
This article appeared in a journal published by Elsevier. The attached
copy is furnished to the author for internal non-commercial research
and education use, including for instruction at the authors institution

and sharing with colleagues.

Other uses, including reproduction and distribution, or selling or
licensing copies, or posting to personal, institutional or third party

websites are prohibited.

In most cases authors are permitted to post their version of the
article (e.g. in Word or Tex form) to their personal website or
institutional repository. Authors requiring further information

regarding Elsevier’s archiving and manuscript policies are
encouraged to visit:

http://www.elsevier.com/copyright

http://www.elsevier.com/copyright

Author's personal copy

Linear Algebra and its Applications 430 (2009) 1531–1543

Available online at www.sciencedirect.com

www.elsevier.com/locate/laa

A Lanczos bidiagonalization algorithm for Hankel
matrices�

Kevin Browne a, Sanzheng Qiao a,∗, Yimin Wei b,c

a Department of Computing and Software, McMaster University, Hamilton, Ont., Canada L8S 4K1
b Institute of Mathematics, School of Mathematical Science, Fudan University, Shanghai 200433, PR China

c Key Laboratory of Nonlinear Science, Fudan University, Ministry of Education, PR China

Received 31 October 2007; accepted 15 January 2008
Available online 4 March 2008

Submitted by Pei Yuan Wu

Abstract

This paper presents a fast algorithm for bidiagonalizing a Hankel matrix. An m×n Hankel matrix is
reduced to a real bidiagonal matrix in O((m + n)n log(m + n)) floating-point operations (flops) using the
Lanczos method with modified partial orthogonalization and reset schemes to improve its stability. Perfor-
mance improvement is achieved by exploiting the Hankel structure, as fast Hankel matrix–vector multipli-
cation is used. The accuracy and efficiency of the algorithm are demonstrated by our numerical experiments.
© 2008 Elsevier Inc. All rights reserved.

Keywords: Fast Hankel SVD; Hankel matrix; Lanczos bidiagonalization

1. Introduction

The singular value decomposition (SVD) of structured matrices such as the Hankel matrix plays
an important role in signal processing, among other applications. Previous work has dealt with a
special form of the SVD called the Takagi Factorization [10] of a square complex Hankel matrix.
That is that for any square complex Hankel matrix A of order n, there exist a unitary Q ∈ Cn×n

� Sanzheng Qiao was supported in part by the Natural Sciences and Engineering Research Council of Canada and
partially supported by Shanghai Key Laboratory of Contemporary Applied Mathematics of Fudan University. Yimin
Wei is supported by the National Natural Science Foundation of China under Grant 10471027 and Shanghai Education
Committee.

∗ Corresponding author.
E-mail addresses: brownek@mcmaster.ca (K. Browne), qiao@mcmaster.ca (S. Qiao), ymwei@fudan.edu.cn (Y. Wei).

0024-3795/$ - see front matter (2008 Elsevier Inc. All rights reserved.
doi:10.1016/j.laa.2008.01.012

Author's personal copy

1532 K. Browne et al. / Linear Algebra and its Applications 430 (2009) 1531–1543

and an order n nonnegative diagonal � = diag(σ1, . . . , σn), where σ1 � σ2 � · · · σn � 0, such
that

A = Q�QT or QHAQ = �,

where Q is the complex conjugate of Q. This was computed in two stages: a Lanczos symmet-
ric tridiagonalization followed by a symmetric Takagi Factorization of a symmetric tridiagonal
matrix. In the general case, however, a Lanczos bidiagonalization is computed followed by the
SVD of a real square bidiagonal matrix. In this paper, we will focus on the first step, the Lanczos
bidiagonalization of a general m-by-n Hankel matrix where m � n without loss of generality.
There are well-known SVD algorithms for real bidiagonal matrices, such as the QR method
[3], divide-and-conquer [4], and twisted [1,2] methods. In particular, the twisted method can
efficiently compute both singular values and singular vectors, suitable for the second step in
Hankel SVD.

