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plemented on neural networks. Finally, we show experimental results to support our analyses. 

© 2018 Elsevier B.V. All rights reserved. 

1

 

m  

w  

Q  

t

A  

T  

A  

o  

o  

o  

m  

I  

p

y

 

s  

s  

t  

s  

n  

a  

n

 

n  

b  

A  

m  

F  

m  

A  

c  

h

0

. Introduction 

A complex symmetric matrix can be diagonalized by a unitary

atrix. Specifically, let A = B + ιC be a complex symmetric matrix,

here B , C ∈ R 

I×I are symmetric, then there exist a unitary matrix

 ∈ C 

I×I and a positive semidefinite diagonal matrix � ∈ R 

I×I such

hat (see, e.g., [36] ) 

 = Q �Q 

� , � = diag (σ1 , σ2 , . . . , σI ) . (1.1)

his factorization of a complex symmetric matrix is called the

utonne-Takagi factorization, or the Takagi factorization in short,

riginally proposed by Autonne [2] and Takagi [29] . The columns

f Q are called the Takagi vectors of A and the diagonal elements

f � are its Takagi values. We denote � and Q as the Takagi value

atrix and the associated Takagi vector matrix of A , respectively.

n particular, if σ 1 is the largest Takagi value, then we call q 1 the

rincipal Takagi vector associated with σ 1 . 
∗ Corresponding author. 

E-mail addresses: cheml@swufe.edu.cn (M. Che), qiao@cas.mcmaster.ca (S. Qiao), 

mwei@fudan.edu.cn (Y. Wei). 
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The Takagi factorization reveals the symmetry of a complex

ymmetric matrix. One advantage of the factorization is that it can

ave storage and computation by about half. The Takagi factoriza-

ion of a complex symmetric matrix has applications in the Grun-

ky inequalities [27] , computation of the near-best uniform poly-

omial or rational approximation of a high degree polynomial on

 disk [30] , the complex independent component analysis [11] , and

uclear magnetic resonance [3] . 

Throughout this paper, unless stated otherwise, I , J , and N de-

ote the index upper bounds, lower case letters x, u, . . . for scalars,

old lower case letters x , u , . . . for vectors, bold capital letters

 , B , . . . for matrices of order I , and calligraphic letters A , B, . . . for

atrices of order 2 I . This notation is consistently used for entries.

or example, the entry with row index i and column index j of a

atrix A , i.e., ( A ) ij , is denoted by a ij (also (x ) i = x i ). We denote A ,

 

� and A 

∗ the complex conjugate, the transpose and the complex

onjugated transpose of A , respectively. We use | a | to denote the

odulus of a complex number a . The real and imaginary parts of

 ∈ C 

I are denoted by � ( z ) and � ( z ), respectively. 

There are several ways of computing the Takagi factorization.

or example, the complex problem can be transformed into a real

https://doi.org/10.1016/j.neucom.2018.07.064
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problem of double size. Since Q is unitary and Q 

∗ = ( Q ) � , thus

A Q = Q �. Let ( σ , q ) be a Takagi value-vector pair and q = x + ιy ,
where x , y ∈ R 

I , then A ̄q = σq , that is, [
B C 

C −B 

][
x 

y 

]
= σ

[
x 

y 

]
and 

[
B C 

C −B 

][−y 

x 

]
= −σ

[−y 

x 

]
. 

Denote 

A = 

[
B C 

C −B 

]
and note that A ∈ R 

2 I×2 I is symmetric. Thus, the Takagi factoriza-

tion of A can be obtained from the eigenvalue decomposition of

the real symmetric A of double size. 

Suppose that ( σ , q ) is a Takagi pair of A . Let v = q̄ and u = q ,

then 

Av = σu , Ā u = A 

∗u = σv , 

which implies that ( σ , u , v ) is a singular pair of A . Hence we can

also compute the Takagi factorization of a complex symmetric ma-

trix to obtain its singular value decomposition. The interested read-

ers can be referred to [12,14,15,28] and their references for numer-

ical computation of the singular value decomposition of matrices.

However, as shown in [36] , for a complex symmetric matrix A , we

have 

a) if ( σ , q ) is a Takagi pair of A , then (σ, q , ̄q ) is its singular pair; 

b) if ( σ , u , v ) is a singular pair of A , we can not directly obtain

the Takagi vector associated with σ from u and v . 

Finally, similar to the computation of the SVD (see, e.g., [12] ),

Bunse-Gerstner and Gragg [7] stated that a standard algorithm for

computing the Takagi factorization of a complex symmetric ma-

trix consists of two stages: First, a complex symmetric matrix is

reduced to a complex symmetric tridiagonal matrix; Second, the

Takagi factorization of the complex symmetric tridiagonal matrix

from the first stage is computed. For the first stage, Qiao et al.

[25] derived a block Lanczos method for tridiagonalizing complex

symmetric matrices. There are two methods for implementing the

second stage: the divide-and-conquer method [36] and a twisted

factorization method [37] . There are other numerical algorithms for

computing the Takagi factorization of a complex symmetric matrix

[7,36,37] . The existing algorithms are designed for the complete

Takagi factorization. 

In some applications, however, only the principal Takagi vector

is required. Especially in the situation where we want to investi-

gate the behavior of each component of the principal Takagi vector

of a parameterized complex symmetric matrix. Moreover, we will

shortly show that an algorithm for computing the principal Takagi

vector of a complex symmetric matrix can be used to compute the

complete Takagi factorization. So, in this paper, we focus on the

computation of the principal Takagi vector of a complex symmet-

ric matrix. 

Let A ∈ C 

I×I be symmetric, whose Takagi values are positive

and distinct, that is, σ 1 > σ 2 > ��� > σ N > 0, and q 1 the princi-

pal Takagi vector. Rewriting (1.1) as A = 

∑ I 
i =1 σi q i q 

� 
i 
, we get

A − σ1 q 1 q 

� 
1 = 

∑ I 
i =2 σi q i q 

� 
i 
, a symmetric matrix whose principal

Takagi vector is q 2 . Repeating the process, we can successively

compute q 1 , q 2 , . . . , q N . From (1.1) , the Takagi values σ i can be

obtained by σi = q 

∗
i 
A q i , i = 1 , 2 , . . . , I. The following algorithm

computes Q = [ q 1 . . . q N ] and � = diag (σ1 , . . . , σN ) in the complete

Takagi factorization (1.1) by calling a procedure of computing the

principal Takagi vector of a complex symmetric matrix. 

Input: Symmetric A ∈ C 

I×I with positiveand distinct Takagi val-

ues. 

