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Abstract

This paper presents an O(n2 log n) algorithm for computing the symmetric singular value decomposition
of square Hankel matrices of order n, in contrast with existing O(n3) SVD algorithms. The algorithm consists
of two stages: first, a complex square Hankel matrix is reduced to a complex symmetric tridiagonal matrix
using the block Lanczos method in O(n2 log n) flops; second, the singular values and singular vectors of the
symmetric tridiagonal matrix resulted from the first stage are computed in O(n2) flops. The singular vector
matrix is given in the form of a product of three or two unitary matrices. The performance of our algorithm
is demonstrated by comparing it with the SVD subroutines in Matlab and LAPACK.
© 2007 Published by Elsevier Inc.

AMS classification: 15A18; 65F20; 65F25; 65F50

Keywords: Fast SVD; Hankel matrix; Toeplitz matrix; Symmetric SVD; Takagi factorization

1. Introduction

Complex symmetric matrices arise from many applications such as nuclear magnetic resonance
[2], independent component analysis [4], and so on. Complex Hankel matrices are special complex
symmetric matrices arising from signal processing [11] and statistics [1]. An n × n Hankel matrix
is of the form:
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H =

⎡⎢⎢⎢⎢⎢⎣
h1 h2 h3 · · · hn

h2 h3 h4 · · · hn+1
h3 h4 h5 · · · hn+2
...

...
... q

...

hn hn+1 hn+2 · · · h2n−1

⎤⎥⎥⎥⎥⎥⎦ ,

which is determined by its last row and first column, total of 2n − 1 entries, in contrast with
(n2 + n)/2 entries for a general symmetric matrix.

Due to the special structure of the Hankel matrix, its matrix–vector multiplication can be
performed in O(n log n) flops using the fast Fourier transform (FFT) [12,14]. Also, for any
symmetric matrix, there exists a special form of the singular value decomposition called the
symmetric singular value decomposition (SSVD) or Takagi factorization [10]. In particular, let
H be a Hankel matrix of order n, then there exists the decomposition

H = V �V T,

where V = [v1, v2, . . . , vn] is unitary, � = diag(σ1, σ2, . . . , σn), σ1 � σ2 � · · · � σn � 0, is the
diagonal singular value matrix. The columns vi of V are called the Takagi vectors and σi the Takagi
values or singular values of H . Analogous to the singular vector matrix, we call V the Takagi
vector matrix. Note that the Takagi vectors are the left singular vectors, whereas the left singular
vectors need not be the Takagi vectors. For example, consider the 2-by-2 complex symmetric
matrix

T =
[

1 i
i −1

]
, where i = √−1.

Its SSVD is

T = Q�QT =
[−

√
2

2
1
2 + 1

2 i

−
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2 i 1
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2 i

] [
2 0
0 0

] [
−
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2

2 −
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2
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2 i 1
2 − 1

2 i

]
.

Since the Takagi vector matrix Q is unitary, the Takagi vectors, the columns of Q, are left singular
vectors of T . However, it can be verified that the left singular vectors given by the eigenvectors
in the eigenvalue decomposition

T T H =
[ √
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are not the Takagi vectors of T .
The computation of the SVD of a general symmetric matrix of order n requires O(n3) flops. In

