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a b s t r a c t

Both structured componentwise and structured normwise perturbation analysis of the
Tikhonov regularization are presented. The structured matrices under consideration
include: Toeplitz, Hankel, Vandermonde, and Cauchy matrices. Structured normwise,
mixed and componentwise condition numbers for the Tikhonov regularization are
introduced and their explicit expressions are derived. For the general linear structure,
based on the derived expressions, we prove structured condition numbers are smaller
than their corresponding unstructured counterparts. By means of the power method and
small sample statistical condition estimation (SCE), fast condition estimation algorithms
are proposed. Our estimation methods can be integrated into Tikhonov regularization
algorithms that use the generalized singular value decomposition (GSVD). For large
scale linear structured Tikhonov regularization problems, we show how to incorporate
the SCE into the preconditioned conjugate gradient (PCG) method to get the posterior
error estimations. The structured condition numbers and perturbation bounds are tested
on some numerical examples and compared with their unstructured counterparts. Our
numerical examples demonstrate that the structured mixed condition numbers give
sharper perturbation bounds than existing ones, and the proposed condition estimation
algorithms are reliable. Also, an image restoration example is tested to show the
effectiveness of the SCE for large scale linear structured Tikhonov regularization problems.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

For discrete ill-posed problems, the Tikhonov regularization (cf. [1]) reads

min
x


∥Ax − b∥2

2 + λ2∥Lx∥2
2


, A ∈ Rm×n and L ∈ Rp×n (1.1)

where λ is the regularization parameter, which controls the weight between ∥Lx∥2 and the residual ∥Ax − b∥2. The matrix
L is typically the identity matrix In or a discrete approximation to some derivation operator. Tikhonov regularization is also
known as ridge regression in statistics [2].
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For the regularization problem (1.1), to ensure the uniqueness of the solution for any λ > 0, we always assume that
rank(L) = p ≤ n ≤ m and rank


A
L


= n(cf. [2, Section 5]). The regularization problem (1.1) can be rewritten in the

matrix form

min
x


A
λL


x −


b
0


2
, (1.2)

where 0 is the zero vector. Since the normal equations corresponding to (1.2) are
A⊤A + λ2L⊤L


x = A⊤b, (1.3)

we can obtain the following explicit expression for the Tikhonov regularized solution:

xλ =

A⊤A + λ2L⊤L

−1
A⊤b.

Alternatively, the problem (1.1) can also be solved by the generalized singular value decomposition (GSVD) [3–5]. For
rectangular matrices A ∈ Rm×n and L ∈ Rp×n with rank(L) = p and rank


A
L


= n, the GSVDof (A, L) is given by the pair

of factorizations

A = U

Σ 0
0 In−p


RQ⊤ and L = V


S 0


RQ⊤, (1.4)

where U ∈ Rm×n has orthonormal columns, V ∈ Rp×p, Q ∈ Rn×n are orthogonal, R is n-by-n, upper triangular and
nonsingular, andΣ and S are p × p diagonal matrices:Σ = Diag(σ1, σ2, . . . , σp) and S = Diag(µ1, µ2, . . . , µp)with

0 ≤ σ1 ≤ σ2 ≤ · · · ≤ σp < 1 and 1 ≥ µ1 ≥ µ2 ≥ · · · ≥ µp > 0,

satisfyingΣ2
+S2 = Ip. Then the generalized singular values γi of (A, L) are defined by the ratios γi = σi/µi (i = 1, 2, . . . , p).

Once the GSVD is computed, the Tikhonov regularized solution can be obtained by [4, Chapter 4]

xλ = QR−1

F 0
0 In−p

 
ΣĎ 0
0 In−p


U⊤b, F = Diag(f1, f2, . . . , fp),

where fi = γ 2
i /(γ

2
i + λ2) for i = 1, 2, . . . , p, are called the filter factors for the Tikhonov regularization [4,6] andΣĎ is the

Moore–Penrose inverse ofΣ [2].
In sensitivity analysis, condition numbers are of great importance because they measure the worst-case effect of small

changes in the data on the solution. For the perturbation analysis of the linear least squares (LS) problem, the reader is
referred to [7–11]. Arioli et al. [7] introduced a partial condition number of the LS problem,which can be viewed as a condition
number of a linear functional of the LS problem. Baboulin et al. [8] have shown that the partial condition numbers of the
LS problem represent some quantities in statistics. For the perturbation analysis for the Tikhonov regularization, we refer
to [12,13] and references therein. Malyshev [14] adopted a unified theory to study the normwise condition numbers for the
Tikhonov regularization. Chu et al. [15] investigated the componentwise perturbation analysis of the Tikhonov regularization
problems and derived condition number expressions involving the Kronecker products, which can be of huge dimension
even for small problems, preventing us from estimating the condition numbers while solving the Tikhonov regularization
problem. In this paper, we consider the structured condition numbers for a linear functional of the Tikhonov regularization.
Fast condition number estimation, which is important in practice, is discussed.

Structured matrix computation is a hot research topic; see [16,17] and the references therein. The structured
Tikhonov regularization problem was recently studied in [18–20]. Eldén gave a stable efficient algorithm for the Tikhonov
regularizationwith triangular Toeplitz structure [21]. Park and Eldén [22] devised fast algorithms for solving LSwith Toeplitz
structure, based on the generalization of the classical Schur algorithm, and discussed their stability properties. Also, Park
and Eldén studied the stability analysis and fast algorithms for triangularization of rectangular Toeplitz matrices [23].
Hence, it is natural to investigate structured perturbations on the structured coefficient matrix, which lead to the structured
condition numbers for the structured Tikhonov regularization problem. Structured condition numbers for several categories
of structured matrices have been presented in [24–26,10,27–32]. In this paper we derive explicit formulas for the
condition numbers of the Tikhonov regularization problem, when perturbations of (A, b) are measured by normwise or
componentwise or a mixture of normwise and componentwise. To make our discussion general, we consider the condition
number of Mx, i.e., a linear function of the Tikhonov regularized solution, where M ∈ Rl×n and x ∈ Rn, l ≤ n. The common
situations are the special cases, when M is the identity matrix (condition number of the Tikhonov regularized solution)
or a canonical vector (condition number of one component of the solution). We obtain the expressions of the structured
condition numbers in the absence of the Kronecker product, so that they can be estimated by the power method due to
Hager [33] and Higham [34,35], see [36, Chapter 15] for the detail, while solving the Tikhonov regularization problem.

Moreover, in this paper, we adopt the statistical condition estimation (SCE) method [37] for numerically estimating
the condition of Tikhonov regularization problem. The SCE for both the small/medium scale and large scale structured
Tikhonov regularization problem is considered. The SCE can be used to estimate the componentwise local sensitivity of
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any differentiable function at a given input data, which is flexible and accommodates a wide range of perturbation types
such as structured perturbations. Thus SCE often provides less conservative estimates than the methods that do not exploit
structures. The SCEmethodhas been shown to be both reliable and efficient formanyproblems including linear systems [38],
structured linear systems [39], linear least squares problems [40], eigenvalue problems [41,42], matrix functions [37], the
roots of polynomials [43], etc.

We follow the convention of representing a point x ∈ Rn as a column vector. If x ∈ Rn and y ∈ Rm, then [x; y] is anm+ n
column vector by stacking x on top of y. If A ∈ Rm×n and B ∈ Rm×q, then [A, B] denotes the matrix obtained by putting A and
B side by side. The symbol ‘.⊤’ denotes matrix transpose, ∥ · ∥2 is the spectral norm, ∥ · ∥F is the Frobenius norm and ∥ · ∥∞ is
the infinity norm. The matrix Diag(d) ∈ Rq×q denotes a diagonal matrix with the vector d’s entries being its corresponding
diagonal components. For any points a, b ∈ Rn, the vector c =

a
b is obtained by componentwise division. In particular, bi = 0

assumes ai = 0, and in this case ci = 0. For a matrix A ∈ Rm×n, we define vec(A) ∈ Rmn by vec(A) = [a⊤

1 , a
⊤

2 , . . . , a
⊤
n ]

⊤,
where A = [a1, a2, . . . , an] with ai ∈ Rm, i = 1, 2, . . . , n. The unvec operation is defined as A = unvec(v) which sets the
entries of A to aij = vi+(j−1)n for v = [v1, v2, . . . , vmn] ∈ R1×mn. We define a permutation matrix Π of order mn so that
Π(vec(A)) = vec


A⊤


. Let ‘⊗’ denote the Kronecker product [44], i.e., A ⊗ B = [aijB] ∈ Rmp×nq for A = (aij) ∈ Rm×n and

B ∈ Rp×q. The notation |A| ≤ |B| means that |aij| ≤ |bij|. For the Kronecker product, we recall the following properties,
which can be found in [44],

(A ⊗ B)⊤ = A⊤
⊗ B⊤, |A ⊗ B| = |A| ⊗ |B|, vec(AXB) =


B⊤

⊗ A

vec(X), (1.5)

where |A| = [|aij|] and aij is the (i, j)-th entry of A.
This paper is organized as follows.Weprovide somepreliminaries in Section 2, investigatematriceswith linear structures

in Section 3 andmove tomatrices with nonlinear structures in Section 4. The SCE-based condition estimation algorithms are
proposed in Section 5. In Section 6, we demonstrate test results showing the sharpness of our structured condition numbers
and effectiveness of the condition estimation algorithms. Finally, conclusions are drawn in Section 7.

2. Preliminaries

In this section, we first recall the general (unstructured) condition number definitions [27]. Then we consider the
structured Tikhonov regularization problems, introduce structured perturbations, and define their structured condition
numbers. Finally, we briefly describe the basic ideas of SCE.

2.1. Structured condition numbers for the Tikhonov regularization

For x, a ∈ Rp and ε > 0 we denote S(a, ε) = {x ∈ Rp
| |x − a| ≤ ε|a|} and T (a, ε) = {x ∈ Rp

| ∥x − a∥2 ≤ ε}. For
a function F : Rp

→ Rq, we denote Dom(F) as its domain. The following lemma defines general (unstructured) condition
numbers.

Lemma 1 ([27]). Let F : Rp
→ Rq be a continuous mapping defined on an open set Dom(F) ⊂ Rp. Let a ∈ Dom(F) such that

a ≠ 0 and F(a) ≠ 0.

(i) Themixed condition number of F at a is defined by

m(F , a) = lim
ε→0

sup
x∈S(a,ε)

x≠a

∥F(x)− F(a)∥∞

∥F(a)∥∞

1
d(x, a)

=
∥|DF(a)| |a|∥∞

∥F(a)∥∞

,

where DF(a) is the Fréchet derivative of F at a and |a| = (|ai|) with a = [a1, a2, . . . , ap]⊤.
(ii) Suppose F(a) = (f1(a), f2(a), . . . , fq(a)) is such that fj(a) ≠ 0 for j = 1, 2, . . . , q. Then the componentwise condition

number of F at a is

c(F , a) = lim
ε→0

sup
x∈S(a,ε)

x≠a

d(F(x), F(a))
d(x, a)

=

 |DF(a)| |a|
|F(a)|


∞

.

(iii) The normwise condition number of F at a is defined by

κ(F , a) = lim
ε→0

sup
x∈T (a,ε)

x≠a

∥F(x)− F(a)∥2

∥x − a∥2

∥a∥2

∥F(a)∥2
=

∥DF(a)∥2∥a∥2

∥F(a)∥2
.

In the following we assume that1A and1b are perturbations to A and b respectively, which satisfy rank


A +1A
L


= n.