Output: The Takagi vectors q i and Takagi values σi with i =
1 , 2 , . . . , I. 
A 1 = A . 

for i = 1 , 2 , . . . , I do 

Compute q i : the principal Takagi vector of A i . 

σi = q 

∗
i 
A i q i . 

A i +1 = A i − σi q i q 

� 
i 

. 

end for 

This paper presents a unified approach to complex-valued neu-

al networks for computing the principal Takagi vector of a com-

lex symmetric matrix with positive and distinct Takagi values. 

. Basics of real-valued functions of complex variables 

For a function f : C → C , its complex derivative at x ∈ C , if it

xists, is defined as the limit: 

f ′ (x ) := lim 

�x → 0 

f (x + �x ) − f (x ) 

�x 
. 

e know that f is differentiable in the complex sense, if and only if

he Cauchy–Riemann conditions hold. However, in many practical

pplications, functions are not differentiable in the complex sense.

n this paper, we consider optimization problems where the objec-

ive functions are real valued with complex variables. The objective

unctions are not complex differentiable, unless they are constant

unctions [5] . In order to deal with the problem, we provide an

lternative formulation which is based on the real derivatives but

imilar to the complex derivative. The purpose of this section is to

ntroduce some basics of the Wirtinger derivative of a real valued

unction with complex variables, including the cogradient and the

essian matrix. 

Suppose that f : C 

I → R is a real-valued function with complex

ariables. Let z = x + ιy ∈ C 

I with x , y ∈ R 

I . We introduce a calculus

f the differential operators, developed in principal by Wirtinger,

ften called the Wirtinger calculus . We refer to [6,16,26,31] for the

nderlying framework of the complex derivatives. 

efinition 2.1. Let z = x + ιy ∈ C 

I , where x , y ∈ R 

I . The cogradient

perator ∂ 
∂z 

and the conjugate cogradient operator ∂ 
∂ z 

are defined

y 

∂ 

∂z 
= 

1 

2 

⎡ ⎢ ⎣ 

∂ 
∂x 1 

− ι ∂ 
∂y 1 

. . . 
∂ 

∂x I 
− ι ∂ 

∂y I 

⎤ ⎥ ⎦ 

and 

∂ 

∂ z 
= 

1 

2 

⎡ ⎢ ⎣ 

∂ 
∂x 1 

+ ι ∂ 
∂y 1 

. . . 
∂ 

∂x I 
+ ι ∂ 

∂y I 

⎤ ⎥ ⎦ 

. 

For example, define f (z ) = z ∗z for all z = x + ιy ∈ C 

I , then 

∂ 

∂z 
= x − ιy , 

∂ 

∂ z 
= x + ιy . 

Note that the Cauchy–Riemann conditions for f ( z ) to be analytic

t z can be expressed compactly, using the cogradient as ∂ f 
∂ z 

= 0 I ,

.e., f is a function of z only. Analogously, f is said to be analytic at

 if and only if ∂ f 
∂z 

= 0 I . 

Let ∂ 
∂x 

= [ ∂ 
∂x 1 

, . . . , ∂ 
∂x I 

] � and 

∂ 
∂y 

= [ ∂ 
∂y 1 

, . . . , ∂ 
∂y I 

] � , it follows im-

ediately from the above definition that 

∂ 

∂x 

= 

∂ 

∂z 
+ 

∂ 

∂ z 
, 

∂ 

∂y 
= ι

(
∂ 

∂z 
− ∂ 

∂ z 

)
. 

The Hessian matrix is defined by 

 1 (z ) := 

[
H zz (z ) H z z (z ) 
H z z (z ) H z z (z ) 

]
r 

 2 (z ) := 

[
H z z (z ) H zz (z ) 
H z z (z ) H z z (z ) 

]
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here, for k, l = 1 , 2 , ..., I, 

(H zz ) kl (z ) = 

∂ 

∂z l 

(
∂ f (z ) 

∂z k 

)
, (H z z ) kl (z ) = 

∂ 

∂ z l 

(
∂ f (z ) 

∂z k 

)
, 

(H z z ) kl (z ) = 

∂ 

∂z l 

(
∂ f (z ) 

∂ z k 

)
, (H z z ) kl (z ) = 

∂ 

∂ z l 

(
∂ f (z ) 

∂ z k 

)
. 

ote that H 1 (z ) ∈ C 

2 I×2 I is symmetric, whereas H 2 (z ) ∈ C 

2 I×2 I is

ermitian. 

. A framework 

In this section, we describe a framework of deriving and

nalyzing neural network systems for computing the princi-

al Takagi vector of a complex symmetric matrix. We refer to

1,4,13,20,33,35,38,39] for solving a complex-valued nonlinear con- 

ex programming problem by a complex-valued neural network

odel. 

Wang et al. [34] proposed a dynamics of the complex-valued

eural network model for computing the principal Takagi vector of

 complex symmetric matrix A : 

dz (t) 

dt 
= f (z ; A ) , where f (z ; A ) = (z ∗z ) A z − z � A z + z ∗A z 

2 

z , 

(3.1) 

here z = [ z 1 , z 2 , . . . , z I ] 
� ∈ C 

I represents the state of the network.

t is proved in [34] that the equilibrium point 1 of (3.1) corresponds

o the principal Takagi vector of A . A simple discrete-time itera-

ive algorithm corresponding to the neural network described in

3.1) can be written as 

 k +1 = z k + ηk f (z k ; A ) (3.2)

ith 

f (z k ; A ) = (z ∗k z k ) A z k −
z � 

k 
A z k + z ∗

k 
A z k 

2 

z k , 

here z 1 ∈ C 

I is a given initial value and { ηk } is a decreasing gain

equence. Following [17] , we make the following assumption on

 ηk }. 

ssumption 3.1. The gain sequence { ηk ≥ 0} is decreasing such

hat 
∑ ∞ 

k =0 ηk = ∞ , 
∑ ∞ 

k =0 η
r 
k 

< ∞ for some r > 1 and lim k →∞ 

(η−1 
k 

−
−1 
k −1 

) < ∞ . 

Based on the relationship between the Takagi pairs of A and

he eigenpairs of A [17] , we can apply the theory of stochastic ap-

roximation to prove the convergence of z k in (3.2) to the princi-

al Takagi vector of A . Note that the stable stationary solution of

3.1) is a convergence point of (3.2) . Hence we either solve (3.1) or

nalyze its stable stationary point. 

