vector form:

where
f(x1,y1) - f(X1,¥n)
F = : :

f(xm7Y1) f(xmaYn)



Example

2 1 ) )
/ / e_(x +2y )/4dydx
—-2J-1

m=n
Rel ative

Subi nterval s I nt egral Ti me

2 4.39508052 1.00

4 4.93166539 0.97

8 5. 06690648 1.00

16 5.10073164 1.62

32 5.10918854 1.75

64 5.11130280 4.13

128 5.11183136 13.21

256 5.11196350 44.88



Software

Software packages

IMSL qdag, gdags, twodq, gand
MATLAB quad, quadl, dblquad
NAG dO1lajf, do1daf, dO1fcf
Octave quad, quadl, trapz



Summary

Summary

@ Composite quadrature rules: Rectangle rule, trapezoid
rule, Simpson’s rule

@ Richardson’s extrapolation technique: Combining two
guadrature rules with similar error terms to achieve a more
accurate quadrature rule by canceling the leading error
term; Combining one-panel and two-panel results to
estimate errors

@ Adaptive quadrature: By using error estimates, determine
the panel sizes so that the computed approximation
satisfies a predetermined tolerance

@ 2D quadrature: Formulation of the problem



Summary
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