this paper, we present an O(n2 log n) SSVD algorithm for square Hankel matrices of order n. Since
a square Toeplitz matrix can be converted into a Hankel matrix by reversing its columns or rows
[12], our fast SSVD algorithm straightforwardly leads to a fast SVD algorithm for square Toeplitz
matrices. Our algorithm consists of two stages. In the first stage, a complex square Hankel matrix
is reduced to complex symmetric tridiagonal form using symmetric unitary transformations. The
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block Lanczos method is used to exploit the Hankel structure. Since the dominant computation
of the Lanczos tridiagonalization is matrix–vector multiplication and Hankel matrix–vector mul-
tiplication can be performed in O(n log n) flops using the FFT [12,14], the cost of this stage is
O(n2 log n). The second stage computes the SSVD of the complex symmetric tridiagonal matrix
resulted from the previous stage. This stage consists of three parts: First, the singular values are
obtained by the implicit QR method [3,14] in O(n2) flops; then the singular vectors are computed
by the twisted factorization method in O(n2) flops; finally, the singular vectors are converted into
the Takagi vectors in no more than O(n2) flops. The total cost of this stage is O(n2). Combining
these two stages, we have an O(n2 log n) algorithm for computing the SSVD of square Hankel
matrices, where the unitary singular vector matrix or the Takagi vector matrix is in the form of a
product of two or three unitary matrices. To our best knowledge, this is the first fast SVD algorithm
for Hankel matrices.

The rest of this paper is organized as follows. Section 2 describes the block Lanczos tridiago-
nalization method integrated with the fast Hankel matrix–vector multiplication algorithm. Then,
the twisted factorization method for computing the singular vectors is presented in Section 3. The
issue of computing the singular vectors associated with a multiple singular value is discussed in
Section 4. The conversion of the singular vectors into the Takagi vectors is shown in Section 5.
Finally, we compare our SSVD algorithm with the SVD subroutines in Matlab and LAPACK in
Section 6 to show that our method is O(n2 log n) as opposed to O(n3) general SVD routines in
Matlab and LAPACK.

2. Tridiagonalization

The Lanczos tridiagonalization method is suitable for structured matrices since its major
computation is matrix–vector multiplication, where the structure of the matrix can be exploited.
In this section, we describe a block Lanczos tridiagonalization method for complex square Hankel
matrices. A Hankel matrix is first transformed into block tridiagonal form, which is then reduced
to tridiagonal. The method carries out the tridiagonalization in two steps because block algorithms
are rich in BLAS 3 operations and render high performance [8].

A complex Hankel matrix of order n, n = pb for some integers p and b, can be reduced to a
block tridiagonal matrix by unitary transformations:

QHHQ = J ≡

⎡⎢⎢⎢⎢⎣
M1 BT

1 0

B1
. . .

. . .
. . .

. . . BT
p−1

0 Bp−1 Mp

⎤⎥⎥⎥⎥⎦ , (1)

where Q = [Q1, Q2, . . . , Qp], Qj ∈ Cn×b, is unitary, Q denotes the complex conjugate of Q,
Mi ∈ Cb×b is symmetric, and Bj ∈ Cb×b upper triangular. Rewriting (1) as HQ = QJ and
comparing the j th block columns on both sides of the equation, we have

HQj = Qj−1B
T
j−1 + QjMj + Qj+1Bj , Q0B0 = Qp+1Bp = 0

for j = 1, . . . , p, which leads to the block Lanczos outer iteration:

Qj+1Bj = HQj − QjMj − Qj−1B
T
j−1.
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Since Q is unitary, Mj = QH
j HQj for j = 1, . . . , p. Let Rj = HQj − QjMj − Qj−1B

T
j−1,

then Qj+1 and Bj can be obtained from the QR factorization of Rj . Thus, starting with an n-by-b
Q1 with orthonormal columns, we can compute Q and J in (1).

Algorithm 1 (Block tridiagonalization). Given an n-by-b starting matrix Q1 with orthonormal
columns and a subroutine for Hankel matrix–matrix multiplication Y = HX for any X, where H

is a complex Hankel matrix of order n. This algorithm computes the unitary Q and the blocks Mi

and Bi in the block tridiagonal complex symmetric matrix J in (1).

p = n/b;
for j = 1 : p − 1

Y = HQj ;
Mj = QH

j Y ;

Rj = Y − QjMj − Qj−1B
T
j−1; (Q0 = 0, B0 = 0)

Qj+1Bj = Rj ; (QR factorization of Rj )
end
Mp = QH

pHQp;

The choice of the block size b is architecture dependent. Typically, b = 8, 16, 32. The main
computational cost of the above algorithm is the matrix–matrix multiplication HQj . Using the
FFT to exploit the Hankel structure of H , the multiplication can be performed in O(bn log n)

flops [12]. Thus the total cost of the above algorithm is O(n2 log n).
Next, the block tridiagonal J in (1) is tridiagonalized. Since J is symmetric and banded, it can

be efficiently tridiagonalized by the algorithm proposed by Schwartz [17] or the classical Lanczos
method briefly described as follows. For details, see [15].