In the following, from the framework, we derive and analyze

ight different adaptive algorithms for computing the principal

akagi vector, as a realization and development of (3.2) . The func-

ion f ( z k ; A ) for various adaptive algorithms is given by: 

Type I A z k − z k 
z ∗

k 
A z k + z � k 

A z k 
2 ; 

Type II 1 
z ∗

k 
z k 

(
A z k − z k 

z ∗
k 

A z k + z � k 
A z k 

2 z ∗
k 

z k 

)
; 

Type III A z k − z k 
z ∗

k 
A z k + z � k 

A z k 
2 z ∗

k 
z k 

= z ∗
k 
z k · Type II ; 
1 The point ̃  x ∈ R is an equilibrium point for the differential equation 

dx 

dt 
= f (t, x ) 

f f (t, ̃  x ) = 0 for all t . 

a

Type IV z ∗
k 
z k 

(
A z k − z k 

z ∗
k 

A z k + z � k 
A z k 

2 z ∗
k 

z k 

)
= (z ∗

k 
z k ) 

2 · Type II ; 

Type V 

2 A z k 
z ∗

k 
A z k + z � k 

A z k 
− z k = 

2 

z ∗
k 

A z k + z � k 
A z k 

· Type I ; 

Type VI A z k − μz k (z ∗
k 
z k − 1) ; 

Type VII A z k − z k 
z ∗

k 
A z k + z � k 

A z k 
2 − z k (z ∗

k 
z k − 1) ; 

Type VIII A z k − z k 
z ∗

k 
A z k + z � k 

A z k 
2 − μz k (z ∗

k 
z k − 1) ; 

Type I is based on nonlinear programming, Types II, III, and IV

re based on the generalized Rayleigh quotient criterion, Type V

s based on the information theory criterion, Type VI is based on

he penalty function, and Types VII and VIII are based on the the

ugmented Lagrangian criterion. 

Note that we cannot ensure that z ∗A z + z � A z is always positive,

here z is the limit of the sequence { z k , k = 1 , 2 , . . . } , which is de-

ived from the above eight adaptive algorithms. If z ∗A ̄z + z � Ā z < 0 ,

hen considering Type I and setting u = e ιπ/ 2 z , we have 

 u = u 

u 

∗A u + u 

� A u 

2 

, u 

∗A u + u 

� A u > 0 . 

Although there exist many numerical algorithms to computing

he Takagi factorization of complex symmetric matrices (see, e.g.,

7,36,37] ), it is more effective to use eight adaptive algorithms for

omputing the Takagi vectors of complex symmetric matrices in

ollowing situations: 

a) when we only want to derive the Takagi vector complex sym-

metric matrices, associated to the largest Takagi value; 

b) when we want to draw the graph about each component of

the Takagi vector of parameterized complex symmetric matri-

ces, associated to the largest Takagi value. 

.1. Type I 

For Type I, the adaptive algorithm is derived from the following

onlinear programming 

in 

z ∈ C I 

{
−z ∗A z + z � A z 

2 

}
, subject to z ∗z = 1 . 

When f ( z k ; A ) is Type I, we have 

 k +1 = z k + ηk 

(
A z k − z k 

z ∗
k 
A z k + z � 

k 
A z k 

2 

)
, (3.3)

here the sequence { ηk } satisfies Assumption 3.1 in Section 3 . Our

odel is a generalization of the previous work [21,23] , where real

 and z k in f ( z k ; A ) are considered. The complex-valued ODE asso-

iated with (3.3) is given by 

dz (t) 

dt 
= A z − z 

z ∗A z + z � A z 

2 

, (3.4) 

here z (t) ∈ C 

I is the continuous time counterpart of z k with t ≥ 0

epresenting time. The following theorem gives the stable equilib-

ium points and the convergence properties of (3.4) . 

heorem 3.1. Under the conditions of Assumption 3.1 , given a

ymmetric matrix A ∈ C 

I×I with σ1 > σ2 ≥ · · · ≥ σI ≥ 0 , let z (t) =
 I 
i =1 a i (t) q i be a solution of the complex-valued ODE (3.4) expressed

n terms of the set { q 1 , q 2 , . . . , q I } of all the unitary Takagi vectors

f A , then for any initial condition z (0) = z 0 ∈ C 

I with z ∗0 q 1 � = 0 and

he real and imaginary parts of a i (0) being nonzero, the coefficients

 i (t) (i = 2 , 3 , . . . , I) of the solution z ( t ) are given by 

� (a i (t)) 

� (a 1 (t)) 
= 

� (a i (0)) 

� (a 1 (0)) 
e −(σ1 −σi ) t and 

� (a i (t)) 

� (a (t)) 
= 

� (a i (0)) 

� (a (0)) 
e −(σ1 + σi ) t . (3.5) 
1 1 



82 M. Che et al. / Neurocomputing 317 (2018) 79–87 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

c  

e  

e  

d

∇
H

z

 

a

 

w  

I

z

 

a

 

F

z

 

a

 

 

t

T  

s  ∑
 

(  

u  

R  

n

(  

 

(  

 

(  

� (a (t)) � (a (0)) 
 

Furthermore, we also have � ( a 1 ( t )) → ± 1 and � ( a 1 ( t )) → 0 as t → ∞ .

The points ± q 1 are (uniformly) asymptotically stable. The domain

of contraction of q 1 is D (q 1 ) = { z ∈ C 

I : � (z ∗q 1 ) > 0 } and that of

−q 1 is D (q 1 ) = { z ∈ C 

I : � (z ∗q 1 ) < 0 } . 
Proof. Substituting z ( t ) in (3.4) with z (t) = 

∑ I 
i =1 a i (t) q i and pre-

multiplying the both side with q 

∗
i 
, we obtain 

da i (t) 

dt 
= σi a i (t) − a i (t) 

I ∑ 

j=1 

σ j (� (a j (t)) 2 − � (a j (t)) 2 ) , 

i = 1 , 2 , . . . , I. (3.6)

Define b ∈ C 

I−1 such that 

� (b i ) = 

� (a i ) 

� (a 1 ) 
and � (b i ) = 

� (a i ) 

� (a 1 ) 
, i = 2 , . . . , I. 