We compute the real bidiagonal B of a general Hankel matrix A by finding U ∈ Cm×n with
orthonormal columns and unitary V ∈ Cn×n such that

A = UBV H.

This is described in Section 2 using the Lanczos bidiagonalization algorithm [3]. Fast Hankel
matrix–vector multiplication improves the performance of this algorithm by exploiting the Hankel
structure.

As we know, re-orthogonalization is necessary for a practical Lanczos method. In the previous
work dealing with complex symmetric square matrices, the Lanczos method has been improved
upon by incorporating orthogonality estimate calculations, which are used to determine when
vectors must be re-orthogonalized [8]. As these calculations were previously dependent upon
the matrix involved being square and symmetric, of particular concern in this paper is how the
orthogonality estimates used to determine when vectors must be re-orthogonalized are computed
for the general case of rectangular Hankel matrices. The major difference is that in the sym-
metric case, only one set of vectors, namely the columns of Q, is dealt with, whereas in the
general case two sets, the columns of U and V , must be considered. This is covered in Section
3.

Another important technique in the Lanczos algorithm is the reset, which may occur when
dealing with multiple/clustered singular values. In the case of multiple/clustered singular values
a small superdiagonal entry may be encountered, which would make the algorithm numerically
unstable left as is. This requires a vector of the algorithm used to compute the superdiagonal
elements in B and matrix V to be reset by generating a new vector and re-orthogonalizing the
vector against all previously computed vectors.

In Section 4, we demonstrate these new techniques in the algorithm with numerical experiments
to show the accuracy and efficiency of our algorithm. For square matrix input we compare the
performance of the general Hankel matrix Lanczos algorithms with those specifically designed
for square matrices.

2. Bidiagonalization

For any m-by-n, m � n, general matrix A we can find an m-by-n matrix U with orthonormal
columns and an n-by-n unitary matrix V such that

B = UHAV (1)

Author's personal copy

K. Browne et al. / Linear Algebra and its Applications 430 (2009) 1531–1543 1533

is real, upper bidiagonal and square. Let

B =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

α1 β1 . . . 0
. . .

. . .
...

. . .
. . .

...
. . . βn−1

0 . . . αn

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(2)

and rewrite (1) as

AV = UB (3)

and

AHU = V BT. (4)

Comparing the j th columns of both sides of (3) and (4), we have

Avj = αj uj + βj−1uj−1

and

AHuj = αj vj + βj vj+1,

which lead us to a Lanczos recursion:

rj = αj uj = Avj − βj−1uj−1, (5)

pj = βj vj+1 = AHuj − αj vj . (6)

Orthonormality tells us that αj = ±‖rj‖2, βj = ±‖pj‖2, and uj = rj /αj , vj+1 = pj /βj . Thus
one can construct a Lanczos bidiagonalization algorithm for general matrices.

Algorithm 1 (General Lanczos bidiagonalization [3, p. 495]). Given a starting vector r and a
subroutine for matrix–vector multiplication y = Ax for any x, where A is an m-by-n, m � n,
general matrix. This algorithm computes the diagonals of the real square upper bidiagonal matrix
B in (1) and U, V such that A = UBV H.

u0 = 0; β0 = 1;
p = r/‖r‖2;
for j = 1 to n

vj = p/βj−1;

r = Avj − βj−1uj−1;

αj = ‖r‖2;

uj = r/αj ;

if j < n

p = AHuj − αj vj ;

βj = ‖pj‖2;

if βj = 0, quit; end

end

end

Author's personal copy

1534 K. Browne et al. / Linear Algebra and its Applications 430 (2009) 1531–1543

As the most computationally expensive operation in the Lanczos method is matrix–vector
multiplication, when A is a Hankel matrix, one can exploit the Hankel structure of A to improve
performance [6].