The block tridiagonal J can be tridiagonalized by unitary transformations:

P HJP = T ≡

⎡⎢⎢⎢⎢⎣
α1 β1 0

β1
. . .

. . .
. . .

. . . βn−1
0 βn−1 αn

⎤⎥⎥⎥⎥⎦ , (2)

where P = [p1, . . . , pn] is unitary. Rewriting (2) as JP = PT and comparing the j th columns
of its both sides, we have

J p̄j = βj−1pj−1 + αj pj + βj pj+1, β0p0 = 0,

which leads to a Lanczos three-term recursion:

βj pj+1 = J p̄j − αj pj − βj−1pj−1.

Since P is unitary, αj = pH
j Ap̄j . Let rj = J p̄j − αj pj − βj−1pj−1, then βj = ±‖rj‖2 and

pj+1 = rj /βj if rj /= 0.
It is well-known that orthogonalization is necessary for practical Lanczos methods. The

block tridiagonalization Algorithm 1 is incorporated with the block partial orthogonalization
with componentwise orthogonality detection [16] and the tridiagonalization is incorporated with
the modified partial orthogonalization [15]. The orthogonalization schemes introduce little extra
work. The total cost of the tridiagonalization with orthogonalization is still O(n2 log n).
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Alternatively, the tridiagonalization can be carried out in one step using the classical Lanczos
method. However, our experiments have shown that the block algorithm renders high performance
by exploiting the memory hierarchy [16].

3. Twisted factorization

Now that a Hankel matrix is tridiagonalized, it remains to compute the SSVD of the complex
symmetric tridiagonal T in (2) in no more than O(n2 log n). It is shown in [3,14] that the implicit
QR method computes the singular values in O(n2) flops, however, it requires O(n3) for the
singular vectors. In this section, we present a twisted factorization method for computing the left
singular vectors of T in O(n2), if the computed singular values are available. Thus, combining
the implicit QR and the twisted factorization methods, we can compute the singular values and
the left singular vectors of T in O(n2) flops. There are O(n2) methods for bidiagonal SVD [9,18].
Since we consider the SSVD of the complex symmetric tridiagonal T , we adapt the twisted
method for symmetric tridiagonal eigendecomposition [5,6]. The difference is that we compute
the eigenvectors of a Hermitian pentadiagonal matrix T T H. Moreover, our method is implicit in
that the pentadiagonal matrix T T H is not explicitly formed.

We assume that the complex symmetric tridiagonal matrix T is irreducible, that is there are
no zero entries on its subdiagonal. Otherwise, when there are zero entries on the subdiagonal, we
can deflate the matrix T into several small irreducible matrices. It is shown that the multiplicity
of any singular value of an irreducible T is at most two [20]. In this section, we consider the case
of simple singular values. The issue of multiple singular values is addressed in the next section.

The left singular vectors of T are the eigenvectors of the Hermitian positive semidefinite
pentadiagonal S = T T H. As we know, if we have good approximations of eigenvalues, the
shifted inverse power iteration is an effective way of computing the associated eigenvectors.
We use the singular values of T computed by the implicit QR method as good approximations
of the eigenvalues of S. Let λ be an approximation of an eigenvalue λi of S, the shifted inverse
power method involves solving linear systems with the coefficient matrix S − λI , which is ill-
conditioned. In the following, we show how to formulate the problem so that we can solve the
linear systems efficiently and stably.