The perturbed counterpart of the problem (1.1) and its normal equations (1.3) are, respectively,

min
x+1x


∥(A +1A)(x +1x)− (b +1b)∥2

2 + λ2∥L(x +1x)∥2
2


, (2.1)
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and 
(A +1A)⊤(A +1A)+ λ2L⊤L


(xλ +1x) = (A +1A)⊤(b +1b).

Then the perturbed Tikhonov regularized solution is given by

xλ +1x =

(A +1A)⊤(A +1A)+ λ2L⊤L

−1
(A +1A)⊤(b +1b). (2.2)

Denoting

P(A, λ) =

A⊤A + λ2L⊤L

−1
.

Chu et al. [15] define the non-structured mixed, componentwise, and normwise condition numbers for the Tikhonov
regularization and obtain respectively

mReg = lim
ϵ→0

sup
|1A|≤ϵ|A|

|1b|≤ϵ|b|

∥1x∥∞

ϵ∥xλ∥∞

=

 |H(A, b)|vec(|A|)+
P(A, λ)A⊤

 |b|


∞

∥xλ∥∞

, (2.3)

cReg = lim
ϵ→0

sup
|1A|≤ϵ|A|

|1b|≤ϵ|b|

1
ϵ

1x
xλ


∞

=

 |H(A, b)|vec(|A|)+
P(A, λ)A⊤

 |b|
xλ


∞

, (2.4)

condF
Reg = lim

ϵ→0
sup

∥[1A,1b]∥F≤ϵ∥[A, b]∥F

∥1x∥2

ϵ∥xλ∥2
=


H(A, b), P(A, λ)A⊤


2 ∥[A, b]∥F

∥xλ∥2
, (2.5)

where H(A, b) = −x⊤

λ ⊗

P(A, λ)A⊤


+


P(A, λ)⊗ r⊤

λ


and rλ = b − Axλ.

If we define a mapping

ψ : [A, b] ∈ Rm×n
× Rm

→

A⊤A + λ2L⊤L

−1
A⊤b ∈ Rn (2.6)

then it is easy to see that the definitions in Lemma 1 are equivalent to (2.3)–(2.5), that is,

mReg := m(ψ, [A, b]), cReg := c(ψ, [A, b]), condF
Reg := κ(ψ, [A, b]).

When the coefficient matrix A in (1.1) has some structures, such as Toeplitz, it is reasonable to assume that the
perturbation 1A in (2.1) has the same structure of A. Then 1A is called structured perturbation [29,30] on A. Usually a
structured matrix A ∈ Rm×n can be represented by fewer than mn parameters. For example, an m × n Toeplitz matrix
can be represented by its first column and last row, m + n − 1 parameters. Here we use a mapping to characterize this
relationship. Let S be the set of structured matrices under consideration and a the vector representing a structured matrix
A, then we define a mapping

g : a ∈ Rk
→ A ∈ S.

In order to apply Lemma 1 to define the structured condition numbers for the Tikhonov regularization, we construct a
mapping

φ : [a; b] ∈ Rk+m
→ M


A⊤A + λ2L⊤L

−1
A⊤b ∈ Rl, (2.7)

whereM ∈ Rl×n, l ≤ n, is general. In particular, whenM = eTi , the ith column of the identity matrix, then we are interested
in some particular component of xλ.

Let 1a be the perturbation on a, then the structured perturbation matrix 1A on A in (2.1) is g(a + 1a) − g(a). Now
we are ready to define the structured mixed, componentwise and normwise condition numbers for a linear functional of the
structured Tikhonov regularization,

mReg
S (A, b) := m(φ, [a; b]) = lim

ϵ→0
sup

|1a|≤ϵ|a|
|1b|≤ϵ|b|

∥M1x∥∞

ϵ ∥Mxλ∥∞

,

cRegS (A, b) := c(φ, [a; b]) = lim
ϵ→0

sup
|1a|≤ϵ|a|
|1b|≤ϵ|b|

1
ϵ

M1x
Mxλ


∞

,

κ
Reg
S (A, b) := κ(φ, [a; b]) = lim

ϵ→0
sup

∥[1a;1b]∥2≤ϵ∥[a; b]∥2

∥M1x∥2

ϵ∥Mxλ∥2
,

where1x is defined in (2.2).
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Remark 1. Note that here g is a general mapping, in that it can represent any structure. When the structure in A is linear,
such as symmetric, or Toeplitz, or Hankel, we can choose g a linear mapping, which will be discussed in Section 3. When A
has a nonlinear structure such as Vandermonde or Cauchy, we can choose a nonlinear mapping g to define the structured
condition numbers. Especially we can define the unstructured linear functional condition number for xλ when we restrict S
to be Rm×n, which are generalizations of (2.3)–(2.5), as follows

mReg(A, b) = lim
ϵ→0

sup
|1A|≤ϵ|A|

|1b|≤ϵ|b|

1
ϵ

∥M1x∥∞

∥Mxλ∥∞

, cReg(A, b) = lim
ϵ→0

sup
|1A|≤ϵ|A|

|1b|≤ϵ|b|

1
ϵ

M1x
Mxλ


∞

,

κReg(A, b) = lim
ϵ→0

sup
∥[1A,1b]∥2≤ϵ∥[A,b]∥2

∥M1x∥2

ϵ∥Mxλ∥2
.

WhenM = In, the above definitions reduce to (2.3)–(2.5).

Finally, we give the well-known Banach lemma, which will be useful in Section 3.

Lemma 2. Let E ∈ Rn×n and ∥ · ∥ be any norm on Rn×n, if ∥E∥ < 1, then In + E is nonsingular and its inverse can be expressed
by

(In + E)−1
= In − E + O(∥E∥

2).

2.2. Statistical condition estimation

In the SCE, a small random perturbation is introduced to the input, and the change in the output, by an appropriate
scaling, is measured as a condition estimate. Explicit bounds on the probability of the accuracy of the estimate exist [37].
The idea of SCE can be illustrated by a general real-valued function: f : Rp

→ R, and we are interested in the sensitivity at
some input vector x. By the Taylor theorem we have

f (x + δd)− f (x) = δ(Df (x))⊤d + O(δ2),

where δ is a small scalar, ∥d∥2 = 1 and Df (x) is the Fréchet derivative of f at x. Note that the quantity (Df (x))⊤d (denoted
by Df (x; d)) is just the directional derivative of f with respect to x at the direction d. It is easy to see that up to the first order
in δ,

|f (x + δd)− f (x)| ≈ δDf (x; d),
then the local sensitivity can be measured by ∥Df (x)∥2. The condition numbers of f at x are mainly determined by the norm
of the gradient Df (x) [37]. According to [37], if we select d uniformly and randomly from the unit p-sphere Sp−1 (denoted
d ∈ U(Sp−1)), then the expectation E(|Df (x; d)|/ωp) is ∥Df (x)∥2, where ωp is the Wallis factor. In practice, the Wallis factor
can be approximated accurately [37] by

ωp ≈


2

π

p −

1
2

 .
Therefore, we can use

ν =
|Df (x; d)|
ωp

as a condition estimator, which can estimate ∥Df (x)∥2 with high probability for the function f at x (see [37] for details), for
example,

Prob


∥Df (x)∥2

γ
≤ ν ≤ γ ∥Df (x)∥2


≥ 1 −

2
πγ

+ O


1
γ 2


,

for γ > 1. We can use multiple samples of d, denoted dj, to increase the accuracy [37]. The t-sample condition estimation
is given by

ν(k) =
ωt

ωp


|Df (x; d1)|2 + |Df (x; d2)|2 + · · · + |Df (x; dt)|2,

where [d1, d2, . . . , dt ] is orthonormalized after d1, d2, . . . , dt are selected uniformly and randomly from U(Sp−1). The
accuracy of ν(2) is given by

Prob


∥∇f (x)∥2

γ
≤ ν(2) ≤ γ ∥∇f (x)∥2


≈ 1 −

π

4γ 2
, γ > 1.

Usually, a few samples are sufficient for good accuracy. These results can be conveniently generalized to vector- or matrix-
valued functions by viewing f as amap fromRp toRq. The operations vec and unvec can be used to convert betweenmatrices
and vectors, where each of the q entries of f is a scalar-valued function. Evaluating thematrix function at a slightly perturbed
argument yields a local condition estimate for one component of the computed solution.
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3. Linear structures

In this section, we consider the classes L of structured matrices that is a linear subspace of Rm×n. The examples of such
class include Toeplitz and Hankel matrices. We first present a structured perturbation analysis and structured condition
numbers. Then we propose efficient condition number estimators using the power method.

3.1. Condition numbers

Suppose that dim(L) = k, and S1, S2, . . . , Sk form a basis for L. Then for A ∈ L, there is a unique point a = [a1, a2,
. . . , ak]⊤ ∈ Rk such that

A =

k
i=1

aiSi. (3.1)

We write A = g(a). Since A is determined by a, we consider the perturbation 1a ∈ Rk on a. Then we denote 1A = g(a +

1a)− g(a) = g(1a), since g is linear.

Lemma 3. The Fréchet derivative Dφ([a; b]) of function φ defined in (2.7) is given by

Dφ([a; b]) = MP(A, λ)

v1, v2, . . . , vk, A⊤


, (3.2)

where vi = −A⊤Sixλ + S⊤

i rλ for i = 1, 2, . . . , k.

Proof. Let 1A = g(1a) and 1b be perturbations on A = g(a) and b respectively. Firstly, denoting A = (A + 1A)⊤(A +

1A)+ λ2L⊤L and recalling that P(A, λ) = (A⊤A + λ2L⊤L)−1, we have

A =

A⊤A + λ2L⊤L


+


A⊤(1A)+ (1A)⊤A


+ (1A)⊤(1A)

=

A⊤A + λ2L⊤L

 
In + P(A, λ)


A⊤(1A)+ (1A)⊤A


+ P(A, λ)


(1A)⊤(1A)


.

If ∥1A∥ is sufficiently small, then
P(A, λ) A⊤(1A)+ (1A)⊤A + (1A)⊤(1A)

 < 1, from Lemma 2, A is nonsingular and
its inverse

A−1
=


In + P(A, λ)


A⊤(1A)+ (1A)⊤A


+ P(A, λ)


(1A)⊤(1A)

−1
P(A, λ)

= P(A, λ)− P(A, λ)

A⊤(1A)+ (1A)⊤A


P(A, λ)+ O(∥1A∥

2), (3.3)

since
A⊤(1A)+ (1A)⊤A

 = O(∥1A∥) and
(1A)⊤(1A)

 = O(∥1A∥
2). From (2.2), (3.3) and xλ = P(A, λ)A⊤b, after

some algebraic manipulation, we have

1x = P(A, λ)

A⊤(1b)+ (1A)⊤(b − Axλ)− A⊤(1A)xλ


+ O(∥1A∥

2)+ O(∥1A∥ ∥1b∥).