The Hankel matrix structure is exploited by first changing the Hankel matrix to a Toeplitz
matrix by reversing the columns. Given the first column c̄ = [c1, . . . , cm]T and last row r̄ =
[cm, r2, . . . , rn] of an m-by-n Hankel, the first column of the Toeplitz is

[cn, . . . , cm, r2, . . . , rn]T
and the first row of the Toeplitz is

[cn, cn−1, . . . , c1].
The Toeplitz matrix may then be expanded into a Toeplitz-circulant matrix C, whose first column
is

ĉ = [cn, . . . , cm, r2, . . . , rn, c1, . . . , cn−1]T, (7)

if m � n, otherwise it becomes

ĉ = [rn−m+1, . . . , rn, c1, . . . , cm, r2, . . . , rn−m]T. (8)

One can now efficiently compute the matrix–vector product

p̄ = Ax̄ (9)

as follows, where x̄ is a given n-element vector:

x̄ = [x1, x2, . . . , xn]T. (10)

A new (n + m − 1)-length vector can now be created:

x̂ = [xn, xn−1, . . . , x1, 0, . . . , 0]T, (11)

which is derived from x̄ by reversing its entries and appending m − 1 zeros. Given the product of
the circulant matrix C and x̂:

ȳ ≡ Cx̂, (12)

then p̄ is given by the first m elements of ȳ.
How do we compute Cx̂ efficiently? We remind the reader that the impressive efficiency with

which Cx̂ may be computed is based on the special spectral factorization of a circulant C. Let
F denote the Fourier matrix of appropriate order and let ĉ denote the first column of C, then the
circulant matrix–vector product

Cx = inv(F)diag(F ĉ)Fx.

Thus, in our case, the product Cx̂ can be efficiently computed by the Fast Fourier Transform [5]
(FFT):

ȳ = ifft(fft(ĉ)∗̇fft(x̂)).

Note that:

• fft(v) denotes a one-dimensional FFT of vector v.
• ifft(v) denotes a one-dimensional inverse FFT of v.
• ∗̇ denotes a componentwise multiplication of two vectors.

Author's personal copy

K. Browne et al. / Linear Algebra and its Applications 430 (2009) 1531–1543 1535

Algorithm 2 (General fast Hankel matrix–vector product). Given a vector x̄ in (10) and the first
column c̄ and last row r̄ of a Hankel matrix, this algorithm computes the product vector p̄ of (9)
by using the fast Fourier transform.

% Construct the (m + n − 1)-element vector ĉ as in Eq. (7) or (8)
if m � n

ĉ = [cn, . . . , cm, r2, . . . , rn, c1, . . . , cn−1]T
else

ĉ = [rn−m+1, . . . , rn, c1, . . . , cm, r2, . . . , rn−m]T
end
% Construct the (m + n − 1)-element vector x̂ as in Eq. (11)
x̂ = [xn, xn−1, . . . , xn−1, 0, . . . , 0]T
% Compute the (m + n − 1)-element vector ȳ
ȳ = ifft(fft(ĉ)∗̇fft(x̂))

% extract the desired m-element product vector p̄ from ȳ
p̄ = [y1, y2, . . . , ym]T

The complexity of this algorithm can be derived as follows. Note that an FFT of a vector size n

costs 5n log(n)flops (floating-point additions and multiplications). As such in Algorithm 2, each of
the two FFT operations requires 5(m + n − 1) log(m + n − 1) flops, the pointwise multiplication
costs 6(m + n − 1) flops, the inverse FFT costs 5(m + n − 1) log(m + n − 1) flops. The total
cost of computing ifft(fft(ĉ)∗̇fft(x̂)) is about 15(m + n) log(m + n) + 6(m + n) flops. As
general complex matrix–vector multiplication involves 8mn flops, Algorithm 2 is more efficient
than general matrix–vector multiplication when m � n � 16 [6].

To improve efficiency, in our implementation, when using Algorithm 2 to perform the Hankel
matrix–vector products in the Lanczos Algorithms 1, 3 and 4, instead of generating the vector
ĉ representing the Toeplitz-circulant matrix for each matrix–vector product, we compute ĉ once
for each of A and AH outside the loop when the algorithm is initiated. Then, inside the loop,
only the remaining steps of Algorithm 2 are required at each iteration to perform the fast Hankel
matrix–vector multiplication.

