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Q Introduction



Intro

Problem setting

Find roots
f(x)=0

Often, methods are iterative (roots cannot be found in finite
number of steps).

Compute square roots

x2-A=0




Intro

Problem setting

Find roots
f(x)=0

Often, methods are iterative (roots cannot be found in finite
number of steps).

Compute square roots

x2-A=0

Find the side of the square whose area is A



Intro

Compute square roots

Start with a rectangle whose one side is X, then the other side
is A/Xc so that its area is A.

Make the rectangle “more square” by setting the new side:

1 A
X+:§ XC+Z

Then x. = x4 and iterate.



Intro

Compute square roots

Start with a rectangle whose one side is X, then the other side
is A/Xc so that its area is A.
Make the rectangle “more square” by setting the new side:

1 A
X+:§ XC+Z

Then x. = x4 and iterate.

A better form



Intro

Compute square roots

Three issues to be addressed
@ Initialization (o)
@ Convergence (xx — X,?) and rate (how fast?)
@ Termination



Intro

Initialization

Write A in base 4:

A=m x 4° 025<m<1
then vA = /m x 2¢.
Now we can assume 4-1 < A < 1.

Linear interpolation of f(A) = v/A at A = 0.25,1.0:

p(A) = (1+ 2A)/3.




Intro

Initialization (cont.)

Initial error bound:

Differentiating
1+ 2A
\/_ o +

3
with respect to A and then setting the derivative to zero to find
the maximum, it can be shown that

VA — (1+2A)/3| <0.05



Intro

Initialization (cont.)

Initial error bound:
Differentiating
VA _ 1+2A
3
with respect to A and then setting the derivative to zero to find
the maximum, it can be shown that

VA — (1+2A)/3| <0.05

Initial value: xg = (1 + 2A)/3
Initial error: eg < 0.05



Intro

Convergence

A relation between x,; and Xy:

1 A
X+1 = 5 Xk+g

Denote the error e, = |x, — v/A|, then the relation between

exy1 and ey:
1 VA
Xk —
€1 = [Xkq1— \/N =5 (W)

1 2
—e
2x¢| ¥



Intro

Convergence

A relation between x,; and Xy:

1 A
X+1 = 5 Xk+g

Denote the error e, = |x, — v/A|, then the relation between
exy1 and ey:

2
1 /(X —\/K
€1 = |Xk+1—\/z~|:§<k7>

1 2
—e
2x¢| ¥

It can be shown that 0.5 < x, < 1.0.



Intro

Convergence (cont.)

Since the initial error eg < 0.05,
ec<el ;<. <ed <(0.05)7%

We have shown the convergence (ex — 0 as k — o0).



Intro

Convergence (cont.)

Since the initial error eg < 0.05,
ec<el ;<. <ed <(0.05)7%

We have shown the convergence (ex — 0 as k — o0).

How fast?

Rate: quadratic ex; < ceﬁ, each iteration doubles the
accuracy.



Intro

Termination

Recall: e, < (0.05)2" < 102"
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Intro

Termination

Recall: e, < (0.05)2" < 102"

Whenk = 3, e, < 1078,

Whenk = 4, e, < 10716,

Three iterations are enough for IEEE single precision (2724).

Four iterations are enough for IEEE double precision (27°3).



Intro

Example

Compute /3



Intro

Example

Compute /3
Scale: 3=0.75x 4



Intro

Example

Compute /3

Scale: 3=0.75x 4
Initial: xo = (1 + 2 x 0.75)/3 =2.5/3



Intro

Example

Compute /3
Scale: 3=0.75x 4

Initial: xo = (1 + 2 x 0.75)/3 =2.5/3
Iterate: Xn4+1 = Xn — (Xn — 0.75/Xn)/2

X5 = X3.

n Xn error

0 0.8333... 33x10°°?
1 0.8667.. 6.4x10°*
2 0.8660... 2.4x10°7
3 0.8660.. 3.2x101
4 0.8660.. < 10716



Intro

Example

Compute /3
Scale: 3=0.75x 4

Initial: xo = (1 + 2 x 0.75)/3 =2.5/3
Iterate: Xn4+1 = Xn — (Xn — 0.75/Xn)/2

X5 = X3.
Scale back: 2x4

n Xn error

0 0.8333... 33x10°°?
1 0.8667.. 6.4x10°*
2 0.8660... 2.4x10°7
3 0.8660.. 3.2x101
4 0.8660.. < 10716



Bisection

Outline

9 Bisection Method



Bisection

Generic algorithm

If f(a) «f(b) < 0 and f(x) is continuous on [a, b], then f(x) has
arooton [a, b].

whi | e (b-a)>tol
m = (a+b)/2;
if f(a)xf(m<=0
b =m
el se

end;
r =(a+ b)/2;



Bisection

Generic algorithm

Two problems in the generic algorithm:

The while-loop may not terminate.
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Generic algorithm

Two problems in the generic algorithm:

The while-loop may not terminate.