Omitting the second and higher order terms and applying the third equation in (1.5), we have

1x ≈ P(A, λ)

A⊤(1b)+ (1A)⊤(b − Axλ)− A⊤(1A)xλ


= P(A, λ)


−(x⊤

λ ⊗ A⊤)+


r⊤

λ ⊗ In

Π


vec(1A)+ A⊤(1b)


= P(A, λ)


−(x⊤

λ ⊗ A⊤)+ (In ⊗ r⊤

λ )

vec(1A)+ A⊤(1b)


, (3.4)

recalling that rλ = b − Axλ.
Since1A is a structured perturbation on A, then1A = g(1a), i.e., there exist parameters1a1,1a2, . . . ,1ak such that

1A =
k

i=11aiSi. Denote1a = [1a1,1a2, . . . ,1ak]⊤. From (3.4), we have

φ([a +1a; b +1b])− φ([a; b]) ≈ MP(A, λ)


−(x⊤

λ ⊗ A⊤)+ (In ⊗ r⊤

λ )

[vec(S1), . . . , vec(Sk)]1a + A⊤(1b)


= MP(A, λ)


−A⊤S1xλ + S⊤

1 rλ, . . . ,−A⊤Skxλ + S⊤

k rλ, A⊤

1v,

where1v = [1a;1b]. By the definition of the Fréchet derivative, the lemma then can be proved. �

Theorem 1. Let A ∈ L, b ∈ Rm and xλ =

A⊤A + λ2L⊤L

−1 A⊤b = P(A, λ)A⊤b be the Tikhonov regularized solution of (1.1).
Then we obtain the structured normwise, componentwise, and mixed condition numbers:

mReg
L (A, b) =

 k
i=1

|ai|
MP(A, λ)


A⊤Sixλ − S⊤

i rλ
 +

MP(A, λ)A⊤
 |b|


∞

∥Mxλ∥∞

,
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cRegL (A, b) =


k

i=1
|ai|

MP(A, λ)

A⊤Sixλ − S⊤

i rλ
 +

MP(A, λ)A⊤
 |b|

Mxλ


∞

,

κ
Reg
L (A, b) =

MP(A, λ)

S⊤

1 rλ − A⊤S1xλ, . . . , S⊤

k rλ − A⊤Skxλ, A⊤


2


a
b


2

∥Mxλ∥2
.

Proof. From Lemmas 1 and 3, we have

mReg
L (A, b) =

 |Dφ ([a; b])|

|a|
|b|


∞

∥xλ∥∞

=

|MP(A, λ) [v1; v2; . . . ; vk]| |a| +
MP(A, λ)A⊤

 |b|


∞

∥Mxλ∥∞

=

 k
i=1

|ai|
MP(A, λ)


A⊤Sixλ − S⊤

i rλ
 +

MP(A, λ)A⊤
 |b|


∞

∥Mxλ∥∞

.

Similarly, we can obtain explicit expressions of the structured componentwise and normwise condition numbers. �

When {Sk} is the canonical basis for Rm×n in Theorem 1, we have the following compact forms of the unstructured
condition numbers in Remark 1 formReg(A, b), cReg(A, b) and κReg(A, b).

Theorem 2. As stated before, we have the following expressions

mReg(A, b) =

MP(A, λ)

(In ⊗ r⊤

λ )− (x⊤
⊗ A⊤)

 vec(|A|)+
MP(A, λ)A⊤

 |b|


∞

∥Mxλ∥∞

,

cReg(A, b) =


MP(A, λ)


(In ⊗ r⊤

λ )− (x⊤
⊗ A⊤)

 vec(|A|)+
MP(A, λ)A⊤

 |b|
Mxλ


∞

,

κReg(A, b) =

MP(A, λ)

(In ⊗ r⊤

λ )− (x⊤
⊗ A⊤), A⊤


2


∥A∥

2
F + ∥b∥2

2

∥Mxλ∥2
.

Proof. For the expression of κReg
L (A, b) given in Theorem 1, let {Sij = ei(m)e

(n)
j

⊤

} be the canonical basis for Rm×n, where
ej(n) is the jth column of the identity matrix In, i = 1, 2, . . . ,m and j = 1, 2, . . . , n. Then we have the following simplified
expression:

−S⊤

ij rλ + A⊤Sijxλ = −ej(n)rλ,(i) + A⊤ei(m)xλ,(j),

where rλ,(i) and xλ,(j) are respectively the ith and jth components of rλ and xλ. Now, fixing j, we get
−ej(n)rλ,(1) + A⊤e1(m)xλ,(j), . . . ,−ej(n)rλ,(n) + A⊤en(m)xλ,(j)


= −ej(n)r⊤

λ + xλ,(j)A⊤,

which implies that
−S⊤

11rλ + A⊤S11xλ, . . . ,−S⊤

m1rλ + A⊤Sm1xλ,−S⊤

12rλ + A⊤S12xλ . . . ,−S⊤

mnrλ + A⊤Smnxλ


=

−(e1(n) ⊗ r⊤

λ )+ xλ,(1)A⊤,−(e2(n) ⊗ r⊤

λ )+ xλ,(2)A⊤, . . . ,−(en(n) ⊗ r⊤

λ )+ xλ,(n)A⊤


=

−(In ⊗ r⊤

λ )+ (x⊤
⊗ A⊤)


.

Applying the above equation to the expression of κReg
L (A, b) in Theorem 1, we prove the third statement. The expressions of

mReg(A, b) and cReg(A, b) can be obtained similarly. �

Remark 2. If we choose M = In, then mReg(A, b), cReg(A, b) and κReg(A, b) respectively reduce to the expressions of
mReg, cReg and condF

Reg in (2.3)–(2.5).
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How are the structured condition numbers compared to their unstructured counterparts? The cases of nonsingular
matrix inversion and linear systems have been investigated in [25,26,29,30,45] and the references therein. In the following
proposition, we will show thatmReg

L (A, b) is smaller thanmReg(A, b). The same is true for the componentwise and normwise
condition numbers. Before that we need the following lemma for rectangular structured matrices. Its proof is omitted since
it is similar to that of [29, Lemma 6.3].

Lemma 4. When A is a Toeplitz or Hankel matrix, and A =
k

i=1 aiSi, then

∥a∥2 ≤
√
2∥A∥F .

Proposition 1. Suppose that the basis {S1, S2, . . . , Sk} for L satisfies |A| =
k

i=1 |ai| |Si| for any A ∈ L in (3.1), then

mReg
L (A, b) ≤ mReg(A, b) and cRegL (A, b) ≤ cReg(A, b).

For the structured normwise condition number, when A is a Toeplitz or Hankel matrix, we have

κ
Reg
L (A, b) ≤

√
2max


max

i=1,2,...,k
∥Si∥F , 1


κReg(A, b).

Proof. From Theorem 1, using the monotonicity of the infinity norm, we have k
i=1

|ai|
MP(A, λ)


A⊤Sixλ − S⊤

i rλ
 +

MP(A, λ)A⊤
 |b|


∞

=
MP(A, λ)


A⊤S1xλ − S⊤

1 rλ, . . . , A⊤Skxλ − S⊤

k rλ
 |a| +

MP(A, λ)A⊤
 |b|


∞

=

MP(A, λ)

A⊤S1xλ − S⊤

1 rλ, . . . , A⊤Skxλ − S⊤

k rλ, A⊤
 |a|

|b|


∞

=

MP(A, λ)

(x⊤

⊗ A⊤)− (In ⊗ r⊤

λ )

vec(S1), . . . , vec(Sk), A⊤

 |a|
|b|


∞

≤

MP(A, λ)

(x⊤

⊗ A⊤)− (In ⊗ r⊤

λ )

vec(S1), . . . , vec(Sk)

 , MP(A, λ)A⊤
 

|a|
|b|


∞

=

MP(A, λ)

(x⊤

⊗ A⊤)− (In ⊗ r⊤

λ )

vec(S1), . . . , vec(Sk), A⊤

 |a|
|b|


∞

≤

MP(A, λ)

(x⊤

⊗ A⊤)− (In ⊗ r⊤

λ )
 k

i=1

|ai| |vec(Si)| +
MP(A, λ)A⊤

 |b|


∞

=
MP(A, λ)


(In ⊗ r⊤

λ )− (x⊤
⊗ A⊤)

 vec(|A|)+
MP(A, λ)A⊤

 |b|


∞
,

for the last equality we use the assumption |A| =
k

i=1 |ai| |Si|. With the above inequality, and the expressions ofmReg
L (A, b),

mReg(A, b), cRegL (A, b), cReg(A, b), it is easy to prove the first two inequalities in this proposition.
When A is a Toeplitz or Hankel matrix, the standard basis for the Toeplitz matrix subspace or the Hankel matrix subspace

is orthogonal under the inner product ⟨B1, B2⟩ = trace

B⊤

1 B2


= [vec(B1)]
⊤vec(B2) for B1, B2 ∈ Rm×n. It is easy to deduce

that MP(A, λ)

S⊤

1 rλ − A⊤S1xλ, . . . , S⊤

k rλ − A⊤Skxλ, A⊤


2

=
MP(A, λ)


(x⊤

⊗ A⊤)− (In ⊗ r⊤

λ )

vec(S1), . . . , vec(Sk), A⊤


2

=

MP(A, λ)

(x⊤

⊗ A⊤)− (In ⊗ r⊤

λ )

, A⊤

 
[vec(S1), . . . , vec(Sk)] 0

0 Im


2

≤
MP(A, λ)


(x⊤

⊗ A⊤)− (In ⊗ r⊤

λ )

, A⊤


2


[vec(S1), . . . , vec(Sk)] 0

0 Im


2

=
MP(A, λ)


(x⊤

⊗ A⊤)− (In ⊗ r⊤

λ )

, A⊤


2 max


max

i=1,2,...,k
∥Si∥F , 1


,
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where for the last equation we used the orthogonality of the basis {Si}. So from Lemma 4,

κ
Reg
L (A, b) ≤ max


max

i=1,2,...,k
∥Si∥F , 1

 MP(A, λ)

x⊤

⊗ A⊤

−


In ⊗ r⊤

λ


, A⊤


2


a
b


2

∥Mxλ∥2

≤ max


max
i=1,2,...,k

∥Si∥F , 1
 MP(A, λ)


x⊤

⊗ A⊤

−


In ⊗ r⊤

λ


, A⊤


2


2 ∥A∥

2
F + ∥b∥2

2

∥Mxλ∥2
,

which completes the proof of this proposition. �

Remark 3. Clearly, the assumption |A| =
k

i=1 |ai| |Si| in Proposition 1 is satisfied for Toeplitz and Hankel matrices.

3.2. Condition number estimators

Efficiently estimating condition numbers is crucial in practice. The condition number κReg
L (A, b), for example, involves

the spectral norm of the l × (m + k) matrix Dφ([a; b]), which can be expensive to compute when m or k is large. The
power method can be used for fast condition number estimation [36, page 289]. Its major computation is the matrix–vector
multiplications Dφ([a; b])h1 and Dφ([a; b])⊤h2 with h1 ∈ Rm+k and h2 ∈ Rl. To consider Dφ([a; b])⊤h, for h ∈ Rl and vi
defined in Lemma 3, denoting D = MP(A, λ)A⊤ and using P(A, λ)⊤ = P(A, λ), (1.5) andΠ⊤

= Π−1, we have

v⊤

i P(A, λ)M
⊤h = r⊤

λ SiP(A, λ)M⊤h − x⊤

λ S
⊤

i AP(A, λ)M⊤h

= vec

r⊤

λ SiP(A, λ)M⊤h − x⊤

λ S
⊤

i D⊤h


=

h⊤MP(A, λ)


⊗ r⊤

λ


vec(Si)−


(h⊤D)⊗ x⊤

λ


vec(S⊤

i )

=

h⊤MP(A, λ)


⊗ r⊤

λ


vec(Si)−


(h⊤D)⊗ x⊤

λ


Πvec(Si)

= vec(Si)⊤

(P(A, λ)M⊤h)⊗ rλ −Π⊤


D⊤h ⊗ xλ


= vec(Si)⊤Π−1 

Πvec(rλh⊤MP(A, λ))− vec(xλh⊤D)


= [Πvec(Si)]⊤vec

P(A, λ)M⊤hr⊤

λ − xλh⊤D


=

vec(S⊤

i )
⊤

vec


P(A, λ)M⊤hr⊤

λ − xλh⊤D


= trace

Si


P(A, λ)M⊤hr⊤

λ − xλh⊤D

, (3.5)

where we applied [vec(A1)]
⊤vec(A2) = trace


A⊤

1 A2

for the same dimensional matrices A1 and A2 in the last equality. It

follows from (3.5) that

Dφ([a; b])⊤h =

MP(A, λ)


v1, . . . , vk, A⊤

⊤
h =


v⊤

1 P(A, λ)M
⊤h

...

v⊤

k P(A, λ)M
⊤h

D⊤h

 =


a(h)
D⊤h


, (3.6)

where a(h) = [trace

S1(P(A, λ)M⊤hr⊤

λ − xλh⊤D)

, . . . , trace


Sk(P(A, λ)M⊤hr⊤

λ − xλh⊤D)

]
⊤. It leads to the following

proposition.