We first compute the LDLH decomposition:

S = L̂D̂L̂H, (3)

where

D̂ = diag(d∗
1 , . . . , d∗

n), d∗
i � 0, and L̂ =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1

l∗1
. . . 0

m∗
1

. . .
. . .

. . .
. . .

. . .
0 m∗

n−2 l∗n−1 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
,

which can be obtained, for example, from the QR decomposition of T H. Since T is tridiagonal,
this decomposition can be computed in O(n) operations. Then we decompose the shifted S − λI

in two ways:

S − λI = LDLLH = UDUUH, (4)
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where

L =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1

l1
. . . 0

m1
. . .

. . .
. . .

. . .
. . .

0 mn−2 ln−1 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, DL = diag(ν1, . . . , νn), νi ∈ R

and

U =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 u1 v1
. . .

. . .
. . .

. . .
. . . vn−2
. . . un−1

1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, DU = diag(μ1, . . . , μn), μi ∈ R.

The above two decompositions can be obtained from the LDLH decomposition (3) by comparing
the entries. Specifically, comparing the (i + 2, i + 1)-entries in the both sides of the equation
L̂D̂L̂H − λI = LDLLH, we get

m∗
i l̄

∗
i d∗

i + l∗i+1d
∗
i+1 = mil̄iνi + li+1νi+1.

Comparing the (i + 2, i + 2)-entries, we have

|m∗
i |2d∗

i + |l∗i+1|2d∗
i+1 + d∗

i+2 − λ = |mi |2νi + |li+1|2νi+1 + νi+2.

In summary, we have the following algorithm for the decomposition S − λI = LDLLH.

Algorithm 2. Given the LDLH decomposition S = L̂D̂L̂H of a Hermitian pentadiagonal S =
T T H, this algorithm computes the decomposition S − λI = LDLLH

ν1 = d∗
1 − λ; % (1, 1)-entry

l1 = l∗1d∗
1 /ν1; % (2, 1)-entry

ν2 = |l∗1 |2d∗
1 + d∗

2 − λ − |l1|2ν1; % (2, 2)-entry
for i = 1 : n − 2

mi = m∗
i d

∗
i /νi ; % (i + 2, i)-entry

li+1 = (m∗
i l̄

∗
i d∗

i + l∗i+1d
∗
i+1 − mil̄iνi)/νi+1; % (i + 2, i + 1)-entry

νi+2 = |m∗
i |2d∗

i + |l∗i+1|2d∗
i+1 + d∗

i+2 − λ − |mi |2νi − |li+1|2νi+1;
% (i + 2, i + 2)-entry

end

The computational cost of this decomposition is O(n) flops for each λ.
Similarly, we can compute the decomposition S − λI = UDUUH in O(n) flops for each λ.
Now, combining the two decompositions (4), we construct the twisted factorization of the

shifted matrix:

S − λI = NkDkN
H
k , (5)

where Dk = diag(ν1, . . . , νk−2, ξk, γk, μk+1, . . . , μn), ξk, γk ∈ R, and
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Nk =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1

l1
. . . 0

m1
. . . 1
. . . lk−2 1 vk−1

mk−2 ηk 1 uk

. . .

1
. . . vn−2

0
. . . un−1

1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(6)

is a combination of the partial lower triangular L and the partial upper triangular U . Note that
for each index k, 1 � k � n, there is a corresponding twisted factorization. However, given the
LDLH and UDUH decompositions (4), there are only three unknowns ξk, γk ∈ R, and ηk ∈ C in
a twisted factorization. The following theorem shows a computation of the three unknowns and
a relation between γ −1

k and a Rayleigh quotient of (S − λI)−1 when S − λI is invertible.