When a and b are two neighboring floating-point numbers and
(b-a)>tol,(at+b)/2isrounded to either a or b.



Bisection

Generic algorithm

Two problems in the generic algorithm:

The while-loop may not terminate.

When a and b are two neighboring floating-point numbers and
(b-a)>tol,(at+b)/2isrounded to either a or b.

Redundant function evaluations.



Bisection

An improved algorithm

fa = f(a);
while (b-a)>tol + eps*nmax(|al,|b|)
m:(a+b)/2;
fm=f(m;
if faxfnm=0
b =m
el se
a=m fa="fm
end;
end;
r = (a+ b)/2;



Bisection

An improved algorithm

fa = f(a);
while (b-a)>tol + eps*nmax(|al,|b|)
m:(a+b)/2;
fm=f(m;
if faxfnm=0
b =m
el se
a=m fa="fm
end;
end;
r = (a+ b)/2;

Note: eps*nmax(| a| , | b| ) is about the distance between two
consecutive floating-point numbers near max( | a| , | b| ) . (ulp)



Bisection

Convergence

Since by — ay < (b —a)/2%, x. € [ax, bx], and x = (ax + by)/2,
we have

b, — a _b—a
2 T ok+1

ek:\xk—x*\g — 0

In this case, ey, 1 < 0.5ey.

Improve accuracy by 1 bit per iteration or 1 decimal digit for
every three or so iterations.



Bisection

Convergence

In general, linear convergence rate:
€k+1 < Ce

for some constant ¢ < 1.



Bisection

Convergence

In general, linear convergence rate:
€k+1 < Ce
for some constantc < 1.

Difficulty: Locate the interval [a, b].



e Newton’s Method



Idea

The tangent line of f(x) at xc:
y =f(Xc) + (X = %c)f'(xc)

Sety =0




Newton

Newton’s method

Newton’s method




Newton

Newton’s method

Newton’s method

Example.
Square root problem revisited, find a zero of f(x) = x2 — A

x2—A 1 A
T T T T2 Tk
C C




Complex case

Example

f(x) = x2 4+ x + 1 (zeros (—1 £iv/3)/2)

X = Xg

Xj

error

i

0
1
2
3
4
5

[
—0.40000 + 0.80000i
—0.50769 + 0.86154i
—0.49996 + 0.86600i
—0.50000 + 0.86603i
—0.50000 + 0.86603i

5.2 x 1071
1.2 x 1071
8.9 x 1073
46 x10°°
1.2 x 1079
converge



Convergence

No guarantee of convergence (unlike bisection).
For example, f(x) = atan(x), Xy = X¢ — (1 + x2)atan(x.)
Xo = 1.5 (> 1.3917)

15




Convergence

No guarantee of convergence (unlike bisection).
For example, f(x) = atan(x), Xy = x¢ — (1 + x2)atan(xc)
X1 = —1.6941




Convergence

No guarantee of convergence (unlike bisection).
For example, f(x) = atan(x), Xy = x¢ — (1 + x2)atan(xc)
X, = 2.3211




Convergence

No guarantee of convergence (unlike bisection).
For example, f(x) = atan(x), Xy = x¢ — (1 + x2)atan(xc)
X3 = —5.1141




Convergence

f(x) = atan(x), x; = X — (1 +xZ)atan(xc)
Xo = —1.3 (| — 1.3 < 1.3917)

15




Convergence

f(x) = atan(x), x; = xc — (1 + x2)atan(x.)

X1 = 1.1616




Convergence

f(x) = atan(x), x; = xc — (1 + x2)atan(x.)

X; = —0.8589




Convergence

f(x) = atan(x), x; = xc — (1 + x2)atan(x.)

x; = 0.3742




Convergence

Conditions for convergence (qualitative):
@ Xq close enough to x,
@ f/(x) does not change sign near x.
@ f(x) is not too nonlinear near x,
Newton’s method is a local method.



Convergence

Conditions for convergence (qualitative):
@ Xq close enough to x,
@ f/(x) does not change sign near x.
@ f(x) is not too nonlinear near x,
Newton’s method is a local method.

Difficulty: Finding Xo.



Newton

Hybrid methods

Combining bisection and Newton’s methods

Bracketing interval [a, b], and x. =a orb
if X4 =xc — f(xc)/f'(xc) € [a,b]

bracketing interval [a, x4] or x4, b]
else

m=(a+b)/2;

bracketing interval [a, m] or [m, b]

Termination criteria: Any one of
(*] (bk — ak) <6
@ [f(xc)| <9
@ Too many function evaluations



Newton

Avoiding derivatives

Approximation

PORMLCEEOECS




Newton

Avoiding derivatives

Approximation

PORMLCEEOECS

Choice of 6
Example. Secant method (6; = X_ — X¢)

f(xe) —f(x2)

, ~
)~ Xe — X_



Secant method




Secant method

Usually, the convergence rate (if it converges) is
(1++/5)/2~ 1.6
k1 < ce&'G, superlinear, between quadratic and linear.