Proposition 2. The adjoint operator of Dφ([a; b]), with the scalar products a⊤

1 a2 + b⊤

1 b2 and h⊤h in Rk+m and Rl respectively,
is

Dφ([a; b])∗ : h ∈ Rl
→


a(h), D⊤h


∈ Rk

× Rm. (3.7)

Furthermore, when l = 1,

κ
Reg
L (A, b) =


k

i=1
s2i + ∥D∥

2
2


a
b


2

∥Mxλ∥2
, (3.8)

where si = trace

Si


P(A, λ)M⊤r⊤

λ − xλD

, i = 1, 2, . . . , k.



H.-A. Diao et al. / Journal of Computational and Applied Mathematics 308 (2016) 276–300 285

Proof. For any (1a,1b) ∈ Rk
× Rm and h ∈ Rl, from Lemma 3 and (3.6), we have

⟨h,Dφ([a; b]) · (1a,1b)⟩ = h⊤ (Dφ([a; b]) · (1a,1b)) = h⊤Dφ([a; b])

1a
1b


= (Dφ([a; b])⊤h)⊤


1a
1b


= a(h)⊤(1a)+ (D⊤h)⊤(1b) = ⟨Dφ([a; b])∗ · h, (1a,1b)⟩,

which proves the first part. For the second part, noticing that

∥Dφ([a; b])∥2 = ∥Dφ([a; b])⊤∥2 = max
h≠0


a(h)⊤, (D⊤h)⊤

⊤

2

∥h∥2

and using (3.6), where h ∈ R since l = 1, we can show that

∥Dφ([a; b])∥2 =

 k
i=1

s2i + ∥D∥
2
2,

which completes the proof. �

Remark 4. When l = 1,we compute the conditioning of the ith component of the solution. In that caseM is the ith canonical
vector of R1×n and, in (3.8), P(A, λ)M⊤ is the ith column of P(A, λ) and D is the ith row of P(A, λ)A⊤.

Using (3.2) and (3.6), we can now apply the iteration of the power method [36, page 289] in Algorithm 1 to compute the
normwise condition number κReg

L (A, b). In this algorithm, we assume that xλ, rλ and λ are available. When the GSVD (1.4)
of (A, L) is available, a compact form of P(A, λ) is given by

P(A, λ) = QR−1

(Σ2

+ λ2S2)−1 0
0 In−p


R−⊤Q⊤, (3.9)

which can be used to reduce the computational cost of the estimators of the normwise,mixed and componentwise condition
numbers.

Algorithm 1 The power method for estimating κReg
L (A, b)

Select initial vector h ∈ Rl.
for p = 1, 2, . . . do

Using (3.9), calculate P(A, λ)M⊤hr⊤

λ − xλh⊤D. From (3.6), denote āp = a(h) and b̄p = D⊤h.
Calculate ν =

[āp; b̄p]

2, let ap = āp/ν and bp = b̄p/ν.

Let Ap =

k
i=1

ap,(i)Si, where ap,(i) is the ith component of ap.

Using (3.2) and (3.9), compute h = MP(A, λ)

A⊤bp + A⊤

p rλ − A⊤Apxλ

.

end for
κ
Reg
L (A, b) =

√
ν.

The quantity ν computed by Algorithm 1 is an approximation of the largest eigenvalue of Dφ([a; b])Dφ([a; b])⊤. When
there is an estimate of the corresponding dominant eigenvector of Dφ([a; b])Dφ([a; b])⊤, the initial h can be set to this
estimate, but inmany implementationsh is initialized as a randomvector. The algorithm is terminatedby a sufficient number
of iterations or by evaluating the difference between two consecutive values of ν and comparing it to a tolerance given by
the user.

For the mixed and componentwise condition numbers, we note that

mReg
L (A, b) =

MP(A, λ)

v1, . . . , vk, A⊤


Diag([a; b])


∞

∥Mxλ∥∞

=
∥Dφ([a; b])Diag([a; b])∥∞

∥Mxλ∥∞

,

cRegL (A, b) =

MP(A, λ)

v1, . . . , vk, A⊤


Diag([a; b])

Mxλ


∞

=
∥Dφ([a; b])Diag([a; b])∥∞

∥Mxλ∥∞

.

The above equations show that we only need to estimate the infinity norm of Dφ([a; b])Diag([a; b]). Since we have the
adjoint operator of Dφ([a; b]) in (3.7), the power method for estimating one norm [36, page 292] can be used to estimate
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mReg
L (A, b) as shown in Algorithm 2. Also, note that, from (3.6), for h ∈ Rl,

(Dφ([a; b])Diag([a; b]))⊤ h = Diag([a; b])

a(h)
D⊤h


=


a ⊙ a(h)
b ⊙ (D⊤h)


, (3.10)

where ‘⊙’ denotes the Hadamard (componentwise) product. In Algorithm2, sign(a) denotes the vector obtained by applying
the sign function to each component of the vector a. We can estimate cRegL (A, b) similarly.

Algorithm 2 The power method for estimatingmReg
L (A, b)

Select initial vector h = l−1e ∈ Rl.
for p = 1, 2, . . . do

Using (3.9), calculate P(A, λ)M⊤hr⊤

λ − xλh⊤D. From (3.7), compute a(h) and D⊤h.
Using (3.10), denote αp = a ⊙ a(h) and βp = b ⊙ (D⊤h).
Let āp = sign


αp


and b̄p = sign


βp


.

Compute ap = a ⊙ āp, bp = b ⊙ b̄p.

Form Ap =

k
i=1

ap,(i)Si, where ap = [ap,(1), ap,(2), . . . , ap,(k)]⊤.

Using (3.2) and (3.9), compute z = MP(A, λ)(A⊤bp + A⊤
p rλ − A⊤Apxλ).

if ∥z∥∞ ≤ h⊤z then

γ =


αp
βp


1

quit
end if
h = e(l)j , where |zj| = ∥z∥∞ (smallest such j).

end for
mReg

L (A, b) = γ .

The main computational cost of Algorithm 1 or Algorithm 2 is the computation of solving several nonsingular triangular
systemswith the coefficientmatrices R and R⊤. If we have theGSVDof (A, L) available, the computational cost is insignificant
compared with the cost of solving the Tikhonov regularized problem. Thus, the estimators can be integrated into a GSVD
based Tikhonov solver without compromising the overall computational complexity. Our methods can be readily modified
for fast unstructured condition number estimation, which is not considered in [15].

4. Nonlinear structures

In this section, we present the structured condition numbers of matrices with nonlinear structures, namely the
Vandermonde matrices and the Cauchy matrices.

4.1. Vandermonde matrices

Let VdM be the class ofm×n Vandermondematrices. If V = [vij] ∈ VdM, then there exists a = [a0, a1, . . . , an−1]
⊤

∈ Rn

such that, for all i = 0, 1, . . . ,m − 1 and j = 0, 1, . . . , n − 1, vij = aij. We write V = g(a). Let 1a = (1a0,
1a1, . . . ,1an−1)

⊤
∈ Rn be the perturbation on a. Then we define the first order term1V of g(a +1a)− g(a).

Lemma 5 ([10, Lemma 6]). An explicit expression of 1V is

1V = V1Diag(1a), where V1 = Diag(c)


0
V (1 : m − 1, :)


, c = [0, 1, . . . ,m − 1]⊤.

Here V (1 : m − 1, :) is the (m − 1)× n submatrix of V consisting of the first m − 1 rows of V .

Lemma 6. The Fréchet derivative Dφ([a; b]) of function φ defined in (2.7) is

Dφ([a; b]) = MP(V , λ)

−V⊤V1Diag(xλ)+ Diag(y), V⊤


,

where y = V⊤

1 rλ and rλ = b − Vxλ.
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Proof. It follows from (3.4) and Diag(a)z = Diag(z)a for vectors a and z of the same dimension,

φ([a +1a; b +1b])− φ([a; b]) ≈ MP(V , λ)


−x⊤

λ ⊗ V⊤
+ In ⊗ r⊤

λ


vec(1V )+ V⊤(1b)


= MP(V , λ)


−x⊤

λ ⊗ V⊤
+ (r⊤

λ ⊗ In)Π

vec(1V )+ V⊤(1b)


= MP(V , λ)


−V⊤(1V )xλ + (1V )⊤rλ


+ V⊤(1b)


= MP(V , λ)


−V⊤V1Diag(1a)xλ + Diag(1a)V⊤

1 rλ

+ V⊤(1b)


= MP(V , λ)


−V⊤V1Diag(xλ)+ Diag(y), V⊤

 
1a
1b


,

which completes the proof of this lemma. �

From Lemmas 1 and 6, we have the following theorem of structured condition numbers of the Vandermonde matrix.

Theorem 3. Let V ∈ VdM, b ∈ Rm and xλ =

V⊤V + λL⊤L

−1 V⊤b = P(V , λ)V⊤b be the Tikhonov regularized solution
of (1.1). Recall that y = V⊤

1 rλ, then the structured condition numbers of the Vandermonde matrix are:

mReg
VdM(V , b) =

MP(V , λ)

V⊤V1Diag(xλ)− Diag(y)

 |a| +
P(V , λ)V⊤

 |b|


∞

∥Mxλ∥∞

,

cRegVdM(V , b) =


MP(V , λ)


V⊤V1Diag(xλ)− Diag(y)

 |a| +
P(V , λ)V⊤

 |b|
Mxλ


∞

,

κ
Reg
VdM(V , b) =

MP(V , λ)

Diag(y)− V⊤V1Diag(xλ), V⊤


2


a
b


2

∥Mxλ∥2
.

In particular, when l = 1,

κ
Reg
VdM(V , b) =

y ⊙

P(V , λ)M⊤


− xλ ⊙


V⊤

1 D⊤

V

2
2 + ∥DV∥

2
2


a
b


2

∥Mxλ∥2
.

Analogous to Proposition 2, the adjoint operator of Dφ([a; b]), using the scalar products a⊤

1 a2 + b⊤

1 b2 and h⊤h on Rm+n

and Rl respectively, is

Dφ([a; b])∗ : h ∈ Rl
→ [y ⊙ (P(V , λ)M⊤h)− xλ ⊙ (V⊤

1 D⊤

V h) D
⊤

V h] ∈ Rn
× Rm,

where DV = MP(V , λ)V⊤. The above expressions can be used to estimatemReg
VdM(V , b), c

Reg
VdM(V , b) and κ

Reg
VdM(V , b)with lower

dimensional input. We can devise algorithms similar to Algorithms 1 and 2 for estimating the condition numbers.