It then follows from (3.6) that 

d� (b i (t)) 

dt 
= − � (b i )(σ1 − σi ) and 

d� (b i (t)) 

dt 
= − � (b i )(σ1 + σi ) , i = 2 , ..., I, 

which implies (3.5) . From (3.5) , we have � ( a i ) → 0 and � ( a i ) → 0

as t → ∞ , for i = 2 , . . . , I. Thus, we have � ( a i ( t )) → x ( t ) and

� ( a i ( t )) → y ( t ) as t → ∞ , where x ( t ) and y ( t ) satisfies the following

ordinary differential equations: 

dx (t) 

dt 
= σ1 x (t) − σ1 (x (t) 2 − y (t) 2 ) x (t) , 

dy (t) 

dt 
= − σ1 y (t) − σ1 (x (t) 2 − y (t) 2 ) y (t) . (3.7)

When letting u (t) = x (t) 2 and v (t) = y (t) 2 , we have 

du (t) 

dt 
= σ1 u (t) − σ1 (u (t) − v (t)) u (t) 2 , 

dv (t) 

dt 
= − σ1 v (t) − σ1 (u (t) − v (t)) v (t) 2 , 

which implies that 

u (t) = 

e 2 σ1 t u (0) 

e 2 σ1 t u (0) − 2 σ1 v (0) t + 1 

, 

v (t) = 

v (0) 

e 2 σ1 t u (0) − 2 σ1 v (0) t + 1 

. 

with u (0) = x (0) 2 > 0 and v (0) = y (0) 2 > 0 , where x (0) and y (0)

are the initial values of (3.7) . Thus, u ( t ) → 1 and v (t) → 0 as t → ∞ .

which lead to � ( a 1 ( t )) → ± 1 and � ( a 1 ( t )) → 0 as t → ∞ . Thus the

sign of � ( a i ( t )), i = 2 , . . . , I, is determined by the sign of the initial

� (a 1 (0)) = � (z (0) ∗q 1 ) . From (3.5) , � ( a i ( t )) → 0 and � ( a i ( t )) → 0, as

t → ∞ , for i = 2 , 3 , . . . , I. Thus z ( t ) → ± q 1 as t → ∞ . �

Remark 3.1. Similar to the proof of Theorem 3.1 , we also have 

� (a i (t)) 

� (a 1 (t)) 
= 

� (a i (0)) 

� (a 1 (0)) 
e (σ1 −σi ) t , 

� (a i (t)) 

� (a 1 (t)) 
= 

� (a i (0)) 

� (a 1 (0)) 
e (σ1 + σi ) t , 

i = 2 , 3 , . . . , I. 

It is easy to verify that both � ( a i ( t )) and � ( a i (0)) are the high or-

der infinitesimal of � ( a i (0)), which also hold for the other adaptive

algorithms in this paper. 

The convergence of (3.3) is now a direct consequences of the

above theorem and Theorem 1 of Ljung [17] . 

3.2. Types II, III and IV 

All the three types are derived from the objective function: 

J(z k ; A ) = −z ∗
k 
A z k + z � 

k 
A z k 

2 z ∗
k 
z k 

, (3.8)
alled the generalized Rayleigh quotient of A . Our models are gen-

ralizations of the previous work by Cirrincione et al. [10] , Luo

t al. [18] and Oja [22] , where the real case is considered. The gra-

ient of (3.8) with respect to z k is 

 z k 
J(z k ; A ) = 

−1 

z ∗
k 
z k 

(
A z k −

z ∗
k 
A z k + z � 

k 
A z k 

2 z ∗
k 
z k 

z k 

)
. 

ence, the adaptive gradient descent algorithm for Type II is 

 k +1 =z k −ηk ∇ z k 
J(z k ; A )=z k +ηk 

1 

z ∗
k 
z k 

(
A z k −

z ∗
k 
A z k + z � 

k 
A z k 

2 z ∗
k 
z k 

z k 

)
, 

(3.9)

nd the complex-valued ODE associated with (3.9) is 

dz (t) 

dt 
= 

1 

z ∗z 

(
A z − z 

z ∗A z + z � A z 

2 z ∗z 

)
, (3.10)

here z (t) ∈ C 

I is the continuous time counterpart of z k . For Type

II, the adaptive gradient descent algorithm is 

 k +1 =z k −ηk (z ∗k z k ) ∇ z k 
J(z k ; A ) = z k +ηk 

(
A z k −

z ∗
k 
A z k +z � 

k 
A z k 

2 z ∗
k 
z k 

z k 

)
, 

(3.11)

nd the complex-valued ODE associated with (3.11) is 

dz (t) 

dt 
= A z − z 

z ∗A z + z � A z 

2 z ∗z 
. (3.12)

or Type IV, the adaptive gradient descent algorithm is 

 k +1 = z k − ηk (z ∗k z k ) 
2 ∇ z k 

J(z k ; A ) 

= z k + ηk (z ∗k z k ) 

(
A z k −

z ∗
k 
A z k + z � 

k 
A z k 

2 z ∗
k 
z k 

z k 

)
, (3.13)

nd the complex-valued ODE associated with (3.13) is 

dz (t) 

dt 
= z ∗z 

(
A z − z 

z ∗A z + z � A z 

2 z ∗z 

)
. (3.14)

The solutions of the above three complex-valued ODEs and

heir properties are summarized in the following theorem. 

heorem 3.2. Under the conditions of Assumption (3.1) , given a

ymmetric matrix A ∈ C 

I×I with σ1 > σ2 ≥ · · · ≥ σI > 0 , let z (t) =
 I 
i =1 a i (t) q i be a solution of the complex-valued ODEs (3.10) or

3.12) or (3.14) expressed in terms of the set { q 1 , q 2 , . . . , q I } of all the

nitary Takagi vectors of A , then for any initial condition z (0) = z 0 ∈
 

I with � (z ∗0 q 1 ) � = 0 and the real and imaginary parts of a i (0) being

onzero, we have the following statements: 

a) for all t ≥ 0, the coefficients a i (t) (i = 2 , 3 , . . . , I) of the solution

for (3.10) are given by 

� (a i (t)) 

� (a 1 (t)) 
= 

� (a i (0)) 

� (a 1 (0)) 
e −(σ1 −σi ) t/ ‖ z 0 ‖ 2 2 , 

� (a i (t)) 

� (a 1 (t)) 
= 

� (a i (0)) 

� (a 1 (0)) 
e −(σ1 + σi ) t/ ‖ z 0 ‖ 2 2 ; (3.15)

b) for all t ≥ 0, the coefficients a i (t) (i = 2 , 3 , . . . , I) of the solution

for (3.12) are given by 

� (a i (t)) 

� (a 1 (t)) 
= 

� (a i (0)) 

� (a 1 (0)) 
e −(σ1 −σi ) t , 

� (a i (t)) 

� (a 1 (t)) 
= 

� (a i (0)) 

� (a 1 (0)) 
e −(σ1 + σi ) t ;

(3.16)

c) for all t ≥ 0, the coefficients a i (t) (i = 2 , 3 , . . . , I) of the solution

for (3.14) are given by 

� (a i (t)) 

� (a 1 (t)) 
= 

� (a i (0)) 

� (a 1 (0)) 
e −(σ1 −σi ) t‖ z 0 ‖ 2 2 , 

� (a i (t)) = 

� (a i (0)) 
e −(σ1 + σi ) t‖ z 0 ‖ 2 2 ; (3.17)
1 1 
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d) furthermore, for (3.10) , (3.12) and (3.14) , we also have

� ( a 1 ( t )) → ±‖ z 0 ‖ 2 and � ( a 1 ( t )) → 0 as t → ∞ . 