3. Orthogonalization

The Lanczos method given in Algorithm 1 suffers from loss of orthogonality of the computed
U and V . In order to correct this problem, one could re-orthogonalize each computed uj and vj

against all previously computed vectors ui and vi , respectively, which is called complete orthog-
onalization. In the case of square complex matrices, a technique of selectively re-orthogonalizing
vectors based on estimates of the orthogonalities of the Takagi vectors is presented in [8]. This has
the effect of reducing the prohibitive cost of the complete orthogonalization, and it is extended to
general matrices below.

As in the square case, we first establish recursions on the estimates for the orthogonalities of
U and V . We can then base a partial re-orthogonalization algorithm on having these estimates.

Denoting the orthogonality measurements μk,j = uH
k uj and νk,j = vH

k vj , we can construct
recursions on them as follows. We first incorporate round-off error vectors fj and gk into (5) and (6):

αj uj = Avj − βj−1uj−1 − fj ,

βkvk+1 = AHuk − αkvk − gk.

Author's personal copy

1536 K. Browne et al. / Linear Algebra and its Applications 430 (2009) 1531–1543

Premultiplying the above equations by uH
k and vH

j , respectively, gives us

αjμk,j = uH
k Avj − βj−1μk,j−1 − uH

k fj ,

βkνj,k+1 = vH
j AHuk − αkνj,k − vH

j gk.

We also note that vH
j AHuk and νj,k are complex conjugates of uH

k Avj and νk,j , respectively, and
αj and βj are real. Then, by subtracting the complex conjugate of the second equation from the
first one above, we obtain a recursion on μk,j :

αjμk,j = βkνk+1,j + αkνk,j − βj−1μk,j−1 + gH
k vj − uH

k fj . (13)

As the round-off terms fj and gk are unknown, we define θk,j :=gH
k vj − uH

k fj for now.
Similarly, combining

uH
j−1(αkuk) = uH

j−1Avk − uH
j−1(βk−1uk−1) − uH

j−1fk

and

vH
k (βj−1vj) = vH

k AHuj−1 − vH
k (αj−1vj−1) − vH

k gj−1,

we can derive a recursion on νk,j :

βj−1νk,j = αkμk,j−1 + βk−1μk−1,j−1 − αj−1νk,j−1 + fH
k uj−1 − vH

k gj−1. (14)

Also, we define φk,j−1 = fH
k uj−1 − vH

k gj−1. Note that φk,j−1 is the complex conjugate of θj−1,k .
Since fj is the rounding error introduced in the computation of αj uj , its norm is associated with
αj . Likewise, the norm of gk is associated with βk . Now, we are able to estimate θk,j and φk,j−1
based on a statistical study [9] as

θk,j = ε(βk + αj)(�r + i�i) and φk,j−1 = ε(αk + βj−1)(�r + i�i), (15)

where ε is the machine precision and�r , �i ∈ N(0, 0.6) andN(0, v)defines a normal distribution
with zero mean and variance v.

Now when μk,j+1 exceeds the threshold
√

ε for any 1 � k � j , we re-orthogonalize uj+1
against all previously computed uk , k = 1, . . . , j . Similarly when νk,j+1 exceeds the threshold√

ε for any k, we re-orthogonalize vj+1 against all previously computed vk , k = 1, . . . , j . If
re-orthogonalization is required of either uj+1 or vj+1 in a given iteration, then in the following
iteration we will again perform re-orthogonalization of that same vector. In theory after a re-orthog-
onalization of μk,j+1 we have that μk,j+1 = 0 for k = 1, . . . , j , and after a re-orthogonalization
of νk,j+1 we have that νk,j+1 = 0 for k = 1, . . . , j . In order to incorporate the rounding error
after re-orthogonalization of νk,j or μk,j , we set

νk,j+1 = ε(�r + i�i) (16)

and

μk,j+1 = ε(�r + i�i), (17)

where �r , �i ∈ N(0, 1.5).
This gives us all the information we need to carry out the algorithm for the partial re-orthog-

onalization. Let us now outline how the algorithm proceeds in order to make clear how what we
have derived above comes together.