4.2. Cauchy matrices

Let Cauchy be the class of m × n Cauchy matrices. If C = [cij] ∈ Cauchy, then there exist u = [u1, u2, . . . , um]
⊤

∈ Rm

and v = [v1, v2, . . . , vn]
⊤

∈ Rn, with ui ≠ vj for i = 1, 2, . . . ,m, j = 1, 2, . . . , n such that, for all i ≤ m and j ≤ n,

cij =
1

ui − vj
.

Ifw = [u; v] ∈ Rm+n, then C = g(w). Let1w = [1u;1v] = [1u1, . . . ,1um,1v1, . . . ,1vn]
⊤

∈ Rm+n be the perturbation
onw. The first order term1C in g(w +1w)− g(w) is given by [10, Lemma 9]

1C ≈


1ui −1vj

(ui − vj)2


= Diag(1u)C1 − C1Diag(1v) ∈ Rm×n,

where C1 = [1/(ui − vj)
2
] ∈ Rm×n.

Lemma 7. The Fréchet derivative Dφ([w; b]) of function φ defined in (2.7) is given by

Dφ([w; b]) = MP(C, λ)

Cu, Cv, C⊤


,

where Cu = C⊤

1 Diag(rλ)− C⊤Diag(z1), Cv = C⊤C1Diag(xλ)− Diag(z2), z1 = C1xλ, z2 = C⊤

1 rλ and rλ = b − Cxλ.
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Proof. Following the proof of Lemma 6, we can show that

φ([w +1w; b +1b])− φ([w; b])

= MP(C, λ)

C⊤

1 Diag(rλ)− C⊤Diag(z1), C⊤C1Diag(xλ)− Diag(z2), C⊤
 
1w
1b


.

Then the Fréchet derivative of φ at [w; b] is

Dφ[w; b] = MP(C, λ)

C⊤

1 Diag(rλ)− C⊤Diag(z1), C⊤C1Diag(xλ)− Diag(z2), C⊤

.

Theorem 4. Let C ∈ Cauchy, b ∈ Rm and xλ =

C⊤C + λL⊤L

−1 C⊤b = P(C, λ)C⊤b be the solution of the Tikhonov
regularization problem (1.1), then the structured condition numbers are:

mReg
Cauchy(C, b) =

|MP(C, λ)Cu| |u| + |MP(C, λ)Cv| |v| +
MP(C, λ)C⊤

 |b|


∞

∥Mxλ∥∞

,

cRegCauchy(C, b) =

 |MP(C, λ)Cu| |u| + |MP(C, λ)Cv| |v| +
MP(C, λ)C⊤

 |b|
Mxλ


∞

,

κ
Reg
Cauchy(C, b) =

MP(C, λ)

Cu, Cv, C⊤


2


w
b


2

∥Mxλ∥2
.

In particular, when l = 1,

κ
Reg
Cauchy(C, b) =


t2 + s2 + ∥DC∥

2
2

∥Mxλ∥2


u
v
b


2

,

where t =
rλ ⊙


C1P(C, λ)M⊤


− z1 ⊙ (D⊤

C )

2 and s =

xλ ⊙ (C⊤

1 D⊤

C )− z2 ⊙

P(C, λ)M⊤


2.

Similar to the case of the Vandermondematrix, for the Cauchymatrix, the adjoint operator ofDφ([w; b]), using the scalar
products u⊤

1 u2 + v⊤

1 v2 + b⊤

1 b2 and h⊤h on R2m+n and Rl respectively, is

Dφ([w; b])∗ : h ∈ Rl
→


u(h) v(h) D⊤

V h


∈ Rm
× Rn

× Rm,

where u(h) = rλ ⊙

C1P(C, λ)M⊤h


− z1 ⊙ (D⊤

C h), v(h) = xλ ⊙ (C⊤

1 D⊤

C h)− z2 ⊙

P(C, λ)M⊤h


and DC = MP(C, λ)C⊤.

In particular, when l = 1, we have

κ
Reg
Cauchy(V , b) =


t2 + s2 + ∥DC∥

2
2

∥Mxλ∥2


u
v
b


2

,

where t =
rλ ⊙


C1P(C, λ)M⊤


− z1 ⊙ (D⊤

C )

2 and s =

xλ ⊙ (C⊤

1 D⊤

C )− z2 ⊙

P(C, λ)M⊤


2.

Using the above expressions, the algorithms similar to Algorithms 1 and 2 for estimating mReg
Cauchy(C, b), c

Reg
Cauchy(C, b) and

κ
Reg
Cauchy(C, b) can be obtained.

5. SCE for the Tikhonov regularization problem

In this section we use the SCE to devise algorithms for the condition estimations of the structured and unstructured
Tikhonov regularization problem, both the normwise and componentwise cases are considered.

5.1. SCE for normwise perturbations

For the unstructured Tikhonov regularization problem, we are interested in the condition estimation for the function
ψ([A, b]) at the point [A, b] defined in (2.6). Let [A b] be perturbed to [A + δE b + δf ] in the normal equations (1.3), where
δ ∈ R, E ∈ Rm×n and f ∈ Rm and [E f ] has the Frobenius norm equal to one. According to Section 2.2, we first need
to evaluate the directional derivative Dψ([A, b]; [E, f ]) of ψ([A, b]) with respect to [A, b] in the direction [E, f ]. From the
proof of Lemma 3, we have

Dψ([A, b]; [E, f ]) = P(A, λ)

A⊤f + E⊤rλ − A⊤Exλ


.
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When we have the GSVD (1.4) of (A, L), it is easy to deduce that

Dψ([A, b]; [E, f ]) = QR−1

(Σ2

+ λ2S2)−1 0
0 In−p


R−⊤Q⊤


A⊤f + E⊤rλ − A⊤Exλ


. (5.1)

With the above result, we now use the results of Section 2.2 to obtain the SCE-basedmethods for estimating the condition of
the Tikhonov regularization problems. Both the normwise and componentwise perturbations are considered. Algorithm 3
computes an estimation of the normwise condition number. Inputs to the method are the matrices A ∈ Rm×n, L ∈ Rp×n, the
vector b ∈ Rm, the computed solution xλ and the parameter λ. The output is an estimation κ (k)SCE of the normwise condition
number condF

Reg. The method requires the GSVD (1.4) of (A, L), which is generally computed when solving the Tikhonov
regularization problem. The integer k ≥ 1 refers to the number of perturbations of input data. Note that when k = 1, there
is no need to orthonormalize the set of vectors in Step 1 of the method. In the following the standard normal distribution is
denote by N (0, 1), and for B = (bij) ∈ Rp×q, |B|2 = (|bij|2) ∈ Rp×q and

√
|B| = (


|bij|) ∈ Rp×q.

Algorithm 3 SCE for the Tikhonov regularization problem under normwise perturbations
1. Generate matrices [E1, f1], [E2, f2], . . . , [Ek, fk] whose entries are random numbers in N (0, 1), where Ei ∈ Rm×n, fi ∈

Rm. Use Gram–Schmidt orthogonalization process for the matrix
vec(E1) vec(E2) · · · vec(Ek)

f1 f2 · · · fk


and form an orthonormalmatrix [q1, q2, . . . , qk]. Each qi can be converted into the desiredmatrices [Ei,fi]with the unvec
operation.

2. Calculate Dψ([A, b]; [Ei,fi]) by (5.1), i = 1, 2, . . . , k.
3. Compute the absolute condition vector

κ
(k)
abs :=

ωk

ωp

Dψ([A, b]; [E1,f1])2 + · · · +
Dψ([A, b]; [Ek,fk])2.

4. Compute the normwise condition estimation:

κ
(k)
SCE :=

κ (k)abs


2
∥[A, b]∥F

||xλ||2
.

5.2. SCE for componentwise perturbations

Componentwise perturbations are relative to the magnitudes of the corresponding entries in the input arguments
(e.g., the perturbation1A satisfies |1A| ≤ ϵ|A|, see (2.3)). These perturbations may arise from input error or from rounding
error, and hence are the most common perturbations encountered in practice. In fact, most of error bounds in LAPACK are
componentwise since the perturbations of input data are componentwise in real world computing, see [46, section 4.3.2]
for details. We often want to find the condition of a function with respect to componentwise perturbations on inputs. For
the function
ψ([A, b]) =


A⊤A + λ2L⊤L

−1
A⊤b.

SCE is flexible enough to accurately gauge the sensitivity ofmatrix functions subject to componentwise perturbations. Define
the linear function
h([B, d]) = [B, d] ⊙ [A, b], B ∈ Rm×n, d ∈ Rm.

Let E ∈ Rm×(n+1) be the matrix of all ones, then h(E) = [A b] and
h(E + [E, f ]) = [A, b] + h([E, f ]).
We know that h([E, f ]) is a componentwise perturbation on [A, b], and h converts a general perturbation E into
componentwise perturbations on [A, b]. Therefore, to obtain the sensitivity of the solution with respect to relative
perturbations, we simply evaluate the Fréchet derivative of
ψ([A, b]) = ψ(h(E))
with respect to E in the direction [E, f ], which is
D(ψ ◦ h) (E; [E, f ]) = Dψ(h(E))Dh (E; [E, f ]) = Dψ([A, b])h ([E, f ]) = Dψ ([A, b]; h ([E, f ])) ,
since h is linear. Thus, to estimate the condition of the Tikhonov regularization solution xλ when perturbations are
componentwise, we first generate the perturbations E and f and multiply them componentwise by the entries of A and
b, respectively. The remaining steps are the same as the corresponding steps in Algorithm 3, as shown in Algorithm 4.
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Algorithm 4 SCE for the Tikhonov regularization problem under componentwise perturbations
1. Generate matrices [E1, f1], [E2, f2], . . . , [Ek, fk] whose entries are random numbers in N (0, 1), where Ei ∈ Rm×n, fi ∈

Rm. Use Gram–Schmidt orthogonalization process for the matrix
vec(E1) vec(E2) · · · vec(Ek)

f1 f2 · · · fk


to form an orthonormal matrix [q1, q2, . . . , qk]. Each qi can be converted into the desired matrices [Ei fi] with the unvec
operation.

2. For i = 1, . . . , k, set [Ei, fi] to the componentwise product of [A, b] and [Ei, fi].
3. Calculate Dψ([A, b]; [Ei,fi]) by (5.1), i = 1, 2, . . . , k.
4. Compute the absolute condition vector

c(k)abs :=
ωk

ωp

Dψ([A, b]; [E1,f1])2 + · · · +
Dψ([A, b]; [Ek,fk])2.

5. The mixed condition estimationm(k)
SCE and componentwise condition estimation c(k)SCE are:

m(k)
SCE :=

c(k)abs


∞

∥xλ∥∞

and c(k)SCE :=

 c(k)abs

xλ


∞

.

5.3. SCE for structured perturbations

The SCE also is flexible for the condition estimation for structured Tikhonov regularization problem. We are interested
in the condition estimation for the function φ defined in (2.7), which defines the general function for structured Tikhonov
regularization problem. Because SCE can estimate the condition of the each component of xλ, we only need to chooseM = In
in (2.7).