Newton

Zeros of a polynomial

Finding the zeros of a polynomial
p=x"4+cr1x" T4+ . +eixt+co

Many methods were proposed.



Newton

Zeros of a polynomial

Finding the zeros of a polynomial
p=x"4+cr1x" T4+ . +eixt+co

Many methods were proposed.

The eigenvalues of its companion matrix

00 -~ 0 —c
10 .- 0 —¢
Cp)=]01 - 0 —C | = det(xi—C(p))=p

00 -+ 1 —Co1 |



Example

The zeros of the polynomial

are the eigenvalues of

= OO

—
o+ O
o o
| E—



Example

The zeros of the polynomial

o

One real and two complex conjugate eigenvalues.

are the eigenvalues of

(el o)
= OO
o o



How to compute the eigenvalues of a matrix?

Finding the zeros of a polynomial used to be the way of finding
the eigenvalues of a matrix A.



How to compute the eigenvalues of a matrix?

Finding the zeros of a polynomial used to be the way of finding
the eigenvalues of a matrix A.

Text book method:
The eigenvalues of a matrix A are the zeros of its characteristic
polynomial det(Al — A).



Now, we have efficient and reliable methods for computing
eigenvalues of a matrix.

QR method, John G.F. Francis and Vera N. Kublanovskaya, late
1950s.

We find the zeros of a polynomial by computing the
eigenvalues of its companion matrix.



Systems

@ Systems of Nonlinear Equations



Systems

Problem setting

fl(Xl,...,Xn) =0
fa(X1,....%) = 0

Denote

f: vector-valued function
X: vector



Newton’s method
X+ = XC + SC

where s; is the solution of
f(XC) + J(Xc)SC - O,

i.e., s¢c = —J7Y(x¢)f(xc), where J(xc) is the Jacobian of f at X:

gi gi

of; oo

J(x) = [8_)(1] = : E
ot O

Xy Oxn



Systems

Example

A system of nonlinear equations

X2 —x2=0
2X1%X =1,

with starting point

Solution: x; = X, = 1/v/2



Systems

Example

(R § %
f(x)_|:f2:|_|:2X1X2—1

The Jacobian is
| 2x1 —2%
Ix) = [ 2X2  2X1 }

and
0o -2 ]



Systems

Example

Step 1:

X1 = %o — J71(x0) f(Xo)



Systems

Example

Step 1:

X1 = %o — J71(x0) f(Xo)

Solving for dg in J(Xg)do = f(Xo), we have

—0.5
do = [ 0.5 ]

o= [3) [ o]

Thus

o5



Systems
Example

Step 2:

Xo = X1 — J_l(xl)f(xl)

J(x1) = [ 1 _1 ] o fla) = [ —8.5 }



Systems

Example

Solving for d; in J(x1)d; = f(X1), we have
—-0.25
di = { ~0.25 ]
Thus

w | 05]_[-0257_[0.75
27105 025 | | 075



Systems

Avoiding derivatives

The jth column of J(x)

ot
OX;

K of
oy 6Xj
8Xj

can be approximated by the difference

f(X1, .., X 4+ 0, Xj41, -, Xn) — F(X1, ..., Xn)
)




Optimization

9 Continuous Optimization



Optimization

Problem setting

min f or max f
minf(x) naxf(x)

x: vector f(x): objective function and real-valued
S: support



Optimization

Problem setting

min f or max f
minf(x) naxf(x)

x: vector f(x): objective function and real-valued
S: support

Find a zero of the gradient

Vi(x) =




Optimization

Newton’s method

View the gradient Vf(x) as a vector-valued function and apply
the Newton’s method for solving nonlinear systems.

At current X, find the correction s¢:
X+ == XC + SC
where s. is the solution of

Vf(xc) + H(xc)Se = 0.

The matrix H(x.) (the Jacobian of the gradient at x.) is called
the Hessian of f at x¢ (V2f(xc)):

o

W OXi 8Xj '




Optimization

Example

Minimizing f : R? — R:
3
f(x) = gl — X1X2 4 Xp.

Perform one iteration of Newton's method for minimizing f using
the starting point
Xo = |: 0 :| .
1



Optimization

Example

Apply the Newton’s method for finding a zero of the gradient

2 2
_ X1 =%
Vi(x) = [ —2X1Xo +1 }

The Hessian

2X1 —2Xo }

mm:vmm:{_&z_”l



Example

Step 1:



Software

9 Software Packages



Software

Software Packages

IMSL zporc, zplrc, zpocc
MATLAB roots, fzero
NAG c02agf, cO2aff
NAPACK czero
Octave fsolve



Summary

Summary

@ Issues in an iterative method: Initialization, convergence
and rate of convergence, termination. The example of
computing square root

@ Bisection method: Numerical termination problem
@ Newton’s method: Initial value, convergence problems

@ Newton’s method for systems of nonlinear equations,
Jacobian matrix

@ Newton’s method for minimization, gradient and Hessian.



Summary
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