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Abstract

In this note, we present two results on the scaled total least squares problem. First, we discuss the
relation between the scaled total least squares and the least squares problems. We derive an upper bound for
the difference between the scaled total least squares solution and the least squares solution and establish a
quantitative relation between the scaled total least squares residual and the least squares residual. Second, we
give a perturbation analysis of the scaled total least squares problem. Numerical experiments in comparing
our results with existing results are demonstrated.
© 2007 Elsevier Inc. All rights reserved.
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1. Introduction

The scaled total least squares (STLS) problem is a generalization of the total least squares
(TLS) problem. For given A ∈ Rm×n (m > n) and b ∈ Rm, the TLS problem is to find E ∈ Rm×n

and r ∈ Rm solving the problem
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min
(b−r)∈range(A+E)

‖[E r]‖F. (1.1)

The STLS generalizes the TLS by introducing a scaling factor. Rao [6] proposed the STLS problem
as

min
(b−r)∈range(A+E)

‖[E λr]‖F for E ∈ Rm×n and r ∈ Rm,

where λ > 0 is a given scalar. Obviously, the TLS is a special case of the STLS when λ = 1.
Alternatively, Paige and Strakoš [5] suggested the formulation:

min
(λb−r)∈range(A+E)

‖[E r]‖F. (1.2)

If [ESTLS rSTLS] solves the above problem, then the solution xSTLS for x in the equation (A +
ESTLS)λx = λb − rSTLS is called the STLS solution.

As described above, the relation between the STLS and the TLS is obvious. What is the relation
between the STLS and the least squares (LS) problem min ‖b − Ax‖2?

In this note, after giving explicit expressions for the STLS solution xSTLS in Section 2, we
derive an upper bound for ‖xSTLS − xLS‖2, where xLS denotes the LS solution, and establish
a relation between the residuals r̄STLS = b − AxSTLS and rLS = b − AxLS in Section 3. Then
in Section 4 we present a perturbation analysis of the STLS problem. Finally, in Section 5, we
demonstrate our numerical experiments in comparing our bounds with existing ones.

2. Solving STLS problem

In this section, we give existence conditions and explicit expressions for the STLS solution.
From the formulation (1.2), if xSTLS is the solution of (1.2), then λxSTLS is the solution of the
TLS problem with A and λb.

The following theorem by Wei [10] gives existence conditions and explicit expressions for the
TLS solution.

Theorem 2.1 (Theorem 2.2, [10]). Let

C̆ :=[A b] = Ŭ �̆V̆ T (2.1)

be the SVD of [A b], where �̆ = diag(σ1(C̆), . . . , σn+1(C̆)), σ1(C̆) � · · · � σn+1(C̆) � 0 and
Ŭ ∈ Rm×(n+1) and V̆ ∈ R(n+1)×(n+1) have orthonormal columns. Let k = rank(A), then
rank(C̆) = k + 1 assuming b /∈ range(A). Partitioning �̆, Ŭ , and V̆ in (2.1):

�̆ =
[
�̆1 0
0 �̆2

]
k

n − k + 1
k n − k + 1

, Ŭ = [Ŭ1 Ŭ2]
k n − k + 1

, (2.2)

and

V̆ =
[
V̆11 V̆12

v̆T
21 v̆T

22

]
n

1
k n − k + 1

. (2.3)

If the conditions

(i) σk(C̆) > σk+1(C̆) > σk+2(C̆) = · · · = σn+1(C̆) = 0,

(ii) V̆11 is of full column rank, or equivalently, v̆22 /= 0,
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are satisfied, then

xTLS = (V̆ T
11)

†v̆21 = V̆11v̆21/(1 − v̆T
21v̆21)

= −V̆12(v̆
T
22)

† = −V̆12v̆22/(1 − v̆T
21v̆21)

= (ATA − V̆12�̆
2
2V̆

T
12)

†(ATb − V̆12�̆
2
2v̆22)

is the minimal norm TLS solution. Moreover, let q = v̆22/‖v̆22‖2, then

[ETLS rTLS] = Ŭ2�̆2qqT[V̆ T
12 v̆22]

solves (1.1) and

‖[ETLS rTLS]‖F = σk+1(C̆).