The key step in the SCE is the computation of the directional derivative Dφ([a; b]; [e; f ]) of φ([a; b]) with respect to
[a; b] in the direction [e; f ], where e ∈ Rk and f ∈ Rm. We have derived the explicit expressions of the Fréchet derivative
Dφ([a; b]) in Lemmas 3, 6 and 7 for a general linear structure, Vandermonde or Cauchy matrix. Based on Lemmas 3, 6 and
7, the three directional derivatives Dφ([a; b]; [e; f ]) are:

Dφ([a; b]; [e; f ]) = P(A, λ)

A⊤f + E⊤rλ − A⊤Exλ


, e = (ei) ∈ Rk, E =

k
i=1

eiSi,

for linear structures,

Dφ([a; b]; [e; f ]) = MP(V , λ)

Diag(y)e − V⊤V1Diag(xλ)e + V⊤f


, e ∈ Rn,

for Vandermonde matrices, and

Dφ([a; b]; [e; f ]) = MP(C, λ)

Cue1 + Cve2 + C⊤f


, e =


e1
e2


∈ Rm+n,

for Cauchy matrices, where V1 is defined in Lemma 5, y = V⊤

1 rλ, Cu and Cv are defined in Lemma 7. Based on those
expressions, we can derive algorithms for structured normwise and componentwise condition estimation. The algorithms
are similar to those of Algorithms 3 and 4, thus are omitted here.

5.4. SCE for large scale linear structured Tikhonov regularization problems

In this subsection we will incorporate the SCE into the computation of the solution for large scale linear structured
Tikhonov regularization problems, which can be used to obtain posterior error estimations for the computed solution.
In many applications, such as image restoration, the proposed mathematical model is given as a large scale Tikhonov
regularization problem with the structured coefficient matrix. The structured matrix includes block circulant matrix with
circulant blocks (BCCB), block Toeplitz matrix with Toeplitz blocks (BTTB), etc., see [16] and references therein. The large
scale structured Tikhonov regularization problem (1.1) is often solved by applying the preconditioned conjugate gradient
(PCG) algorithm to its normal equations (1.3), see [47,48]. Effective preconditioners for BTTB Tikhonov regularization
problems have been proposed [47,49]. The major computational costs of PCG are matrix–vector multiplications. Because
of the structure of the matrix, such as BCCB or BTTB, matrix–vector multiplications can be carried out efficiently via the fast
Fourier transform (FFT) [16].

As discussed in the previous section, the key step in the SCE for the large scales linear structured Tikhonov regularization
problems is the computation of the directional derivativeDφ([a; b]; [e; f ]) of φ([a; b])with respect to [a; b] in the direction
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[e; f ], where e ∈ Rk and f ∈ Rm. Based on Lemma 3, the directional derivatives Dφ([a; b]; [e; f ]) is equivalent to solving the
following positive definite linear system


A⊤A + λ2L⊤L


v = A⊤f + E⊤rλ − A⊤Exλ, e = (ei) ∈ Rk, E =

k
i=1

eiSi. (5.2)

When using PCG for solving the large scale linear structured Tikhonov regularization problems (1.1), a preconditioner is
constructed and used to solve (5.2) via the PCG. In (5.2), when A is BTTB, E is also BTTB. Thus the right side of (5.2) can be
computed efficiently via the FFT. The SCE algorithm for large scale linear structured Tikhonov regularization problems is
given in Algorithm 5.

Algorithm5 SCE for the large scales linear structured Tikhonov regularization problemunder componentwise perturbations
1. Generate matrices [E1, f1], [E2, f2], . . . , [Ek, fk] whose entries are random numbers in N (0, 1), where Ei ∈ Rm×n, fi ∈

Rm. Use Gram–Schmidt orthogonalization process for the matrix
vec(E1) vec(E2) · · · vec(Ek)

f1 f2 · · · fk


to form an orthonormal matrix [q1, q2, . . . , qk]. Each qi can be converted into the desired matrices [Ei fi] with the unvec
operation.

2. For i = 1, . . . , k, set [Ei, fi] to the componentwise product of [A, b] and [Ei, fi].
3. Implement PCG to solve

A⊤A + λ2L⊤L

vi = A⊤f +E⊤

i rλ − A⊤Eixλ, e = (ei) ∈ Rk, E =

k
i=1

eiSi. (5.3)

4. Compute the absolute condition vector

c(k)abs :=
ωk

ωp


|v1|

2
+ · · · + |vk|

2.

5. The mixed condition estimationm(k)
SCE and componentwise condition estimation c(k)SCE are:

m(k)
SCE :=

c(k)abs


∞

∥xλ∥∞

and c(k)SCE :=

 c(k)abs

xλ


∞

.

6. Numerical examples

In this section, we demonstrate our test results of some numerical examples to illustrate structured condition numbers
and condition estimations presented in the previous sections. We performed our numerical experiments on amachine with
Intel i5 4590 @3.3 GHz CPU, 8 GB RAM and 1 TB hard driver running Windows 7 professional. All the computations were
carried out usingMatlab 8.1 with machine precision about 2.2 × 10−16 and the REGULARIZATION TOOLS package [50].

For a structured matrix A, which is determined by the vector a ∈ Rk, we generated the perturbed matrixA as follows.
For a ∈ Rk and b ∈ Rm, let [s; f ] be a random vector whose entries are uniformly distributed in the open interval (−1, 1),
where s ∈ Rk and f ∈ Rm, the perturbations on a and b are respectively

1ai = εsiai, 1bj = εfjbj, (6.1)

thenA = g(a +1a) andb = b +1b. In our experiments, we set ε = 10−8.
REGULARIZATIONTOOLS package [50] includes fourmethods for determining the Tikhonov regularization parameter. For

the Tikhonov regularization with continuous regularization parameter, the L-curve is a continuous curve as a parametric
plot of the discrete smoothing (semi) norm ∥Lxλ∥2 versus the corresponding residual norm ∥Axλ − b∥2, with λ as the
parameter. The corner of the L-curve appears for regularization parameters close to the optimal parameter that balances the
regularization errors and perturbation errors in xλ, which is the basis for the L-curve criterion for choosing the regularization
parameter. In addition to the L-curve criterion for parameter-choice, a variety of parameter-choice strategies have been
proposed, such as the discrepancy principle (Discrep. pr.) [51], generalized cross-validation (GCV) [52] and the quasi-optimality
criterion (Quasi-opt) [51].

The Tikhonov regularization solution xλ was computed by the Matlab function tikhonov corresponding to A, b in
REGULARIZATION TOOLS package with different regularization parameters chosen by the four classical criteria or by a
predefined value. The perturbed solution yλ was obtained in the similar way to xλ, where yλ corresponds toA andb. Denote
the error1xλ = yλ − xλ.
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Table 1
L = I5 ,M = I5 .

Discrep. pr. L-curve GCV Quasi-opt

λ 6.3937 · 10−4 4.9988 · 10−4 4.9988 · 10−4 4.9988 · 10−4

∥1xλ∥2
ϵ∥xλ∥2

9.1464 · 10−1 1.4820 1.1081 3.1918
∥1xλ∥∞

ϵ∥xλ∥∞
9.3703 · 10−1 1.6158 1.3755 3.7359

ϵ−1
1xλ

xλ


∞

2.29 · 106 6.26 · 106 1.55 · 106 4.74 · 106

condF
Reg

in (2.5) 3.3961 · 103 4.4761 · 103 4.4761 · 103 4.4761 · 103

mReg in (2.3) 1.5204 · 103 2.0035 · 103 2.0035 · 103 2.0035 · 103

cReg in (2.4) 9.8192 · 106 1.6064 · 107 1.6064 · 107 1.6064 · 107

κSymToep(A, b) 1.0047 · 103 1.3242 · 103 1.3242 · 103 1.3242 · 103

mSymToep(A, b) 4.3765 4.4971 4.4971 4.4971
cSymToep(A, b) 9.8143 · 106 1.6056 · 107 1.6056 · 107 1.6056 · 107

Table 2
L = I5 ,M = e⊤

3 .

Discrep. pr. L-curve GCV Quasi-opt

λ 6.39 · 10−4 5.00 · 10−4 5.08 · 10−4 5.08 · 10−4

∥M1xλ∥2
∥Mxλ∥2

1.3741 · 10−2 2.2481 · 10−2 2.1749 · 10−2 2.1749 · 10−2

∥M1xλ∥∞

∥Mxλ∥∞
1.3741 · 10−2 2.2481 · 10−2 2.1749 · 10−2 2.1749 · 10−2

εκSymToep(A, b) 1.7780 · 10−1 2.9088 · 10−1 2.8141 · 10−1 2.8141 · 10−1

εmSymToep(A, b) 4.9096 · 10−2 8.0320 · 10−2 7.7705 · 10−2 7.7705 · 10−2

We compare the structured condition numbers with unstructured ones for various Tikhonov regularization parameters
in the following examples.

Example 1 ([30]). Let A = g(a) be a 5 × 5 symmetric Toeplitz matrix defined by

A = g(a) =


0 0 1 + h −1 1
0 0 0 1 + h −1

1 + h 0 0 0 1 + h
−1 1 + h 0 0 0
1 −1 1 + h 0 0

 , a =


0
0

1 + h
−1
1

 , b =


0
h

2(1 + h)
h
0


for h = 10−3.

The above matrix A is a square symmetric Toeplitz matrix and g(a) is a square symmetric Toeplitz matrix whose first
column is a. We can choose the basis Zi = g(ei), i = 1, 2, . . . , 5, so that T =

5
i=1 aiZi. From Theorem 1, with the Zi, we

can get the expressions for mSymToep(A, b), cSymToep(A, b) and κSymToep(A, b). The relative errors and condition numbers are
shown in Table 1, whereM = I5.

Table 1 shows that the structured mixed condition numbers are much smaller than the corresponding unstructured
ones, which give tight linear perturbation bounds. Both cSymToep(A, b) and κSymToep(A, b) are smaller than the corresponding
unstructured ones.

In Table 2, we chooseM = e⊤

3 , where e3 is the third column of I5. In this case,

∥M1xλ∥∞

∥Mxλ∥∞

=

M1xλ
Mxλ


∞

, mSymToep(A, b) = cSymToep(A, b).

We compare the true relative perturbation bounds with the first-order asymptotic perturbation bounds given by
mSymToep(A, b) and κSymToep(A, b).

From Table 2, we can see the quantities εmSymToep(A, b) give tighter perturbation bounds than εκSymToep(A, b), since they
have the same order as that of the true relative perturbation bounds.

Table 3 shows the results from different choices ofM , i.e.,M = e⊤

1 andM = e⊤

3 . For example, if we chooseM = e⊤

1 , then
we are interested in the conditioning of the first component of xλ. We display the values ofmSymToep(A, b) and κSymToep(A, b).
From Table 3, we can say that the first component of xλ has better conditioning than the third one.

At the end of this example, we use Algorithms 1 and 2 to illustrate the effectiveness of the power method. We set the
maximal number of iterations to 10 in Algorithm 1. The estimated condition numbers in Algorithms 1 and 2 are denoted by
κEst
SymToep(A, b) and mEst

SymToep(A, b) respectively.
FromTable 4, we can say that κEst

SymToep(A, b) andmEst
SymToep(A, b) give good estimations for this specific A, L and b, especially

mEst
SymToep(A, b) gives better estimation.
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Table 3
L = I5 , M = e⊤

1 andM = e⊤

3 .