Theorem 3 [20]. Given the LDLH and UDUH decompositions (4) of S − λI, defining m−1 =
m0 = ν0 = l0 = v0 = vn−1 = μn+1 = 0, then the three unknowns in the twisted factorization
(5) are given by

ξk = νk−1 − |vk−1|2μk+1, k = 1, . . . , n,

ηk =
⎧⎨⎩

0, k = 1,

(lk−1νk−1 − ukv̄k−1μk+1)/ξk, k = 2, . . . , n − 1,

ln−1, k = n,

γk =
{
μk − |mk−2|2νk−2 − ξk|ηk|2, k = 1, . . . , n − 1,

νn, k = n.

Also, when S − λI is invertible

γ −1
k = eT

k (S − λI)−1ek,

where ek is the kth unit vector.

This theorem shows that γk is expected to be small when λ is a good approximation of an
eigenvalue of S.

Now, we are ready to present an efficient and stable method for computing the eigenvectors of
S, which are the left singular vectors of T , using the approximations of its eigenvalues, which are
the squares of the computed singular values of T . Let S = U�UH be an eigenvalue decomposition
of S, where � = diag(λ1, . . . , λn) is the eigenvalue matrix and U = [u1, . . . , un] = [ui,j ] is the
unitary eigenvector matrix. Suppose that λ is an approximation of λi , then for each index k of the
twisted factorization (5), the solution zk for

(S − λI)zk = γkek (7)

is the result of one inverse power iteration with the shift λ and initial vector γkek . Thus, zk gives
an approximation of the eigenvector ui . How good is zk as an approximation of ui? It is shown
in [20] that the error in zk as an approximation of the eigenvector associated with λi is bounded
by the sum of |λ − λi | and |γk|/‖zk‖2. Since λ is the computed λi from the implicit QR method,



Author's personal copy

W. Xu, S. Qiao / Linear Algebra and its Applications 428 (2008) 550–563 557

|λ − λi | is expected to be small. So, in the case of simple eigenvalues, we choose the index
k so that |γk| is the smallest among all the twisted factorizations S − λI = NiDiN

H
i for i =

1, . . . , n.
As we know, when λ is a good approximation of an eigenvalue λi of S, the system (7) is

ill-conditioned. However, using the twisted factorization S − λI = NkDkN
H
k and noting that the

kth column of the twisted factor Nk is ek , we can reformulate the system (7) into an equivalent
but simpler one:

NH
k zk = γkD

−1
k N−1

k ek = ek.

Solving NH
k zk = ek is not only more efficient than solving (7) but also more stable because the

ill-conditioning of (7) caused by the small |γk| in Dk is avoided. From the structure of NH
k (6),

the entries zj of the solution zk are given by

zk = 1,

zk−1 = −η̄k, k > 1,

zj = −l̄j zj+1 − m̄j zj+2, j = k − 2, k − 3, . . . , 1,

zk+1 = v̄k−1η̄k − ūk, v0 = 0,

zj = −v̄j−2zj−2 − ūj−1zj−1, j = k + 2, k + 3, . . . , n.

(8)

The following algorithm summarizes the procedure of computing the eigenvector given a
computed simple eigenvalue λ of S in O(n) flops.

Algorithm 4 (Simple eigenvalue case). Given the LDLH decomposition S = L̂D̂L̂H of the
Hermitian pentadiagonal matrix S = T T H and λ ≈ λi , a computed simple eigenvalue of S, this
algorithm computes an approximation of the eigenvector corresponding to λi .

1. Compute the LDLH and UDUH decompositions (4) of S − λI ;
2. Applying Theorem 3, for i = 1, . . . , n, compute the twisted factorizations S − λI =

NiDiN
H
i and find k such that |γk| = mini |γi |;

3. Solve for zk in NH
k zk = ek using (8);

4. Set ui = zk/‖zk‖2.

Note that a computed eigenvalue of S can be obtained by squaring a singular value of T

computed by the implicit QR method.