For the STLS problem, following the formulation (1.2), we consider the SVD

C :=[A λb] = U�V T, (2.4)

where U ∈ Rm×(n+1) has orthonormal columns, V ∈ R(n+1)×(n+1) is orthogonal, and � =
diag(σ1(C), . . . , σn+1(C)), σ1(C) � · · · � σn+1(C) � 0. Applying Theorem 2.1, substituting b

in (1.1) with λb, and partitioning �, U , and V in the SVD (2.4) of C as �̆, Ŭ , and V̆ in (2.2) and
(2.3), we can express the STLS solution as

λxSTLS = (V T
11)

†v21 = −V12(v
T
22)

† = (ATA − V12�
2
2V

T
12)

†(λATb − V12�
2
2v22), (2.5)

provided that σk(C) > σk+1(C) and v22 /= 0.
Thus, the STLS problem can be solved by the SVD using, for example, λxSTLS = −V12(v

T
22)

†.
In this case, since only V12 and v22 in V are required, a complete SVD is unnecessary. The SVD
can be replaced by any of its approximations as long as a good approximation of the last n − k + 1
columns of the V matrix can be obtained. For example, the complete orthogonal decomposition
(COD) [2] can be used in place of the SVD. In 1993, Van Huffel and Zha proposed a rank
revealing ULV decomposition (RRULVD) method [3]. Although such method is more efficient
than the SVD method, its accuracy depends on the estimator for the smallest singular value and
its corresponding singular vector. In Section 4, we use the RRULVD method for our perturbation
analysis.

3. Relating STLS to LS

While the TLS is a special case of the STLS when λ = 1, the relation between the STLS and
LS is not so obvious. In [4], it is shown that xSTLS = xLS and σk+1(C)/λ = ‖rLS‖2 as λ → 0. In
this section, we present quantitative comparisons between the solutions and residuals of the STLS
and the LS. Specifically, we derive upper bounds for ‖xSTLS − xLS‖2 and ‖r̄STLS‖2 in terms of
‖rLS‖2.

Theorem 3.1. If the existence conditions (i) and (ii) in Theorem 2.1 are satisfied, then

‖xSTLS − xLS‖2 � ρ2‖V T
12xSTLS − λ−1v22‖2 + β‖xSTLS‖2

� ρ2 + β

λ‖v22‖2
,
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where

ρ = σk+1(C)

σk(A)
and β = min

(
1,

ρ2

1 − ρ2

)
. (3.1)

Also, the residual norm

‖r̄STLS‖2 � ‖rLS‖2 + ρ2σk(A)

λ‖v22‖2
.

Proof. First, we show some equalities used in our derivation. Using the partitions of �, U , and
V in the SVD (2.4) of C, we can verify

ATA = V11�
2
1V

T
11 + V12�

2
2V

T
12, λATb = V11�

2
1v21 + V12�

2
2v22, (3.2)

and

V T
12V12 + v22v

T
22 = I. (3.3)

From the generalized inverse theory [8], we have

(ATA)†AT = A† and (I − A†A)AT = 0. (3.4)

Then, using the first equation in (3.4), xLS = A†b = (ATA)†ATb, and the second equation in
(3.4), we get

xSTLS − xLS

= (I − A†A)xSTLS + (ATA)†V12�
2
2V

T
12xSTLS + (ATA)†(ATA)xSTLS

− (ATA)†V12�
2
2V

T
12xSTLS − (ATA)†ATb

= (ATA)†[(ATA − V12�
2
2V

T
12)xSTLS − λ−1V11�

2
1v21] − λ−1(ATA)†V12�

2
2v22

+ (I − A†A)xSTLS + (ATA)†V12�
2
2V

T
12xSTLS.