M = e⊤

1 Discrep. pr. L-curve GCV Quasi-opt

λ 6.39 · 10−4 5.00 · 10−4 5.08 · 10−4 5.08 · 10−4

κSymToep(A, b) 1.5887 · 103 2.0941 · 103 2.0594 · 103 2.0594 · 103

mSymToep(A, b) 7.6056 · 102 1.0022 · 103 9.8567 · 102 9.8567 · 102

M = e⊤

3 Discrep. pr. L-curve GCV Quasi-opt

Value of λ 6.39 · 10−4 5.00 · 10−4 5.08 · 10−4 5.08 · 10−4

κSymToep(A, b) 1.7780 · 107 2.9088 · 107 2.8141 · 107 2.8141 · 107

mSymToep(A, b) 4.9096 · 106 8.0320 · 106 7.7705 · 106 7.7705 · 106

Table 4
L = I5 , M = I5 andM = e⊤

1 .

M = I5 Discrep. pr. L-curve GCV Quasi-opt

λ 6.39 · 10−4 5 · 10−4 5.08 · 10−4 5.08 · 10−4

κSymToep(A, b) 1.5878783796 · 103 2.0931466345 · 103 2.0584876249 · 103 2.0584876249 · 103

κEst
SymToep(A, b) 7.5891802517 · 102 1.0002500616 · 103 9.8369583257 · 102 9.8369583257 · 102

mSymToep(A, b) 7.6117517197 · 102 1.0027483753 · 103 9.8617760333 · 102 9.8617760333 · 102

mEst
SymToep(A, b) 7.6055529470 · 102 1.0022493745 · 103 9.8567031098 · 102 9.8567031098 · 102

M = e⊤

1 Discrep. pr. L-curve GCV Quasi-opt

λ 6.39 · 10−4 5 · 10−4 5.08 · 10−4 5.08 · 10−4

κSymToep(A, b) 1.5886924101 · 103 2.0940875560 · 103 2.0594198505 · 103 2.0594198505 · 103

κEst
SymToep(A, b) 3.7980426062 · 102 5.0050048168 · 102 4.9222129601 · 102 4.9222129601 · 102

mSymToep(A, b) 7.6055560483 · 102 1.0022496243 · 103 9.8567056493 · 102 9.8567056493 · 102

mEst
SymToep(A, b) 7.6055529470 · 102 1.0022493745 · 103 9.8567031098 · 102 9.8567031098 · 102

Table 5
L = I6 , M = I6 .

Discrep. pr. L-curve GCV Quasi-opt

λ 7.5918 · 10−4 2.5002 · 10−4 2.5002 · 10−4 0.0017
∥1xλ∥2
ϵ∥xλ∥2

1.0902 2.9510 2.6014 1.3163
∥1xλ∥∞

ϵ∥xλ∥∞
1.3264 4.2237 3.2460 2.0419

ϵ−1
1xλ

xλ


∞

4.39 · 106 2.516 · 107 2.645 · 107 1.31 · 106

condF
Reg

in (2.5) 2.2310 · 103 1.1401 · 104 1.1401 · 104 4.6222 · 102

mReg in (2.3) 7.8426 · 102 4.0032 · 103 4.0032 · 103 1.6347 · 102

cReg in (2.4) 1.3230 · 107 1.0238 · 108 1.0238 · 108 2.6208 · 106

κHankel(A, b) 1.0372 · 103 5.2922 · 103 5.2922 · 103 2.1648 · 102

mHankel(A, b) 3.4999 5.1247 5.1247 3.5000
cHankel(A, b) 1.1576 · 107 8.9578 · 107 8.9578 · 107 2.2931 · 106

Example 2 ([30]). Let A = g([c; r]) be the 6 × 6 Hankel matrix defined by

A = g([c; r]) =


h 1 1 −1 0 0
1 1 −1 0 0 0
1 −1 0 0 0 −1

−1 0 0 0 −1 1
0 0 0 −1 1 1
0 0 −1 1 1 0

 , c =


h
1
1

−1
0
0

 , r =


0
0

−1
1
1
0

 , b =


h
2
0
0
2
0


for h = 10−3, where c is the first column of A and r is the last row of A.

We can choose the basis Y1 = g([e1; 0]), . . . , Y5 = g([e5; 0]), Y6 = g([e6; e1]), Y7 = g([0; e2]), . . . , Y11 = g([0; e6]), so
that A =

11
k=1 akYk. Again, from Theorem 1 with the Yi, the expressions for mHankel(A, b), cHankel(A, b) and κHankel(A, b) can

be obtained.
From Table 5, we conclude that the structured mixed condition numbers can be much smaller than the corresponding

unstructured condition numbers. Structured mixed condition numbers also give sharp perturbation bounds. The forward
errors obtained bymultiplying the structuredmixed condition numbers with 10−8 are of the same order as that of the exact
errors.
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Table 6
L = I10 , M = I10 .

Discrep. pr. L-curve GCV Quasi-opt

λ 1.36 · 10−5 6.31 · 10−5 5.69 5.69
∥1xλ∥2
ϵ∥xλ∥2

2.7484 3.007 1.4131 1.4131
∥1xλ∥∞

ϵ∥xλ∥∞
3.4057 2.6762 2.7502 2.7502

ϵ−1
1xλ

xλ


∞

2.2796 · 10 2.1046 · 10 5.3054 5.3054

condF
Reg

in (2.5) 4.8637 · 106 1.7445 · 106 2.6028 · 10 2.6028 · 10
mReg in (2.3) 5.5816 · 104 2.3085 · 104 3.9279 · 10 3.9279 · 10
cReg in (2.4) 5.0645 · 105 6.3061 · 104 8.5328 · 10 8.5328 · 10
κVdM(A, b) 4.7123 · 10 5.2721 · 10 1.2499 · 10 1.2499 · 10
mVdM(A, b) 1.4219 · 10 1.4076 · 10 2.0828 · 10 2.0828 · 10
cVdM(A, b) 1.8428 · 102 6.1557 · 10 4.0178 · 10 4.0178 · 10

Table 7
L = I8 ,M = I8 .

Discrep. pr. L-curve GCV Quasi-opt

λ 2.46 · 10−10 6.97 · 10−7 1.72 1.72
∥1xλ∥2
ϵ∥xλ∥2

2.7472 5.5724 3.6995 3.6995
∥1xλ∥∞

ϵ∥xλ∥∞
2.5007 6.3752 2.2306 2.2306

ϵ−1
1xλ

xλ


∞

1.0489 · 10 1.4879 · 10 1.4934 · 102 1.4934 · 102

condF
Reg

in (2.5) 2.9150 · 108 4.5472 · 107 2.7426 · 10 2.7426 · 10
mReg in (2.3) 2.8775 · 107 8.0534 · 106 1.0465 · 10 1.0465 · 10
cReg in (2.4) 1.0584 · 108 4.6471 · 107 8.7045 · 102 8.7045 · 102

κCauchy(A, b) 3.8644 · 10 4.1630 · 10 5.4144 · 10 5.4144 · 10
mCauchy(A, b) 1.8131 · 10 2.2502 · 10 7.2573 7.2573
cCauchy(A, b) 3.4802 · 102 8.0663 · 10 3.9086 · 102 3.9086 · 102

Example 3 ([53]). Let V = g(a) be a 25 × 10 Vandermonde matrix whose (i, j)-entry is

Vij =


j
10

i−1

, a =


1
10
,

2
10
, . . . ,

9
10
, 1

⊤

, b ∈ R25 with b2k−1 = −1, b2k = 1.

In Table 6, when λ is small, the problem is ill-conditioned under unstructured perturbations. The structured condition
numbers aremuch smaller than the unstructured ones. The perturbation bounds given by the structured condition numbers
coincide with the relative errors from the columns Discrep. pr. and L-curve. When we use GCV and Quasi-opt to compute
the regularization parameters λ, which is equal to 5.69 in this example, the problem is well-conditioned. The structured
condition numbers have the same order as the unstructured ones. Both of them give sharp perturbation bounds.

Example 4 ([10]). Let A = g(a) be a 10 × 8 Cauchy matrix whose (i, j)-entry is

aij =
1

i + j − 1
, a = [u1, . . . , u10, v1, v2, . . . , v8]

⊤, with ui = i, vj = 1 − j,

b = [1,−1, 1,−1, 1,−1, 1,−1, 1,−1]⊤.

Then A is a rectangular Hilbert matrix.
From the second and third columns (Discrep. pr. and L-curve) of Table 7, we can see that the structured condition

numbers aremuch smaller than the unstructured one and they give sharp perturbation bounds. The first-order unstructured
asymptotic perturbation bounds severely overestimate the true relative errors in both normwise and componentwise cases
for the numerical examples of the discrepancy principle and L-curve methods. As for the last two columns, since the
regularization parameter λ is large, the problems are well-conditioned. The structured condition numbers are of the same
order as that of the unstructured ones.

In the rest of this section, we will show our test results on the proposed SCE algorithms for the conditioning estimation
of the Tikhonov regularization solution. Both the unstructured and structured Tikhonov regularization cases are considered.
For the unstructured Tikhonov regularization, the test problems originally come from the discretization of the Fredholm
integral equations of the first kind, and they lead to discrete ill-posed problems. We use the test problems included in the
REGULARIZATION TOOLS package. In these numerical experiments, a discrete ill-posed problem Ax = b using one of the
many built-in test problems is firstly generated; then the white noise is added to the right-hand side with a perturbation e
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whose elements are normally distributed with zero mean and standard deviation chosen such that the noise-to-signal ratio
∥e∥2/∥b∥2 = 10−4, thus producing a more ‘realistic’ problem.

We generated the perturbations1A = ε× (E ⊙ A) and1b = ε× (f ⊙ b), where ε = 10−8, E and f are randommatrices
whose entries are uniformly distributed in the open interval (−1, 1).

To measure the effectiveness of the estimators, we define the over-estimation ratios

rκ :=
κ
(k)
SCE · ε

∥1xλ∥2/∥xλ∥2
, rm :=

m(k)
SCE · ε

∥1xλ∥∞/∥xλ∥∞

, rc :=
c(k)SCE · ε

∥1xλ/xλ∥∞

,

where k is the subspace dimension in Algorithms 3 and 4, κ (k)SCE, m
(k)
SCE and c(k)SCE are the outputs from Algorithms 3 and 4.

Typically the ratios in (0.1, 10) are acceptable [36, Chapter 19].
For unstructured Tikhonov regularization problems, we test the SCE for several classical ill-posed problems included in

the REGULARIZATION TOOLS package: deriv2, shaw and wing. Those three examples give square coefficient matrices A and
right-hand side vectors b. For the matrix L in (1.1), we chose the identity matrix and

L1 =

1 −1
. . .

. . .

1 −1

 ∈ R(n−1)×n

which approximates the first derivative operator. We adopted the following four values of the regularization parameter λ:

0.1, 6 · 10−2, 1.7 · 10−3, 1.7 · 10−4.

In Table 8, we report the numerical results on the ratios rκ , rm and rc for examples with various dimensions and choices of L.
The table shows that themixed condition estimationm(k)

SCE reflects the true error bound accurately, while the componentwise
condition estimation c(k)SCE gives accurate error bounds for most cases and the normwise condition estimation fails to reflect
the true error bound accurately. Specifically, rm are between 0.94 and 16.33, implying that the condition estimationm(k)

SCE can
be considered reliable [36]. The values of the componentwise condition estimation c(k)SCE are within (16.54, 88.19) except
for the case shaw, where n = 512, L = In, k = 3 with all choices of λ, the case wing, where n = 256, L = In, k = 3,
λ = 0.1, 6 · 10−2 and the case shaw, where n = 256, L = L1, k = 5, λ = 1.7 · 10−3, indicating that the componentwise
condition estimation c(k)SCE is effective for most cases. For the normwise condition estimation κ (k)SCE, most of the values of rκ
are of order O(102), and even some of them are of order O(103), showing that the normwise condition estimation overly
estimates for most of the cases.