4. Multiple eigenvalue case

Now, we consider the multiple eigenvalue case, recalling that in our case the multiplicity is at
most two. In [20], we have proved that in the case of a multiple eigenvalue λi = λi+1, there exist
two indices k1 and k2, k1 /= k2, so that γk1 and γk2 in the twisted factorizations indexed by k1 and
k2 are small and the associated eigenvectors can be obtained by solving NH

ki
zki

= eki
, i = 1, 2. We

present the following O(n) algorithm for computing the eigenvectors associated with a multiple
eigenvalue.

Algorithm 5 (Multiple eigenvalue case). Given the LDLH decomposition S = L̂D̂L̂H of the
Hermitian pentadiagonal matrix S = T T H and λ ≈ λi = λi+1, a computed multiple eigenvalue
of S, this algorithm computes approximations of the eigenvectors corresponding to the multiple
eigenvalue λi = λi+1.
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1. Compute the LDLH and UDUH decompositions (4) of S − λI ;
2. Applying Theorem 3, for i = 1, . . . , n, compute the twisted factorizations S − λI =

NiDiN
H
i and find k1 and k2, k1 /= k2, such that |γk1 | and |γk2 | are the smallest among |γi |;

3. Solve for zk1 in NH
k1

zk1 = ek1 and zk2 in NH
k2

zk2 = ek2 using (8);
4. Set ui = zk1/‖zk1‖2 and ui+1 = zk2/‖zk2‖2.

The issue of the orthogonality between the computed eigenvectors corresponding to multiple or
closely clustered eigenvalues are dealt with by the following two techniques. First, we have found
that if the two indices k1 and k2 found in step 2 of Algorithm 5 are close, for example k2 = k1 + 1,
the eigenvectors zk1 and zk2 can be almost parallel. If k1 and k2 are far apart, then zk1 and zk2

are linearly independent, which is desirable. Thus we propose the following strategy of selecting
k1 and k2. We first find k1 such that |γk1 | = mini |γi |. Then, if there is only one isolated second
smallest |γk2 |, then we choose k2 as the second index. If there is a cluster of several equally small
|γi | next to |γk1 |, then among them we choose an index k2 which is far apart from k1. Second, the
two eigenvectors ui and ui+1 associated with a multiple eigenvalue λi = λi+1 are orthogonalized
when they are converted into the Takagi vectors, as shown in the next section.

5. Converting into Takagi vectors

The eigenvectors ui of S are the left singular vectors of T , but need not be the Takagi vectors
[19]. In this section, we show how to transform the eigenvectors of S into the Takagi vector
of T .

Given an eigenvector uj of S = T T H, we want to convert it into a vector qj satisfying T q̄j =
σj qj . We consider two cases in the conversion. In the case of simple eigenvalues, the corresponding
eigenvectors of T T H are uniquely defined up to a scalar factor with unit modulus, which implies
that the Takagi vector qj is a scalar multiple of the corresponding eigenvector uj . Let T ūj =
ξσj uj for some scalar ξ , |ξ | = 1. Denoting ξ = e2iφ and defining

qj ≡ eiφuj ,

we can verify that

T q̄j = e−iφT ūj = e−iφe2iφσj uj = eiφσj e−iφqj = σj qj

as desired. Specifically, ξ can be obtained by

ξ =
{
σ−1

j uH
j T ūj , σj /= 0,

1, otherwise.
(9)

In the case of multiple eigenvalues, T ūj may not equal ξσj uj . We construct

qj = αj (T ūj + σj uj ), (10)

where αj = 1/‖T ūj + σj uj‖2 is the normalization factor. Then we have

T q̄j = αjT (T ūj + σj uj ) = αj (T T uj + σjT ūj ) = αj (σ
2
j uj + σjT ūj ) = σj qj .

In summary, if uj is an eigenvector associated with a simple eigenvalue, then the corresponding
Takagi vector qj = √

ξuj , where ξ is given by (9). If uj is an eigenvector associated with a
multiple eigenvalue, then the corresponding Takagi vector is given by (10).