From the first equation in (3.2) and λxSTLS = (V T
11)

†v21 in (2.5), the expression in the square
bracket in the above equation:

(ATA − V12�
2
2V

T
12)xSTLS − λ−1V11�

2
1v21

= λ−1V11�
2
1V

T
11(V

T
11)

†v21 − λ−1V11�
2
1v21

= 0,

since, by Theorem 2.1, V11 is of full column rank and V T
11(V

T
11)

† = I . Thus

xSTLS − xLS = (I − A†A)xSTLS + (ATA)†V12�
2
2(V

T
12xSTLS − λ−1v22). (3.5)

In the following, we show that the first term in the right side of (3.5) satisfies‖(I − A†A)xSTLS‖2 �
β‖xSTLS‖2, where β is defined in (3.1).

On the one hand, ‖(I − A†A)xSTLS‖2 � ‖xSTLS‖2 since I − A†A is an orthogonal projection.
On the other hand, (2.5) and the symmetry of ATA − V12�2

2V
T
12 imply that

xSTLS = (ATA − V12�
2
2V

T
12)

†(ATA − V12�
2
2V

T
12)xSTLS

= (ATA − V12�
2
2V

T
12)(A

TA − V12�
2
2V

T
12)

†xSTLS.
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Hence, from the second equation in (3.4),

‖(I − A†A)xSTLS‖2

= ‖(I − A†A)(ATA − V12�
2
2V

T
12)(A

TA − V12�
2
2V

T
12)

†xSTLS‖2

= ‖(I − A†A)V12�
2
2V

T
12(A

TA − V12�
2
2V

T
12)

†xSTLS‖2

� ‖V12�
2
2V

T
12‖2‖(ATA − V12�

2
2V

T
12)

†‖2‖xSTLS‖2

� σ 2
k+1(C)‖(ATA − V12�

2
2V

T
12)

†‖2‖xSTLS‖2.

Now, we claim that

‖(ATA − V12�
2
2V

T
12)

†‖2 � 1

σ 2
k (A) − σ 2

k+1(C)
,

then we have ‖(I − A†A)xSTLS‖2 � β‖xSTLS‖2. Indeed, from the first equation in (3.2), ATA −
V12�2

2V
T
12 is of rank k, so

‖(ATA − V12�
2
2V

T
12)

†‖2 = 1

σk(ATA − V12�2
2V

T
12)

.

From Mirsky theorem [7, p. 204], we have

σk(A
TA − V12�

2
2V

T
12) − σk(A

TA) � −‖V12�
2
2V

T
12‖2 � −σ 2

k+1(C)

and consequently

‖(ATA − V12�
2
2V

T
12)

†‖2 = 1

σk(ATA − V12�2
2V

T
12)

� 1

σ 2
k (A) − σ 2

k+1(C)
.

For the second term in the right side of (3.5), from λxSTLS = −V12(v
T
22)

† in (2.5) and (3.3),
we have

V T
12xSTLS − λ−1v22

= −λ−1(V T
12V12(v

T
22)

† + v22)

= −λ−1(V T
12V12 + v22v

T
22)v22/(v

T
22v22)

= −λ−1(vT
22)

†,

which implies

‖(ATA)†V12�
2
2(V

T
12xSTLS − λ−1v22)‖2

� ρ2‖V T
12xSTLS − λ−1v22‖2

= ρ2

λ
‖v†

22‖2 = ρ2

λ‖v22‖2
. (3.6)

Putting things together, we get

‖xSTLS − xLS‖2 � ρ2

λ‖v22‖2
+ β‖xSTLS‖2 � ρ2 + β

λ‖v22‖2
,

since ‖λxSTLS‖2 = ‖V12(v
T
22)

†‖2 � ‖v†
22‖2 = ‖v22‖−1

2 .
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Finally, using (3.5) and (3.6), we get the residual norm

‖b − AxSTLS‖2

� ‖b − AxLS‖2 + ‖A(ATA)†V12�
2
2(V

T
12xSTLS − λ−1v22)‖2

� ‖rLS‖2 + σ 2
k+1(C)

λσk(A)
‖v†

22‖2 = ‖rLS‖2 + ρ2σk(A)

λ‖v22‖2
.

This completes the proof. �

Since σk+1(C)/λ = ‖rLS‖2 as λ → 0 [4], we have (ρ2 + β)/λ → 0 as λ → 0. The above
theorem then implies that xSTLS = xLS and ‖rSTLS‖2 = ‖rLS‖2 when λ → 0, which is consistent
with the results in [4].