The starting values are the same as in Algorithm 1, and in addition we initialize μ1,2 =
εm(�r + i�i) where �i , �r ∈ N(0, 0.6), as we expect the first two vectors u1 and u2 have

Author's personal copy

K. Browne et al. / Linear Algebra and its Applications 430 (2009) 1531–1543 1537

good orthogonality. Similarly, we set ν1,2 = εn(�r + i�i). Also, apparently, from the defini-
tions, μj,j = νj,j = 1 for all j . The algorithm then proceeds through its first iteration exactly
as Algorithm 1 (as of course we do not need re-orthogonalization at this point). However, in
the second iteration, j = 2, since we have initialized μ1,2 and μ2,2 = 1, we only compute ν1,3
and ν2,3 using (14), where μ0,2 = 0. From the third iteration forward, right after we compute αj

and βj , we now compute (13) and (14), which give us the error estimates for μk,j and νk,j+1,
respectively. Then as described above, we check for the possibility that an element of either μ or
ν has exceeded an error threshold

√
ε. If this is the case we perform re-orthogonalization of uj

or vj+1 on both this iteration and the next. If we have performed re-orthogonalization we must
also set μk,j and/or νk,j+1 as in (16) and (17). Also note that in the case we have performed
re-orthogonalization we must again compute αj or βj to reflect the re-orthogonalized values. The
algorithm we have just described is given in pseudo-code below.

Algorithm 3 (Lanczos bidiagonalization with general partial orthogonalization). Given a starting
vector r and a subroutine for matrix–vector multiplication y = Ax for any x, where A is an m-
by-n general matrix. This algorithm computes the diagonals of the square bidiagonal matrix B in
(1) and U, V such that B = UAV H. It re-orthogonalizes ui and vi when loss of orthogonality is
detected.

u0 = 0; β0 = 1; α0 = 0;
p = r/‖r‖2;
Initialize μ1,2, μ2,2, ν1,2, ν2,2;
for j = 1 to n

vj = p/βj−1;

r = Avj − βj−1uj−1;

αj = ‖r‖2;

if j > 2

Compute μk,j for k = 1, 2, . . . , j − 1 using (13);
Set μj,j = 1.0;
if max1�k�j−1(|μk,j |) >

√
ε

Orthogonalize r against u1, . . . , uj−1;
Perform orthogonalization in the next iteration;
Set μk,j using (17);
Re-calculate αj = ‖r‖2;

end

end

uj = r/αj ;

if j < n

p = AHuj − αj vj ;
βj = ‖p‖2;
if j > 2

Compute νk,j+1 for k = 1, 2, . . . , j using (14), where μ0,j = 0;

Author's personal copy

1538 K. Browne et al. / Linear Algebra and its Applications 430 (2009) 1531–1543

Set νj+1,j+1 = 1.0;

if max1�k�j (|νk,j+1|) >
√

ε

Orthogonalize p against v1, . . . , vj ;

Perform orthogonalization in the next iteration;

Set νk,j+1 using (16);

Re-calculate βj = ‖p‖2;

end

end

end
This algorithm can be taken a step forward by re-orthogonalizing r and p against only some

selected uj and vj instead of all previously computed vectors. In particular, subintervals are
identified as being in need of re-orthogonalization. The algorithm is the same as Algorithm 3,
except instead of re-orthogonalizing all vectors when μ or ν indicates that we should, we search
for the intervals of the index k where the value μk,j or νk,j is greater than, say,

√
ε3. We refer to

this technique as modified partial orthogonalization. It is shown in the following Algorithm 4.
When dealing with multiple/clustered singular values, we may encounter a small superdiagonal

entry βj causing numerical problems. This indicates that p lies in an invariant subspace. Thus
we reset the vector p when this occurs by generating a new random p and re-orthogonalizing it
against all previous vj .