The points ± q 1 are (uniformly) asymptotically stable. The domain

f contraction of q 1 is D (q 1 ) = { z ∈ C 

I : � (z ∗q 1 ) > 0 } and that of

q 1 is D (q 1 ) = { z ∈ C 

I : � (z ∗q 1 ) < 0 } . 
roof. Analogous to the proof of Theorem 3.1 . �

For Type II (3.10) , the equations in (3.15) imply � ( a i ( t )) → 0

nd � ( a i ( t )) → 0, as t → ∞ , for i = 2 , 3 , . . . , I. For Type III (3.12) , the

quations in (3.16) imply � ( a i ( t )) → 0 and � ( a i ( t )) → 0, as t → ∞ ,

or i = 2 , 3 , . . . , I. For Type IV (3.14) , the equations in (3.17) im-

ly � ( a i ( t )) → 0 and � ( a i ( t )) → 0, as t → ∞ , for i = 2 , 3 , . . . , I. Thus,

f ‖ z 0 ‖ 2 = 1 for Types II, III and IV, then z ( t ) → ± q 1 as t → ∞ . 

Note that if z satisfies (3.10) or (3.12) or (3.14) , then 

d‖ z (t) ‖ 

2 
2 

dt 
= z (t) ∗

dz (t) 

dt 
+ 

dz (t) 

dt 

∗
z (t) = 0 , 

mplying that ‖ z (t) ‖ 2 = ‖ z (0) ‖ 2 , t > 0, for all the three types.

pplying the approximation ‖ z k ‖ 2 ≈ ‖ z 0 ‖ 2 = ‖ z (0) ‖ 2 to Type II

3.9) and Type IV (3.13) , we have the following simplified Types

I and IV algorithms 

(3 . 9) ′ : z k +1 = z k + ηk ‖ z 0 ‖ 

−2 
2 

(
A z k −

z ∗
k 
A z k + z � 

k 
A z k 

2 z ∗
k 
z k 

z k 

)
, 

(3 . 13) ′ : z k +1 = z k + ηk ‖ z 0 ‖ 

2 
2 

(
A z k −

z ∗
k 
A z k + z � 

k 
A z k 

2 z ∗
k 
z k 

z k 

)
. 

lthough, the three adaptive algorithms (3.9) ′ , (3.11) and (3.13) ′ 
iffer only in their gain constants, our experiments show that they

erform differently. 

.3. Type V 

When f ( z k ; A ) is defined by Type V, we have the following

daptive method: 

 k +1 = z k + ηk 

(
2 A z k 

z ∗
k 
A z k + z � 

k 
A z k 

− z k 

)
. (3.18)

ur model is a generalization of the previous work by Plumbly

24] and Miao and Hua [19] , where real A and z k in (3.18) are

onsidered. The complex-valued ODE associated with the adaptive

ethod (3.18) is 

dz (t) 

dt 
= 

2 A z 

z ∗A z + z � A z 
− z , (3.19) 

here z (t) ∈ C 

I is the continuous time counterpart of z k with t

epresenting time. If z satisfies (3.19) , then 

d‖ z (t) ‖ 

2 
2 

dt 
= z (t) ∗

dz (t) 

dt 
+ 

dz (t) 

dt 

∗
z (t) = 2(1 − ‖ z (t) ‖ 

2 
2 ) , 

rom which we obtain ‖ z (t) ‖ 2 2 = 1 + (‖ z (t) ‖ 2 2 − 1) e −2 t , implying

hat ‖ z ( t ) ‖ 2 → 1 as t → ∞ . 

We now analyze the stable stationary points of the complex-

alued ODE (3.19) . An energy function for (3.19) is given by 

(z ) = z ∗z − 1 

2 

ln 

( (
z ∗A z + z � A z 

2 

)2 
) 

. 

ince lim ‖ z ‖ 2 → 0 E(z ) = + ∞ and lim ‖ z ‖ 2 → + ∞ 

E(z ) = + ∞ , the func-

ion E ( z ) has global minimum points. The following theorem shows

 relation between the principal Takagi vector of A and the global

inima of E ( z ). 

heorem 3.3. Under the conditions of Assumption 3.1 , let A ∈ C 

I×I 

e a symmetric matrix with σ 1 > σ 2 ≥ ��� ≥σ I > 0, then the two con-

erging points ± q of the complex-valued ODE (3.19) are the global
1 
inimum points of the energy function E ( z ), which has no other local

inimum point. In addition, ± q i , i = 2 , . . . , I are the saddle points of

 ( z ) . 

roof. The gradients of E ( z ) with respect to z and z are respec-

ively 

∂E(z ) 

∂ z 
= z − 2 A z 

z ∗A z + z � A z 
, 

∂E(z ) 

∂z 
= z − 2 A z 

z ∗A z + z � A z 
. 

t then follows that the stationary points of E ( z ) are indeed the

akagi vectors ± q i , i = 1 , 2 , . . . , I of A . The Hessian matrix of E ( z )

s 

 (z ) := 

[
E z z (z ) E zz (z ) 
E z z (z ) E z z (z ) 

]
, 

here 

 zz (z ) = 

−2 A 

z ∗A z + z � A z 
+ 

4 A zz � A 

(z ∗A z + z � A z ) 2 
, 

 z z (z ) = I I + 

4 A zz ∗A 

(z ∗A z + z � A z ) 2 
, 

 z z (z ) = I I + 

4 A z z � A 

(z ∗A z + z � A z ) 2 
, 

 z z (z ) = 

−2 A 

z ∗A z + z � A z 
+ 

4 A z z ∗A 

(z ∗A z + z � A z ) 2 
. 

n particular, for q 1 , we have 

 (±q 1 ) 

[
q 1 

±q 1 

]
= 2 

[
q 1 

±q 1 

]
and 

H (±q 1 ) 

[
q i 

±q i 

]
= 

σ1 − σi 

σ1 

[
q i 

±q i 

]
, i = 2 , 3 , . . . , I. 

ince all the eigenvalues of H ( ± q 1 ) are positive, H ( ± q 1 ) is posi-

ive definite. Thus the stationary points ± q 1 are the local minimal

oints of E ( z ). 