4. Perturbation analysis

Consider the RRULVD method for solving the STLS problem [3]. Let

C :=[A λb] = PC

[
LC 0
HC FC

]
QT

C,

be an RRULVD of C, where LC is lower triangular and of order k + 1 and HC and FC are small
blocks introduced by rounding errors and approximations. This can also be viewed as a perturbed
COD of C. In the RRULVD method, we actually compute the STLS solution of the truncated
decomposition:

PC

[
LC 0
0 0

]
QT

C =: [Â λb̂] = Ĉ.

In this section, we derive an upper bound for ‖xSTLS − x̂STLS‖2, where xSTLS and x̂STLS are the
STLS solutions of C and Ĉ respectively. Our analysis can be readily applied to the SVD method,
where LC is diagonal, HC = 0, and FC a small diagonal matrix.

Since HC and FC are introduced by rounding errors, we assume that

�C :=C − Ĉ = −PC

[
0 0

HC FC

]
QT

C

is small, specifically,

‖HC‖2 + ‖FC‖2 = cu‖C‖2 =: η, (4.1)

where c is a moderate constant and u is the unit of roundoff.
Before deriving the error bound, it is necessary to verify the existence condition (i) in Theorem

2.1. From (4.1), it follows that

σk(Â) − σk+1(Ĉ)

= σk(A) − σk+1(C) + σk(Â) − σk(A) + σk+1(C) − σk+1(Ĉ)

� σk(A) − σk+1(C) − 2η.

Thus, if σk(A) − σk+1(C) > 2η, then the existence condition σk(Â) > σk+1(Ĉ) for the perturbed
STLS problem is satisfied.

Now, we derive the error bound. Using the SVD (2.4) of C and the partitions of U , �, and V ,
we define

EA :=A − U2�2V
T
12 = U1�1V

T
11 and λeb :=λb − U2�2v22 = U1�1v21.
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Then, from (2.5), it can be verified that

λxSTLS = (V T
11)

†v21 = λE
†
Aeb. (4.2)

Note that when σk(A) > σk+1(C), V11 is of full column rank [10], implying that I = V
†
11V11 =

V T
11(V

T
11)

†. Consequently,

EAxSTLS = U1�1V
T
11xSTLS = λ−1U1�1V

T
11(V

T
11)

†v21 = λ−1U1�1v21 = eb.

Similarly, letting Ĉ = Û �̂V̂ T be the SVD of Ĉ, partitioning Û , �̂, and V̂ according to (2.2)
and (2.3), and defining

E
Â

:= Â − Û2�̂2V̂
T
12 = Û1�̂1V̂

T
11 and λe

b̂
:=λb̂ − Û2�̂2v̂22 = Û1�̂1v̂21,

we have the solution

x̂STLS = E
†
Â
e
b̂
. (4.3)

Comparing the two solutions (4.2) and (4.3), we get

ÛT
1 E

Â
(xSTLS − x̂STLS) = ÛT

1 (E
Â
xSTLS − E

Â
x̂STLS + EAxSTLS − EAxSTLS)

= ÛT
1 (E

Â
− EA)xSTLS − ÛT

1 (e
b̂

− eb).

Taking the norm on the both sides, we obtain

σk(EÂ
)‖xSTLS − x̂STLS‖2 � ‖ÛT

1 E
Â
(xSTLS − x̂STLS)‖2

� ‖ÛT
1 (E

Â
− EA)‖2‖xSTLS‖2 + ‖ÛT

1 (e
b̂

− eb)‖2. (4.4)