The important question becomes: what do we consider a small subdiagonal? Based on our
experiments, we choose the tolerance:

RSTOL = √
ε(‖A‖F/(mn)), (18)

‖M‖F is the Frobenius norm of a matrix M .
With this information in hand, we present a new algorithm that incorporates modified partial

orthogonalization and the reset technique.

Algorithm 4 (Lanczos bidiagonalization with modified partial orthogonalization and reset).
Given a starting vector r and a subroutine for matrix–vector multiplication y = Ax for any x,
where A is an m-by-n general matrix. This algorithm computes the diagonals of the square
bidiagonal matrix B in (1) and U, V such that B = UAV H. This algorithm incorporates the reset
technique such that when a small β is detected p is reset. As well this algorithm incorporated
modified partial orthogonalization in that when u, v are deemed to require re-orthogonalization
they are only re-orthogonalized when and where it is considered necessary as described above.

u0 = 0; β0 = 1; α0 = 0;
p = r/‖r‖2;
for j = 1 to n

vj = p/βj−1;

r = Avj − βj−1uj−1;

αj = ‖r‖2;

if j > 2

Compute μk,j for k = 1, 2, . . . , j − 1

Author's personal copy

K. Browne et al. / Linear Algebra and its Applications 430 (2009) 1531–1543 1539

for all k such that |μk,j | >
√

ε

Find an interval Ik , such that k ∈ Ik and μi,j >
√

ε3 for all i ∈ Ik;

Orthogonalize r against ui , i ∈ Ik;

Perform orthogonalization in the next iteration, same intervals;

Set μi,j using (17);

Re-calculate αj = ‖r‖2;

end

end

uj = r/αj ;

if j < n

p = AHuj − αj vj ;

βj = ‖p‖2;

if ‖p‖2 < RSTOL

Reset a random p;

Orthogonalize p against v1, . . . , vj ;

Perform orthogonalization in the next iteration;

Set νk,j+1 using (16);

Re-calculate βj = ‖p‖2;

else if j > 2

Compute νk,j+1 for k = 1, 2, . . . , j

for all k such that |νk,j+1| >
√

ε

Find an interval Ik , such that

k ∈ Ik and μi,j+1 >
√

ε3 for all i ∈ Ik;

Orthogonalize p against vi , i ∈ Ik;

Perform orthogonalization in the next iteration, same intervals;

Set νi,j+1 using (16);

Re-calculate βj = ‖p‖2;

end

end

end

end

4. Performance experiments

Algorithm 4 was programmed in MATLAB in three versions. A version was created for Hankel
matrices specifically which utilizes Algorithm 2 to perform fast Hankel matrix–vector multiplica-
tions. Two versions were implemented for general matrices, one of which lacked the reset method
and another incorporated reset in order to allow us to show the effect of reset. These experiments
were run on a machine with a 1.4 GHz Intel Celeron M processor and 256 MB of RAM running
Windows XP.

Author's personal copy

1540 K. Browne et al. / Linear Algebra and its Applications 430 (2009) 1531–1543

The Hankel matrices in all test cases were specified by their first columns and last rows. A first
column or last row vector was generated by a random complex vector r + ic with the entries of r
and c uniformly distributed on [−1, 1].

In the case of experiments involving a general matrix we generated an m-by-n complex matrix
U with orthonormal columns, an n-by-n unitary matrix V , and a diagonal singular value matrix
S, then we formed A = USV H, a random m-by-n matrix with predetermined singular values.

All timing results were obtained using MATLAB’s cputime function; the results are thus
presented in the time unit seconds. The 2-norm of X is denoted by ‖X‖.

Example 1. In this example, we demonstrate the accuracy of the Hankel version of Algorithm
4. We do so by examining the factorization error and orthogonality errors in U and V . As
shown in Table 1, the accuracy is about the square root of the machine precision as expected,
since tolerances, such as the tolerance for reset, are set to the square root of the machine
precision.