Similarly, it can be verified that 

H (±q i ) 

[
q i 

±q i 

]
= 2 

[
q i 

±q i 

]
and 

 (±q i ) 

[
q 1 

±q 1 

]
= 

σi − σ1 

σi 

[
q 1 

±q 1 

]
, i = 2 , 3 , . . . , I. 

ince H ( ± q i ), 2 ≤ i ≤ I has two positive eigenvalues and (2 I − 2)

egative eigenvalues, it is indefinite. Hence, ± q i are saddle points

f E ( z ). Since E ( z ) has only two local minimal points ± q 1 and

(q 1 ) = E(−q 1 ) , ± q 1 are the global minima. �

The rate of convergence for (3.18) can be obtained from the

quation ‖ z (t) ‖ 2 
2 

= 1 + (‖ z (t) ‖ 2 
2 

− 1) e −2 t . A unique feature of this

lgorithm is that the time constant for ‖ z ( t ) ‖ 2 is 1 and indepen-

ent of the Takagi structure of A . 

.4. Type VI 

When f ( z k ; A ) is given by Type VI, we have the following adap-

ive procedure: 

 k +1 = z k + ηk 

(
A z k − μz k (z ∗k z k − 1) 

)
, (3.20)

here μ> 0. Our method is a generalization the previous work

y Chauvin [8] , where both A and z k in f ( z k ; A ) are assumed

o be real. The complex-valued ODE associated with the adaptive

ethod (3.20) is 

dz (t) = A z − μz (z ∗z − 1) , (3.21)

dt 
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E k k k 
where μ> 0 and z (t) ∈ C 

I is the continuous time counterpart of z k 
with t representing time. The solution of (3.21) and its properties

are summarized in the theorem below. 

Theorem 3.4. Under the conditions of Assumption 3.1 , for a given

symmetric matrix A ∈ C 

I×I with σ 1 > σ 2 ≥ ��� ≥σ I > 0, let z (t) =∑ I 
i =1 a i (t) q i be a solution of the complex-valued ODE (3.21) expressed

in terms of the set { q 1 , q 2 , . . . , q I } of all the unitary Takagi vectors

of A , then for any initial condition z (0) = z 0 ∈ C 

I with z ∗
0 
q 1 � = 0 and

the real and imaginary parts of a i (0) being nonzero, the coefficients

a i (t) (i = 2 , 3 , . . . , I) of the solution are given by 

� (a i (t)) 

� (a 1 (t)) 
= 

� (a i (0)) 

� (a 1 (0)) 
e −(σ1 −σi ) t , 

� (a i (t)) 

� (a 1 (t)) 
= 

� (a i (0)) 

� (a 1 (0)) 
e −(σ1 + σi ) t .

(3.22)

Furthermore, we also have � (a 1 (t)) → ±
√ 

1 + σ1 /μ and

� ( a 1 ( t )) → 0 as t → ∞ . 

The points ±
√ 

1 + σ1 /μq 1 are (uniformly) asymptotically sta-

ble. The domain of contraction of 
√ 

1 + σ1 /μq 1 is D (q 1 ) = { z ∈
C 

I : � (z ∗q 1 ) > 0 } and that of −
√ 

1 + σ1 /μq 1 is D (q 1 ) = { z ∈ C 

I :

� (z ∗q 1 ) < 0 } . 
Proof. Analogous to the proof of Theorem 3.1 . �

It follows from (3.22) that � ( a i ( t )) → 0 and � ( a i ( t )) → 0, as

t → ∞ , for i = 2 , 3 , . . . , I. Thus z ( t ) converges to ±
√ 

1 + σ1 /μq 1 . In

terms of the energy function 

E(z ) = −z ∗A z + z � A z 

2 

+ 

μ

2 

(z ∗z − 1) 2 

for the adaptive procedure (3.20) , the stable stationary points of

(3.21) are given in the following theorem. 

Theorem 3.5. Under Assumption 3.1 , let A ∈ C 

I×I be a symmetric

matrix with σ 1 > σ 2 ≥ ��� ≥σ I > 0, then the two converging points

±
√ 

1 + σ1 /μq 1 of the complex-valued ODE (3.21) are the global min-

imum points of E ( z ), which has no other local minimum point. In ad-

dition, ±
√ 

1 + σ1 /μq i i = 2 , . . . , I, are saddle points of E ( z ) . 

Proof. Analogous to the proof of Theorem 3.3 . �

3.5. Types VII and VIII 

When f ( z k ; A ) is given by Type VIII, we have the following adap-

tive procedure: 

z k +1 = z k + ηk 

(
A z k − z k 

z ∗
k 
A z k + z � 

k 
A z k 

2 

− μ z k (z ∗k z k − 1) 

)
, 

(3.23)

where μ> 0. Note that when μ = 1 , the above adaptive procedure

reduces to Type VII. The complex-valued ODE associated with the

adaptive method (3.23) is 

dz (t) 

dt 
= A z − z 

z ∗A z + z � A z 

2 

− μ z (z ∗z − 1) , (3.24)

where μ> 0 and z (t) ∈ C 

I is the continuous time counterpart of z k 
with t representing time. The solution of (3.24) and its properties

are summarized in the theorem below. 

Theorem 3.6. Under the conditions of Assumption 3.1 , given a

symmetric matrix A ∈ C 

I×I with σ 1 > σ 2 ≥ ��� ≥σ I > 0, let z (t) =∑ I 
i =1 a i (t) q i be a solution of the complex-valued ODE (3.24) expressed

in term of the set { q 1 , q 2 , . . . , q I } of all the unitary Takagi vectors

A , then for any initial condition z (0) = z 0 ∈ C 

I with z ∗q 1 � = 0 and

0 
he real and imaginary parts of a i (0) being nonzero, the coefficients

 i (t) (i = 1 , 2 , . . . , I) of the solution z ( t ) for t > 0 are given by 

� (a i (t)) 

� (a 1 (t)) 
= 

� (a i (0)) 

� (a 1 (0)) 
e −(σ1 −σi ) t , 

� (a i (t)) 

� (a 1 (t)) 
= 

� (a i (0)) 

� (a 1 (0)) 
e −(σ1 + σi ) t .

(3.25)

urthermore, we also have � (a 1 (t)) → ±
√ 

1 + σ1 /μ and

 ( a 1 ( t )) → 0 as t → ∞ . 

The points ±
√ 

1 + σ1 /μq 1 are (uniformly) asymptotically sta-

le. The domain of contraction of 
√ 

1 + σ1 /μq 1 is D (q 1 ) = { z ∈
 

I : � (z ∗q 1 ) > 0 } and that of −
√ 

1 + σ1 /μq 1 is D (q 1 ) = { z ∈ C 

I :

 (z ∗q 1 ) < 0 } . 
roof. Analogous to the proof of Theorem 3.1 . �

It follows from (3.25) that � ( a i ( t )) → 0 and � ( a i ( t )) → 0,

s t → ∞ , for i = 2 , 3 , . . . , I, and � (a 1 (t)) → ±
√ 

1 + σ1 /μ,

 ( a 1 ( t )) → 0. Thus z (t) → ±
√ 

1 + σ1 /μq 1 as t → ∞ . 