Obviously, from E
Â

= Â − Û2�̂2V̂
T
12, we get

σk(EÂ
) � σk(Â) − ‖Û2�̂2V̂

T
12‖2 � σk(Â) − σk+1(Ĉ) � σk(A) − σk+1(C) − 2η, (4.5)

since rank(E
Â
) = k. Furthermore, we have

‖ÛT
1 (E

Â
− EA)‖2 = ‖ÛT

1 (Â − A − Û2�̂2V̂
T
12 + U2�2V

T
12)‖2

� ‖Â − A‖2 + ‖ÛT
1 (Û2�̂2V̂

T
12 + U2�2V

T
12)‖2

� ‖Ĉ − C‖2 + ‖ÛT
1 U2�2V

T
12‖2

� η + σk+1(C)
σk+1(Ĉ)η

σ 2
k+1(Ĉ) − η2

(4.6)

and, similarly,

‖ÛT
1 (e

b̂
− eb)‖2 = ‖ÛT

1 (b̂ − b − λ−1Û2�̂2v̂22 + λ−1U2�2v22)‖2

� ‖b̂ − b‖2 + λ−1‖ÛT
1 U2�2v22‖2

� η + λ−1σk+1(C)
σk+1(Ĉ)η

σ 2
k+1(Ĉ) − η2

, (4.7)

since ‖ÛT
1 U2‖2 � σk+1(Ĉ)‖HC‖2/(σ

2
k+1(Ĉ) − ‖FC‖2

2) [1, Corollary 2.5] and ‖HC‖2, ‖FC‖2 �
η. Applying the above three inequalities (4.5), (4.6), and (4.7), from (4.4), we obtain
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‖xSTLS − x̂STLS‖2

� 1

σk(EÂ
)
(‖ÛT

1 (E
Â

− EA)‖2‖xSTLS‖2 + ‖ÛT
1 (e

b̂
− eb)‖2)

�
η((1 + ‖xSTLS‖2)(σ

2
k+1(Ĉ) − η2) + σk+1(Ĉ)σk+1(C)(‖xSTLS‖2 + λ−1))

(σk(A) − σk+1(C) − 2η)(σ 2
k+1(Ĉ) − η2)

.

The above argument is valid for any sufficiently small perturbation �C. Ignoring η2, we have the
following theorem.

Theorem 4.1. Let C = [A λb]. Suppose that Ĉ = C + �C =: [Â λb̂] and ‖�C‖2 ≈ cu‖C‖2 =:
η � 1, where c is a moderate constant and u is the unit of roundoff. Let xSTLS and x̂STLS be the
STLS solutions corresponding to C and Ĉ respectively, then

‖xSTLS − x̂STLS‖2 � η
(1 + ‖xSTLS‖2)σk+1(Ĉ) + (‖xSTLS‖2 + λ−1)σk+1(C)

(σk(A) − σk+1(C) − 2η)σk+1(Ĉ)
,

provided that σk(A) − σk+1(C) > 2η.

This theorem shows that if the perturbation η = ‖�C‖2 is small, we can expect a small error
‖xSTLS − x̂STLS‖2 as long as σk(A) and σk+1(C) are not very close.

5. Numerical experiments

In this section, we compare our bounds given by Theorems 3.1 and 4.1 with their existing
counterparts given in [4] and [9]. The experiments were carried out in MATLAB. As we shall
see, our numerical experiments have shown that our bounds are very close to the existing ones. It
is probably very difficult, if possible, to prove which ones are superior. Moreover, the bounds in
[9] are valid for the differences between the TLS and LS, whereas our bounds are valid for more
general STLS and LS. Thus we compare the bounds in [9] with our bounds for the special case
when λ = 1.

Our test matrix is the matrix of rank k that is closest in the matrix 2-norm to a randomly
generated matrix with entries uniformly distributed on [0, 1]. Our test right-hand side vector is
a vector with entries uniformly distributed on [0, 1]. The STLS solution is given by xSTLS =
−λ−1V12(v

T
22)

† and the LS solution by xLS = A†b.

Example 1. Theorem 3.1 gives two bounds for ‖xSTLS − xLS‖2. As shown in the results, the
second one is slightly larger than the first, but much simpler. In [9, (3.4)], Wei gives the bound,
using our notations,

‖xTLS − xLS‖2 � ρ2
√

‖xTLS‖2
2 + 1 + ρ‖xTLS‖2.

To compare, we set λ = 1 in our bounds. Table 1 shows that our bounds are only slightly larger
than Wei’s bound. However, Wei’s bound is implicit in that it involves the solution norm ‖xTLS‖2,
whereas our second bound is simpler and can be obtained without ‖xSTLS‖2. Moreover, our bounds
are more general in that they are for STLS with TLS as a special case when λ = 1.