Example 2. Next we examine the performance of the Hankel version of Algorithm 4 for various
values of m and n. We look at both the running time compared to n(m + n) log(m + n) and
the total number of orthogonalizations required. The results in Tables 2 and 3 are the average
of 10 runs for each case and the run time results have been normalized for the case where
m = n = 50.

We note from these experiments that the cost of re-orthogonalization does not affect the overall
complexity of the function which is shown to be roughly n(m + n) log(m + n).

Table 1
Accuracy of Algorithm 4 for Hankel matrices

m = n ‖A − UBV H‖ ‖I − UUT‖ ‖I − V V T‖
200 1.822E−07 2.186E−08 7.078E−09
400 6.842E−07 4.121E−08 6.133E−08
800 6.181E−07 1.175E−07 4.431E−08

Table 2
Performance conforming to expected n(m + n) log(m + n) run time as both m and n increase

m n n(m + n) log(m + n) Run time (s) Total number of orthogonalizations

50 50 1.000 1.000 695.0
100 100 4.602 3.608 2922.1
200 200 20.816 14.404 12832.8
400 400 92.898 82.670 52599.4

Table 3
Performance conforming to expected n(m + n) log(m + n) run time as m increases

m n n(m + n) log(m + n) Run time (s) Total number of orthogonalizations

50 50 1.000 1.000 672.7
100 50 1.632 1.344 632.9
200 50 2.997 1.750 602.6
400 50 5.970 1.812 552.4

Author's personal copy

K. Browne et al. / Linear Algebra and its Applications 430 (2009) 1531–1543 1541

Example 3. Next using non-Hankel versions of Algorithm 4 we examine the numerical stability
of the algorithms as clustered singular values are introduced. One version of the algorithm includes
reset and the other does not. We introduce an increasing number of random clustered singular
values uniformly distributed in [1, 1 + 10−13]. The rest of the singular values are uniformly
distributed in [0,1]. Note that in all cases for the results presented in Tables 4 and 5, m = n = 300.

In Table 4, we present the results for the version of the algorithm with reset and in Table 5, we
present the results for the version of the algorithm without reset. We notice that as the number of
multiple singular values increases, the accuracy of the algorithm becomes very poor.

Example 4. Next we look at how Algorithm 4 performs against a version of the algorithm for
square Hankel matrices presented in [7]. Modified partial orthogonalization and reset were incor-
porated into the square matrix Hankel algorithm in order to make the comparison fair. Normalized
for the case that m = n = 50, the results are presented in Table 6.

We observe that the version of the algorithm for square matrices outperforms the general matrix
version. Specifically, as shown in Table 6, the square algorithm costs about a half of the general
one as expected, since the square algorithm exploits the symmetric structure.

Example 5. Finally, we compare the performance of our fast Lanczos bidiagonalization Algo-
rithm 4 against the Householder bidiagonlization method [3, p. 252] implemented in MATLAB.
In order to make the comparison fair, in our implementation of the Householder bidiagonalization,
the unitary U and V are computed explicitly and the diagonal entries in the bidiagonal B are scaled
to real and nonnegative. Also, for the Householder bidiagonalization in the case when m = 600
and n = 200, for efficiency, a QR decomposition was performed on the original Hankel matrix

Table 4
Accuracy of reset enabled algorithm as clustered singular values increase

Clustered singular values ‖A − UBV H‖ ‖I − UUT‖ ‖I − V V T‖
12 7.394E−07 5.841E−06 6.964E−07
16 6.165E−07 5.904E−07 1.029E−06
20 6.784E−08 6.870E−08 5.624E−08

Table 5
Accuracy of algorithm without reset as clustered singular values increase

Clustered singular values ‖A − UBV H‖ ‖I − UUT‖ ‖I − V V T‖
12 3.682E−08 3.193E−08 8.042E−08
16 1.770E−05 1.120E−04 7.786E−06
20 2.011E+00 1.109E+00 1.052E+00