. Numerical examples 

In this section, some computer simulation results are shown to

llustrate our models. All computations were carried out in MAT-

AB Version 2016a, which has a unit of roundoff 2 −53 ≈ 1 . 1 ×
0 −16 , on a laptop with Intel Core i5-3470M CPU (3.20 GHz) and

.00 GB RAM. All floating-point numbers were rounded to two dig-

ts after the decimal point. 

Che et al. [9] presented an iterative algorithm for computing

he largest Takagi value of complex symmetric matrices, which is

imilar to the power method [12] for matrix eigenvalue problems.

ere we denote this algorithm by “PM”. In this section, we also

ompare the proposed methods with PM for different testing com-

lex symmetric matrices. 

First, we ran our adaptive algorithms on a single data set with

arious starting vectors z 0 . Then, we generated several data sam-

les and used the same starting vector z 0 . 

We refer to the Takagi values and Takagi vectors of a symmet-

ic matrix A ∈ R 

I×I computed by the divide-and-conquer method

36] as the actual values. In order to measure the convergence and

ccuracy of the algorithms, we computed the percentage direction

osine at k th iteration of each adaptive algorithm defined by 

osine (k ) = 

100 | z ∗
k 
φ1 | 

‖ z k ‖ 2 

, 

here z k is the approximate principal Takagi vector of A at k th

teration and φ1 is the actual principal Takagi vector computed

y the divide-and-conquer method. Thus, cosine( k ) ≤ 100 and the

arger the more accurate z k is. 

xample 4.1. A Hankel matrix is a square matrix with constant

kew-diagonals (positive sloping diagonals). By definition, an I × I

omplex Hankel matrix can be generated by a given sequence

 x i ∈ C : i = 1 , 2 , . . . , 2 I − 1 } which determines its first column and

ast row. 

For a given positive integer I , the first column and the last row

f a Hankel matrix A are given by 

a k, 1 = x k , k = 1 , 2 , . . . , I, 

a I ,k −I +1 = x k , k = I, I + 1 , . . . , 2 I − 1 , 

here all x k are given by [32] : 

 k = exp ((−0 . 01 + 0 . 04 πι) k ) + exp ((−0 . 02 + 0 . 44 πι) k ) . 

When I = 10 0 0 , Fig. 1 shows the error 

RR (k ) := ‖ A z − σ z ‖ 2 , 
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Fig. 1. The error ERR( k ) and the principal Takagi value of A computed at the k th iteration of the proposed algorithms using a given random initial z 0 in Example 4.1 with 

ηk = 1 / (10 + k ) . 

Table 1 

The percentage direction cosines of the principal Takagi vector of A computed by the adaptive 

algorithms at iterations k = 250 , 300 for random initial z 0 in Example 4.1 . 

‖ z 0 ‖ 2 k Type I Type II Type III Type IV Type VI Type VII Type VIII 

1.54 250 94.79 69.05 94.76 99.09 94.78 94.79 94.80 

300 97.23 91.12 97.22 99.85 97.22 97.23 97.24 

1.63 250 65.30 49.22 65.17 93.35 65.24 65.31 65.32 

300 76.89 56.32 76.78 99.03 76.83 76.89 76.90 

1.94 250 83.05 57.45 82.93 99.59 83.02 83.05 83.07 

300 90.13 70.57 90.05 99.98 90.10 90.13 90.14 

2.02 250 96.64 78.01 96.60 99.96 96.60 96.59 97.23 

300 98.23 90.47 98.21 10 0.0 0 98.23 98.30 98.57 

2.17 250 92.43 63.57 92.36 99.96 92.42 92.43 92.45 

300 95.89 79.39 95.85 10 0.0 0 95.88 95.89 95.90 

2.26 250 92.08 62.27 91.99 99.98 92.06 92.08 92.10 

300 95.69 77.60 95.64 10 0.0 0 95.68 95.69 95.70 

2.25 250 99.59 79.62 99.58 10 0.0 0 99.59 99.62 99.56 

300 99.79 93.27 99.79 10 0.0 0 99.79 99.81 99.77 

2.48 250 8.90 3.31 8.85 97.04 8.91 8.91 8.93 

300 12.37 10.62 12.30 99.99 12.38 12.37 12.40 

2.26 250 70.30 36.85 70.09 99.89 70.27 70.31 70.35 

300 80.95 49.12 80.79 10 0.0 0 80.93 80.95 80.99 

2.30 250 75.59 47.24 75.39 99.94 75.56 75.59 75.64 

300 84.95 57.14 84.81 10 0.0 0 84.93 84.95 84.99 
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here z k is the principal Takage vector and σ k is the correspond-

ng Takagi value of A computed at the k th iteration of each of the

ight algorithms using any given random initial z 0 in Example 4.1 .

hese algorithms take 3.18s, 2.52s, 2.94s, 2.73s, 2.47s, 1.70s, 2.53s,

.63s and 2.70s, respectively. As seen in Fig. 1 , Type V (3.18) is the

orst. Hence, we do not consider the numerical implementation of

he adaptive algorithm with Type V. 

When I = 10 , applying the MATLAB function svd , the first two

akagi values of A are 9.06 and 8.24, respectively. The rest of the

akagi values are much smaller than the first two. The initial val-

es of all the adaptive algorithms are z 0 = 0 . 5 r , where r ∈ C 

10 is

 complex random vector such that the real parts and the imagi-

ary parts of its entries obey the standard normal distribution. For
ll the algorithms, we set gain factor ηk = 1 / (100 + k ) . For Type VI

3.20) and Type VIII (3.23) , we set μ = 0 . 1 . 

The results are summarized in Table 1 , where we report the

ercentage direction cosine after k = 250 and 300 iterations for

ach algorithm. Table 1 shows that Type IV (3.13) converged faster

han the others. 

xample 4.2. Suppose that I is a positive integer. The testing com-

lex symmetric matrices A ∈ C 

I×I were generated by the following

teps [37] : 

1. generate a random unitary matrix Q ∈ C 

I × I : [ Q , R ] =
qr ( randn (I) + ι randn (I)) ; 

2. generate a diagonal matrix D ∈ R 

I×I with diagonal elements 

d 11 = 25 , d 22 = 25 /c, d = rand (1) , k = 3 , 4 , . . . , I, 
kk 
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Table 2 

The percentage direction cosines of the principal Takagi vector of A computed by the adaptive al- 

gorithms at iterations k = 250 , 300 for different complex symmetric matrices A with varying ratios 

σ 1 / σ 2 in Example 4.2 . 