Example 2. Paige and Strakoš [4] give an expression for ‖r̄STLS‖2 [4, (4.13)] and an approxima-
tion for ‖rLS‖2 [4, (4.14)], from which, using our notations, we have
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Table 1
Comparison of the bound in [9] and the first and second bounds in Theorem 3.1

Size Rank ‖xTLS − xLS‖2 Bound in [9] First bound Second bound

200 × 100 80 1.4094 3.6853 3.7912 4.0397
400 × 300 100 0.2455 1.0248 1.2000 1.7626
800 × 700 600 1.3091 3.8888 4.1931 4.4009

Table 2
Comparison of the estimate for ‖r̄STLS‖2 − ‖rLS‖2 from [4] and the bound in Theorem 3.1

λ ‖r̄STLS‖2 − ‖rLS‖2 Estimate from [4] Bound in Theorem 3.1

0.005 1.111E−9 2.221E−9 2.302E−3
0.5 1.627E−1 2.816E−1 2.405E+0
1 1.605E+0 2.298E+0 4.703E+0
5 3.012E+0 4.169E+0 6.363E+0
10 3.196E+0 4.250E+0 6.454E+0

Table 3
Comparison of the bounds for perturbation in the TLS solution

Rank ‖xTLS − x̂TLS‖2 Bound in [9, (7.9)] Bound in Theorem 4.1

500 4.787E−4 4.436E+1 4.254E−1
600 9.253E−5 7.083E+1 8.840E−2
800 2.569E−5 1.539E+2 2.770E−2

‖r̄STLS‖2 − ‖rLS‖2 ≈ λ−1
∣∣∣∣σk+1(C)

√
1 + ‖λz‖2

2 − σk+1(C)

√
1 + ‖λxLS‖2

2

∣∣∣∣ ,
where z = (ATA − σ 2

k+1(C)I)−1(ATb). To compare the above estimate with our bound in The-
orem 3.1, we generated random A and b and used various values of λ. Table 2 shows the results
for a 500 × 400 random matrix A with rank 350.

Table 2 shows that our bound for ‖r̄STLS‖2 − ‖rLS‖2 given in Theorem 3.1 is about 1.5 times
as large as the estimate from [4] when λ is larger than 1, which indicates that our bound is quite
close for λ > 1. When λ is less than 1, our bound is larger, which means that our bound does
not converge to zero as fast as the one from [4]. However, the evaluation of the expression for
‖r̄STLS‖2 in [4] involves solving for z in the system (ATA − σ 2

k+1(C)I)z = ATb. Whereas our
bound for ‖r̄STLS‖2 − ‖rLS‖2 given in Theorem 3.1 can be readily obtained.

Example 3. In this example, we compare our STLS solution perturbation bounds given in The-
orem 4.1 for λ = 1 with the TLS solution perturbation bound [9, (7.9)]

‖xTLS − x̂TLS‖2 � 6(η + σk+1(C))

σk(A) − σk+1(C)

√
‖xTLS‖2

2 + 1.

We generated random matrices A of size 1000 × 800 with various ranks k and random vectors b.
Then we constructed random perturbation matrices �C such that ‖�C‖2 = η, where η was set
to (σk(A) − σk+1([A, b]))/6. A typical value of η was 0.0867.
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The results in Table 3 show that our bound is tighter than [9, (7.9)]. This can be explained by
the fact that our bound has η as a factor. For the same reason, our experiments also show that for
small η ≈ cu‖C‖2, our bound gives close estimate for the perturbation in the solution.

6. Conclusion

In this paper, we first present quantitative relations between the scaled total least squares and
least squares solutions and residuals. Theorem 3.1 shows that the two solutions and two residuals
equal when λ → 0. They can be very different when λ is not small and ‖v22‖2 is small. Second,
we give a perturbation analysis of the scaled total least squares problem. Theorem 4.1 shows
that the solution of the perturbed problem is close to the original problem if the perturbation is
small and σk+1(C) and σk(A) are not close to each other. Finally, our numerical experiments
demonstrate that our bounds are competitive with existing bounds.
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