Now, we discuss the orthogonality of the Takagi vectors of T converted from the eigenvectors of
T T H. It is obvious that the orthogonality is maintained among the Takagi vectors corresponding
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to distinct singular values, because the eigenvectors corresponding to distinct eigenvalues are
orthogonal. Now, assume that qj and qj+1 are the Takagi vectors corresponding to a multiple sin-
gular value σj = σj+1, recalling that in our case the multiplicity is at most two. The constructions
of qj and qj+1 from (10) imply that the subspace spanned by qj and qj+1 is the same as the one
spanned by uj and uj+1, since qj and qj+1 are the eigenvectors associated with the eigenvalues
σ 2

j = σ 2
j+1 of S. Thus, qj and qj+1 are orthogonal to qi , i /= j, j + 1. However, qi and qi+1 may

not be orthogonal. We apply the Gram–Schmidt method to orthogonalize these vectors.
The cost of a Takagi vector conversion is O(n), since its computations are tridiagonal matrix–

vector multiplication and vector operations. The cost of each orthogonalization is also O(n). Thus
the cost of computing each Takagi vector is O(n) and the total cost of computing all n Takagi
vectors is O(n2).

6. Numerical experiments

We have shown an O(n2 log n) SSVD algorithm for square Hankel matrices of order n. In this
section, we demonstrate the efficiency and accuracy of our algorithm by comparing it with the
subroutines in Matlab and LAPACK.

Our experiments in Matlab were carried out on a server with two 2.4 GHz Xeon CPUs, 1 GB
RAM and an 80 GB disk. The experiments with our C++ implementation were carried out on a
server with ten 400 MHz Ultrasparc II CPUs and 10 GB RAM running Solaris 9 and using gcc
compiler. The random Hankel matrices tested were generated from random vectors with entries
uniformly distributed between 0 and 1. The error in the singular value vector ŝ computed by our
algorithm was measured by

�v = ‖ŝ − s‖2/n,
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Fig. 1. The relative running times of the two stages in our fast SSVD algorithm for square Hankel matrices. The times
are scaled so that the time for the first tridiagonalization stage is one.
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Table 1
Running times of the two stages in our fast SSVD algorithm for square Hankel matrices and the diagonalization time
relative to the tridiagonalization time

Size Tridiagonalization Diagonalization Relative running time (%)

512 8.42 7.69 91
1024 53.26 30.24 57
2048 404.48 130.67 32
4096 3501.44 487.01 16

where s is the singular value vector computed by the Matlab SVD subroutine svd. The error in
the computed SSVD was measured by

�t = ‖V̂ �̂V̂ T − H‖2/n2,

where �̂ = diag(ŝ) and V̂ is the computed Takagi vector matrix. The orthogonality of the computed
Takagi vectors was measured by

�o = ‖V̂ V̂ H − I‖2/n2.

Example 1. Four different sizes of Hankel matrices were generated. We ran the Matlab imple-
mentation of our fast SSVD algorithm and timed the two stages: tridiagonalization and the SSVD
of a symmetric tridiagonal matrix. Fig. 1 plots the relative running times of these two stages.
Table 1 lists the running times and relative running time of the two stages. We can see that the
tridiagonalization consumes most of the total running time, especially for large matrices. This is
expected since the tridiagonalization stage costs O(n2 log n) while the second stage costs O(n2).
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Fig. 2. Performance comparison of our fast tridiagonalization with the LAPACK bidiagonalization subroutine zgebrd.
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Table 2
Running times of our fast tridiagonalization and the LAPACK bidiagonalization, zgebrd

Size Tridiagonalization Bidiagonalization

256 4.21 7.00
512 20.93 62.32
1024 102.89 602.31
2048 629.33 4192.30
3200 2815.20 21327.45

Table 3
Accuracy comparison of our fast SSVD algorithm and the SVD subroutine in Matlab

Matrix size Fast SSVD SVD in Matlab
�o �v �t �o �t

256 3.8924E−14 3.4404E−15 1.8520E−13 3.2343E−18 5.8992E−18
512 2.1821E−14 1.6345E−14 8.3232E−14 3.2189E−18 6.7237E−18
1024 6.2341E−14 5.9797E−14 1.1890E−13 6.3231E−18 2.4174E−18
2048 3.0023E−14 1.2287E−13 4.9402E−13 1.2873E−18 1.9396E−18
4096 4.3948E−15 1.3323E−14 6.3221E−15 4.3245E−19 4.3239E−19
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Fig. 3. Comparison of the execution time of SVD subroutine in Matlab with the proposed fast SSVD algorithm on Hankel
matrices.