σ 1 / σ 2 k Type I Type II Type III Type IV Type VI Type VII Type VIII 

1.10 250 76.28 54.89 76.00 94.41 76.07 76.28 76.29 

300 87.27 63.94 87.06 99.54 87.11 87.24 87.25 

1.14 250 82.07 55.96 81.75 98.03 81.83 82.07 82.08 

300 93.12 66.55 92.98 99.95 93.01 93.12 93.13 

1.20 250 86.51 56.93 86.18 99.29 86.26 86.51 86.52 

300 96.29 68.89 96.18 99.99 96.20 96.29 96.29 

1.23 250 89.82 57.81 89.51 99.73 89.59 89.82 89.83 

300 97.95 70.97 97.88 10 0.0 0 97.90 97.95 97.95 

1.30 250 92.28 58.60 91.99 99.89 92.07 92.28 92.29 

300 98.84 72.84 98.79 10 0.0 0 98.80 98.84 98.84 

1.32 250 94.09 59.32 93.84 99.95 93.90 94.09 94.10 

300 99.32 74.50 99.29 10 0.0 0 99.29 99.32 99.32 

1.40 250 95.43 59.98 95.21 99.98 95.26 95.43 95.44 

300 99.59 75.98 99.57 10 0.0 0 99.57 99.59 99.59 

1.41 250 96.42 60.58 96.23 99.99 96.28 96.42 96.43 

300 99.74 77.31 99.73 10 0.0 0 99.73 99.74 99.74 

1.47 250 97.17 61.13 97.01 10 0.0 0 97.05 97.17 97.18 

300 99.84 78.50 99.83 10 0.0 0 99.83 99.84 99.84 

1.50 250 97.74 61.64 97.59 10 0.0 0 97.63 97.74 97.74 

300 99.89 79.56 99.89 10 0.0 0 99.89 99.90 99.89 

Table 3 

The percentage direction cosines of the principal Takagi vector of A computed by the adaptive al- 

gorithms at iterations k = 250 , 300 for different complex symmetric matrices A with varying Takagi 

values σ 1 and σ 2 in Example 4.3 . 

σ 1 , σ 2 k Type I Type II Type III Type IV Type VI Type VII Type VIII 

11.58,6.32 250 88.95 30.10 88.31 99.97 88.85 88.98 89.08 

300 99.23 38.83 99.20 10 0.0 0 99.22 99.24 99.24 

16.63,6.49 250 88.92 30.13 88.29 99.96 88.82 88.95 89.05 

300 99.18 38.92 99.14 10 0.0 0 99.16 99.18 99.18 

11.73,6.92 250 88.69 30.19 88.06 99.94 88.58 88.71 88.81 

300 98.98 39.07 98.93 10 0.0 0 98.96 98.98 98.98 

11.84,7.18 250 88.71 30.26 88.10 99.93 88.60 88.74 88.83 

300 98.87 39.27 98.83 10 0.0 0 98.86 98.87 98.88 

12.14,7.64 250 89.13 30.46 88.55 99.91 89.01 89.15 89.23 

300 98.76 39.86 98.71 10 0.0 0 98.74 98.76 98.76 

12.54,8.08 250 89.80 30.72 89.25 99.91 89.67 89.81 89.88 

300 98.72 40.64 98.68 10 0.0 0 98.71 98.72 98.73 

12.87,8.67 250 89.90 30.96 89.39 99.89 89.77 89.92 89.97 

300 98.48 41.32 98.43 10 0.0 0 98.46 98.48 98.49 

13.57,9.33 250 90.99 31.48 90.53 99.88 90.85 91.00 91.04 

300 98.55 42.83 98.50 10 0.0 0 98.53 98.55 98.55 

14.09,9.88 250 91.49 31.89 91.07 99.88 91.35 91.50 91.53 

300 98.52 43.95 98.47 10 0.0 0 98.50 98.52 98.53 

17.97,11.66 250 96.96 35.45 96.77 10 0.0 0 96.87 96.96 96.98 

300 99.73 53.49 99.72 10 0.0 0 99.73 99.73 99.32 
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where c ∈ {1.10, 1.14, 1.20, 1.23, 1.30, 1.32, 1.40, 1.41, 1.47, 1.50}; 

3. compute A = QDQ 

� . 

The initial value of all the adaptive algorithms was set to z 0 =
0 . 5 r , where r ∈ C 

I is a complex random vector such that the real

parts and the imaginary parts of its entries obey the standard nor-

mal distribution. For all the algorithms, we set ηk = 1 / (100 + k ) .

For Type VI (3.20) and Type VII (3.23) , we set μ = 0 . 1 . 

For the case of I = 10 , Table 2 lists the percentage direc-

tion cosines after k = 250 and 300 iterations for each algorithm.

Table 2 shows that Type IV (3.13) converges faster than the oth-

ers, the convergence behavior of Type I (3.3) , Type III (3.11) , Type

VI (3.20) , Type VII (3.23) with μ = 1 , and Type VIII (3.23) is sim-

ilar and the convergence behavior of Type II (3.9) is similar. As

expected, the algorithm converges faster when the ratio σ 1 / σ 2 is

larger. 

Example 4.3. The testing complex symmetric matrices were gener-

ated the same as Example 4.2 except for the second step, we set 

σ1 ∈ { 11 . 58 , 11 . 63 , 11 . 73 , 11 . 84 , 12 . 14 , 12 . 54 , 12 . 87 , 
13 . 57 , 14 . 09 , 17 . 97 };
2 ∈ { 6 . 32 , 6 . 49 , 6 . 92 , 7 . 18 , 7 . 64 , 8 . 08 , 8 . 67 , 9 . 33 , 11 . 66 } . 
o, the diagonal entries of D are 

 11 = σ1 , d 22 = σ2 , d kk = rand (1) , k = 3 , 4 , . . . , 10 . 

The initial values of all adaptive algorithms were z 0 = 0 . 5 r ,

here r ∈ C 

10 is a complex random vector such that the real parts

nd the imaginary parts of its entries obey the standard normal

istribution. For all the algorithms, we set ηk = 1 / (100 + k ) . For

ype VI (3.20) and Type VIII (3.23) , we set μ = 10 . 

The results are listed in Table 3 , showing that the convergence

ehavior of all adaptive algorithms is similar to the results in

xample 4.2 . 
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