Table 6
Performance of square vs. general algorithms

m = n Square version run time (s) General version run time (s)

50 1.000 1.000
100 2.410 3.032
200 10.013 13.097
400 54.487 129.548

Author's personal copy

1542 K. Browne et al. / Linear Algebra and its Applications 430 (2009) 1531–1543

Table 7
Performance of fast Hankel bidiagonalization Algorithm 4 vs. Householder bidiagonalization

m n Algorithm 4 run time (s) Householder bidiagonalization run time (s)

10 10 0.005 0.004
20 20 0.013 0.009
50 50 0.050 0.054
100 100 0.201 0.295
200 200 0.719 2.484
600 200 1.571 28.568

by calling MATLAB function qr. Then the Householder bidiagonalization was applied to the
upper triangular matrix resulted from the QR decomposition. Table 7 shows that our Algorithm 4
outperforms the Householder bidiagonalization algorithm, except for small matrices. We observe
that the performance gap expands exponentially as m and n increase.

5. Conclusion

In this paper, we have presented a Lanczos algorithm for bidiagonalizing a general Hankel
matrix. An orthogonalization scheme is developed and incorporated to improve stability and a reset
method is used to handle the case of multiple/clustered singular values. As well, a matrix–vector
multiplication is used, which exploits the Hankel structure, for fast multiplication. Experimental
results show that the numerical stability and accuracy of these new algorithms are sound. Perfor-
mance tests indicate that when dealing with square matrices, however, it is preferable to use the
previously derived square Lanczos algorithm. Finally, we wish to note that this algorithm could
be used as the first step of an SVD computation followed by an SVD algorithm for real bidiagonal
matrices, such as the twisted method [1,2].

Acknowledgement

We would like to thank the anonymous reviewer’s constructive suggestions.

References

[1] J.S. Dhillon, A new O(n2) algorithm for the symmetric tridiagonal eigenvalue/eigenvector problem, Ph.D. Thesis,
University of California, Berkeley, 1997.

[2] J.S. Dhillon, B.N. Parlett, Multiple representations to compute orthogonal eigenvectors of symmetric tridiagonal
matrices, Linear Algebra Appl., 387 (2004) 1–28.

[3] G.H. Golub, C.F. Van Loan, Matrix Computations, third ed., The Johns Hopkins University Press, Baltimore, MD,
1996.

[4] M. Gu, S.C. Eisenstat, A divide-and-conquer algorithm for the bidiagonal SVD, SIAM J. Matrix Anal. Appl. 16
(1995) 79–92.

[5] C.F. Van Loan, Computational Frameworks for the Fast Fourier Transform, SIAM, 1992.
[6] Franklin T. Luk, Sanzheng Qiao, A fast eigenvalue algorithm for Hankel matrices, in: Franklin T. Luk (Ed.),

Advance Signal Processing Algorithms, Architectures, and Implementations VIII, Proceedings of SPIE, vol. 3461,
The International Society for Optical Engineering, 1998, pp. 249–256.

[7] F.T. Luk, S. Qiao, A fast singular value algorithm for Hankel matrices, in: V. Olshevsky (Ed.), Fast Algorithms
for Structured Matrices: Theory and Applications, Contemporary Mathematics, vol. 323, American Mathematical
Society, 2003.

Author's personal copy

K. Browne et al. / Linear Algebra and its Applications 430 (2009) 1531–1543 1543

[8] S. Qiao, Orthogonalization techniques for the Lanczos tridiagonalization of complex symmetric matrices, in: Franklin
T. Luk (Ed.), Advanced Signal Processing Algorithms, Architectures, and Implementations XIV, Proceedings of
SPIE, vol. 5559, 2004, pp. 423–434.

[9] H.D. Simon, The Lanczos algorithm with partial reorthogonalization, Math. Comp. 42 (1984) 15–142.
[10] Wei Xu, Sanzheng Qiao, A fast SVD algorithm for square Hankel matrices, Linear Algebra Appl. 482 (2+3) (2008)

550–563.