LAPACK has no special subroutines for the SVD of complex Hankel matrices. They are treated
as general matrices. There are two steps in computing the SVD of a general matrix: bidiagonal-
ization and diagonalization. Since in our SSVD algorithm, the first stage, tridiagonalization, dom-
inates the total running time, in the following example, we compare the performance of our C++
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Table 4
Running times of our fast SSVD algorithm and the SVD subroutine in Matlab

Size Fast SSVD SVD in Matlab

256 3.73 4.34
512 16.90 30.28
1024 95.86 241.65
2048 663.04 1942.10
4096 4879.20 18504.33

implementation of the tridiagonalization stage in our algorithm with that of the bidiagonalization
subroutine zgebrd in LAPACK. In our C++ implementation, the fastest Fourier transformation
in the west (FFTW) [7] is used to perform the fast Hankel matrix–vector multiplication.

Example 2. Five different sizes of complex Hankel matrices were generated. Fig. 2 plots the
running times of the tridiagonalization stage and the LAPACK bidiagonalization subroutine
zgebrd. As expected, the gap between two running times widens as the size of the matrix grows.
The running times shown in Table 2 demonstrate that our tridiagonalization is approximately
O(n2 log n), whereas the general bidiagonalization is O(n3).

Example 3. In this example, we compare the performance of the Matlab implementation of our
fast SSVD algorithm with the Matlab SVD subroutine svd on random Hankel matrices of five
sizes. Table 3 compares the accuracy. Fig. 3 plots the running times of these two algorithms. The
running times in Table 4 show that our SSVD is O(n2 log n) and Matlab svd is O(n3).

7. Conclusion

We have proposed a novel O(n2 log n) SSVD algorithm for square Hankel matrices of order
n, in contrast with existing O(n3) algorithms. A square Hankel matrix is first transformed into
symmetric tridiagonal form using the block Lanczos method integrated with orthogonalization
schemes for high performance and good orthogonality. Then the SSVD of the symmetric tridi-
agonal matrix is computed by the implicit QR method for the singular values and the twisted
factorization method for the singular vectors. Finally, the singular vectors are converted into
the Takagi vectors in the SSVD. The Takagi vector matrix is given in the form of a product of
unitary matrices. If the block Lanczos method is used in the tridiagonalization, it is a product of
three unitary matrices; if the classical Lanczos method is used, it is a product of two matrices.
The issue of the orthogonality of the Takagi vectors associated with a multiple singular value is
dealt with by two techniques: an index selection strategy in the twisted factorization method; the
orthogonalization process in converting the singular vectors into the Takagi vectors. Our numerical
experiments have confirmed the theoretical complexity and shown good accuracy of our algorithm.

Remark. For general rectangular Hankel matrices, the SSVD does not exist. However, the frame-
work presented in this paper can be used to construct an O(n2 log n) SVD algorithm for Hankel and
Toeplitz matrices. First, a Hankel or Toeplitz matrix is reduced to bidiagonal form in O(n2 log n)

flops, using the Lanczos bidiagonalization [8,13] integrated with the fast Hankel or Toeplitz
matrix–vector multiplication using the FFT. Then, the singular values of the bidiagonal matrix
are computed by the implicit QR method in O(n2) flops. Finally, applying the methods for the
SVD of bidiagonal matrices [5,9,18], we obtain the singular vectors in O(n2) flops.
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