For structured Tikhonov regularization cases, we tested the following Toeplitz matrix:

A = (ai−j) ∈ Rm×n, ai−j = ρ|i−j|.

We used the right-hand side b = e ∈ Rm and ρ = 0.99999. This Toeplitz matrix is also a symmetric matrix. The Tikhonov
regularization parameter is determined by the four classical criteria. As discussed in Section 5.3, similar to Algorithms 3
and 4, we can use the SCE to obtain the structured normwise, mixed and componentwise condition estimations denoted by
κ
(k)
SymToep,SCE,m

(k)
SymToep,SCE and c(k)SymToep,SCE respectively. The perturbations1a on a and1b on bwere generated as in (6.1). As

in the previous example, let the overestimate ratios be defined by

rSymToep
κ :=

κ
(k)
SymToep,SCE · ε

∥1xλ∥2/∥xλ∥2
, rSymToep

m :=
m(k)

SymToep,SCE · ε

∥1xλ∥∞/∥xλ∥∞

, rSymToep
c :=

c(k)SymToep,SCE · ε

∥1xλ/xλ∥∞

,

which measure the reliability of the condition estimators. In this example, we always set L = In.
In Table 9, except for two cases, the values of all the three ratios are of order O(10), implying that the SCE structured

condition estimations are reliable.
In the rest of this section, we will show the effectiveness of the SCE for the large scale linear structured Tikhonov

regularization problems arising from image restoration. Let an m × m block Toeplitz matrix with n × n Toeplitz blocks
(BTTB(m, n)) be of the form

A = [A(i−j)]
m
i,j=1

with A(j) = [aj,γ−δ]
n
γ ,δ=1 being Toeplitz matrices of order n, j = 0,±1, . . . ,±(m − 1). Consider the image restoration

problem [47]

b = Ax∗ + η, (6.2)

where A is the BTTB(m, n)matrix with the diagonals being given by

aj,l =


exp{−0.1j2 − 0.1l2}, −8 ≤ j, l ≤ 8,
0, otherwise, (6.3)
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Table 8
SCE for the Tikhonov regularization problem.

rκ rm rc

deriv2, n = 64, L = In, k = 5

λ = 0.1 7.7533 · 102 2.0847 5.1984 · 10
λ = 6 · 10−2 7.6234 · 102 2.1284 4.7450 · 10
λ = 1.7 · 10−3 6.7427 · 102 1.2970 2.4927 · 10
λ = 1.7 · 10−4 9.2294 · 102 1.1437 3.9081 · 10

deriv2, n = 64, L = L1, k = 5

λ = 0.1 9.2479 · 102 2.2288 3.8756 · 10
λ = 6 · 10−2 9.2057 · 102 2.5900 3.6441 · 10
λ = 1.7 · 10−3 6.2048 · 102 1.0458 2.9864 · 10
λ = 1.7 · 10−4 9.2686 · 102 1.5548 3.4564 · 10

wing, n = 128, L = L1, k = 5

λ = 0.1 2.3753 · 103 1.6337 · 10 1.6544 · 10
λ = 6 · 10−2 1.4154 · 103 7.5189 1.5910 · 10
λ = 1.7 · 10−3 1.3068 · 103 1.6301 2.2538 · 10
λ = 1.7 · 10−4 9.6524 · 102 1.3917 8.1316 · 10

wing, n = 256, L = In, k = 3

λ = 0.1 6.1606 · 102 1.0112 2.6130 · 102

λ = 6 · 10−2 5.4330 · 102 1.3470 1.8994 · 102

λ = 1.7 · 10−3 1.0126 · 103 1.8223 6.2581 · 10
λ = 1.7 · 10−4 1.0923 · 103 2.1715 7.2018 · 10

shaw, n = 512, L = In, k = 3

λ = 0.1 1.6632 · 102 2.4174 1.7467 · 102

λ = 6 · 10−2 1.8554 · 102 2.8948 3.7301 · 102

λ = 1.7 · 10−3 1.0707 · 102 3.1782 3.7127 · 102

λ = 1.7 · 10−4 2.9693 · 102 1.6429 1.8405 · 102

shaw, n = 256, L = L1, k = 5

λ = 0.1 2.8617 · 10 2.9029 8.8186 · 10
λ = 6 · 10−2 3.1563 · 10 3.0425 8.3908 · 10
λ = 1.7 · 10−3 3.0292 · 10 1.0652 2.0672 · 102

λ = 1.7 · 10−4 1.1406 · 102 9.4368 · 10−1 3.0579 · 10

Table 9
SCE for the structured Tikhonov regularization problem.

rSymToep
κ rSymToep

m rSymToep
c

m = 100, n = 50, k = 3

Discrep. pr. λ = 2.21 1.3427 · 10 1.2354 4.0474 · 10
L-curve λ = 6.19 · 10−2 1.8396 · 10 1.7149 2.9893 · 10
GCV λ = 1.35 · 10−4 1.8113 · 10 1.5819 2.0690 · 10
Quasi-opt λ = 7.48 · 10−1 1.1606 · 10 8.6429 · 10−1 5.7865 · 10

m = 300, n = 200, k = 3

Discrep. pr. λ = 4.71 7.6537 · 10 4.1397 4.8346 · 10
L-curve λ = 1.10 · 10−1 5.6455 · 10 2.4765 7.8375 · 10
GCV λ = 3.22 · 10−4 3.2584 · 10 1.4440 8.8256 · 10
Quasi-opt λ = 4.49 7.1689 · 10 3.6997 5.4007 · 10

m = 500, n = 300, k = 3

Discrep. pr. λ = 1.49 · 10−2 5.8732 · 10 1.9115 1.0526 · 102

L-curve λ = 1.03 7.8779 · 10 3.2648 9.2462 · 10
GCV λ = 5.66 · 10−4 4.3191 · 10 1.6125 1.2357 · 10
Quasi-opt λ = 9.25 1.0777 · 102 4.3658 6.8813 · 10

x∗ is the mn × 1 vector obtained from the true image by row ordering, b presents the blurred, noisy image, and η presents
noise. The simulation image is of sizes 256 × 256, see Fig. 1. The observed image b is constructed by b = Ax + η, where
the noise vector η is a vector with random entries chosen from normal distribution with mean 0 (η is scaled so that
∥η∥2/∥Ax∗∥2 = 10−3). Lin et al. [49] proposed BTTB preconditioner for the following normal equations which also appeared
in [47]:

(A⊤A + λ2L⊤L)x = A⊤b, (6.4)
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Fig. 1. Original image.

Fig. 2. Perturbed, blurred and noisy images, restored images.

where L = Imn and λ = 0.1. Lin et al. adopted the PCG with the initial guess being set to the zero vector and the stopping
criterion being set to ∥r (q)λ ∥2/∥r

(0)
λ ∥2 ≤ 10−7, where r (q)λ is the normal equation residual vector at the qth iteration in the

PCG. The perturbations 1a on a and 1b on b were generated as in (6.1). Thus, 1A = g(1a) is also BTTB. The top row of
Fig. 2 displays the blurred/noisy image and the restored image obtained by using the PCG to solve (6.4). After adding the
structured perturbations to A and b, we display the perturbed, blurred and noisy image on the bottom-left of Fig. 2. The
restored image shown in the bottom-right of Fig. 2 was computed by solving the following perturbed normal equations via
the PCG using the BTTB preconditioner [49],

((A +1A)⊤(A +1A))+ λ2L⊤L(xλ +1xλ) = (A +1A)⊤(b +1b).

We use Algorithm 5 to estimate the structured mixed and componentwise condition numbers for (6.4). In the third step of
Algorithm 5, we adopt the PCG with the same preconditioner proposed in [49] to compute the directional derivative with
respect to the structured perturbation on A and b. The initial guess and stopping criterion are the same as the PCG in [49].
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Fig. 3. Time ratios over 100 samples.

Fig. 4. Overestimations over 100 samples.

We always choose k = 3 in Algorithm 5. As in the previous example, let the overestimate ratios be defined by

rBTTBm :=
m(k)

BTTB,SCE · ε

∥1xλ∥∞/∥xλ∥∞

, rBTTBc :=
c(k)BTTB,SCE · ε

∥1xλ/xλ∥∞

,

which measure the reliability of the condition estimators. The CPU time ratio is defined by

rtime =
t2
t1
,

where t1 is the CPU time for solving (6.4) using the PCG in [49] and t2 is the CPU time for Algorithm 5. We generated 100
samples of 1a and 1b and plotted rtime, rBTTBm and rBTTBc in Figs. 3 and 4, respectively. From Fig. 3, we can see that, the time
ratios rtime are around 3.25 since k = 3, that is, we need solve (5.3) via the PCG for three times and extra flops to obtain the
orthogonal bases for the randommatrix through the Gram–Schmidt orthogonalization process in the first step in Algorithm
5. By observing Fig. 4, it is easy to see that rBTTBm and rBTTBc are effective because they are in (0.1, 1), and they can give the
posterior error estimations for the restored image.

Now we consider testing the SCE with a different L in (6.4), where L is given in [49, Example 3]. Let X∗ = [x∗

i,j]
j=1,...,n
i=1,...,m be

the image to be restored and L be defined as

∥LX∗∥
2
2 =

m−1
i=1

n−1
j=1

(|x∗

i+1,j − x∗

i,j|
2
+ |x∗

i,j+1 − x∗

i,j|
2)+

n−1
j=1

|x∗

m,j+1 − x∗

m,j|
2
+

m−1
i=1

|x∗

i+1,n − x∗

i,n|
2. (6.5)
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Fig. 5. Time ratios over 100 samples.

Fig. 6. Overestimations over 100 samples.

The regularization parameter is set to λ = 0.09 as in [49]. Again, we generated 100 samples of the perturbations 1a and
1b and computed rtime, rBTTBm and rBTTBc . From Fig. 5, the time ratios are around 1.5, because when we use the PCG to solve
(5.3) in Algorithm 5 it usually needs only half of the number of the steps for solving (6.4) via the PCG. Since we choose k = 3
in Algorithm 5, the total times for Algorithm 5 are around 1.5 times of the CPU time for solving (6.4) via the PCG. Similarly
from Fig. 6, we can see the error estimations based the SCE are reliable.

7. Concluding remarks

In this paper, we introduce the structured condition numbers for the structured Tikhonov regularization problem
and derive their exact expressions without the Kronecker product. The structures considered include linear structures,
such as Toeplitz and Hankel, and nonlinear structures, such as Vandermonde and Cauchy. We show that our structured
condition numbers are smaller than unstructured condition numbers for Toeplitz andHankel structures. Applying the power
method, we devise fast algorithms for estimating the unstructured and structured condition number under normwise and
componentwise perturbations, that can be integrated into a GSVD based Tikhonov regularization solver.We also investigate
the SCE for estimating structured condition numbers for small/medium scale Tikhonov regularization problems. The SCE for
large scale structured Tikhonov regularization problems in image restoration is also considered. The numerical examples
show that our structured mixed condition numbers give tight error bounds and the proposed condition estimations are
reliable and efficient. A possible future research topic is to study the ratio between the structured andunstructured condition
numbers for the structured Tikhonov regularization problem.
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