
A Parallel LLL Algorithm

Yixian Luo
Department of Computing and Software,

McMaster University,
1280 Main St. West

Hamilton, Ontario, L8S 4K1, Canada.

Sanzheng Qiao
Department of Computing and Software,

McMaster University,
1280 Main St. West

Hamilton, Ontario, L8S 4K1, Canada.
qiao@mcmaster.ca

ABSTRACT
The LLL algorithm is a well-known and widely used lattice
basis reduction algorithm. In many applications, its speed
is critical. Parallel computing can improve speed. However,
the original LLL is sequential in nature. In this paper, we
present a multi-threading LLL algorithm based on a recently
improved version: an LLL algorithm with delayed size re-
duction.

Categories and Subject Descriptors
G.4 [Mathematical Software]: Parallel and vector im-
plementations; G.1.2 [Numerical Analysis]: Approxima-
tions—Least squares approximation; G.1.6 [Numerical Anal-
ysis]: Optimization—Least squares methods

General Terms
Algorithms

Keywords
Algorithms, parallel computing, multi-threading, lattice ba-
sis reduction, LLL algorithm

Conference topics: Parallel computing, algorithms.

1. INTRODUCTION
The LLL algorithm, introduced by Lenstra, Lenstra, and

Lovász [3] in 1982, is a method for reducing lattice bases.
It has received a lot of attention as an effective numerical
tool for preconditioning the integer least squares problem.
In 2008, Luk and Tracy [5] presented a matrix version of the
LLL algorithm. In this paper, we first present the original
LLL algorithm in Section 2 and the LLL algorithm with
delayed size-reduction in Section 3, then propose a parallel
LLL algorithm in Section 4 and its Pthread implementation
in Section 5.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
C3S2E-11 2011, May 16-18, Montreal [QC, CANADA]
Editors: Abran, Desai, Mudur
Copyright 2011 ACM 978-1-4503-0626-3/11/05 $10.00.

Figure 1: The lattice points generated by the col-
umn vectors b1 and b2 of B (1).

1.1 Bases for Lattices
Let n be a positive integer, a lattice is a subset of the

n-dimensional real vector space ℜn, defined by

L = {Bz},

where z are all integer n-vectors and B is an m-by-n (m ≥
n) matrix with real entries and of full column rank, called
lattice generator matrix.

Let B = [b1, b2, ..., bn], then b1, b2, ..., bn are linearly inde-
pendent columns. They form a basis for L. For example,
the matrix

B =
ˆ

b1 b2

˜
=

»
2 3
1 0

–
(1)

generates the lattice points in Figure 1.

1.2 Reduced Bases
A lattice may have more than one basis. For example, the

matrix

C =
ˆ

c1 c2

˜
=

»
1 1
2 −1

–
(2)

also generates the lattice in Figure 1. Figure 2 depicts the
columns of B and C, and the same lattice as in Figure 1.

Since a lattice L may have more than one basis, some of
the bases are more desirable than others. We can expect
that short basis vectors are close to orthogonal. As shown
in Figure 2, c1 and c2 are shorter basis vectors than b1 and
b2 and they are “more orthogonal” than b1 and b2. Short
bases are called reduced bases.

Figure 2: The lattice and the columns of B and C.
(2).

1.3 The Gram-Schmidt Process
The Gram-Schmidt process is a method for constructing

an orthogonal (or orthonormal) basis for any subspace of
ℜn, given a set of linearly independent vectors. It iteratively
constructs vectors orthogonal to all of the vectors that have
already been constructed [2]. In other words, it triangular-
izes a matrix using orthogonal transformations.

Since basis vectors are linearly independent, we can apply
the Gram-Schmidt process to them. Now we present this
process. Let b1, b2, ..., bn form a basis for a lattice L and

b∗1 = b1,

b∗2 = b2 −
bT
2 b∗1

(b∗1)
T b∗1

b∗1,

b∗3 = b3 −
bT
3 b∗2

(b∗2)
T b∗2

b∗2 −
bT
3 b∗1

(b∗1)
T b∗1

b∗1,

...

b∗n = bn −
bT
nb∗n−1

(b∗n−1)
T b∗n−1

b∗2 − · · · −
bT
n b∗1

(b∗1)
T b∗1

b∗1,

then b∗1, b
∗

2, ..., b
∗

n are orthogonal.

1.4 Unimodular Matrix
Two different bases for a same lattice are related by an

integer matrix whose inverse is also an integer matrix. For
example, the matrix B in (1) and the matrix C in (2) are
related by

C = BM, where M =

»
2 −1
−1 1

–
.

Note that det(M) = 1. Specifically, we have the following
definition.

Definition 1 (Unimodular matrix). A nonsingular
integer matrix M is called unimodular if det(M) = ±1.

2. THE LLL ALGORITHM
The LLL algorithm first applies the Gram-Schmidt pro-

cess to an m-by-n (m ≥ n) lattice generator matrix B:

B =
ˆ

b1 ... bn

˜

=
ˆ

b∗1 ... b∗n
˜

2
64

1 · · · u1,n

...
. . .

...
0 · · · 1

3
75

=
h

b∗
1

‖b∗1‖2
...

b∗
n

‖b∗n‖2

i
diag(‖b∗i ‖2)

2
64

1 · · · u1,n

...
. . .

...
0 · · · 1

3
75

:= QD1/2U, (3)

where Q has orthonormal columns, D = diag(di) with di =
‖b∗i ‖

2
2, and U = [ui,j] is upper triangular with a unit diago-

nal.
In terms of the decomposition (3), we have the following

definition of a size-reduced basis.

Definition 2 (Size-reduced). A basis {b1, b2, ..., bn}
for a lattice is called size-reduced if the U in the decomposi-
tion (3) satisfies

|ui,j | ≤
1

2
, for 1 ≤ i < j ≤ n

In [3], a notion of reduced basis, stronger than size-reduced,
is defined as follows

Definition 3 (LLL-reduced). A basis {b1, b2, ..., bn}
for a lattice is called LLL-reduced if the U and D in the
decomposition (3) satisfy the two conditions:

|ui,j | ≤
1

2
, for 1 ≤ i < j ≤ n (4)

and

di + u2
i−1,idi−1 ≥ ωdi−1, for 2 ≤ i ≤ n, (5)

where 1/4 < ω < 1.

The condition (4) ensures that an LLL-reduced basis is
size-reduced. The condition (5) requires that di be loosely
ordered.

After the Gram-Schmidt process, the LLL algorithm com-
putes a new basis that satisfies the above two conditions (4)
and (5).

If |ui,j | > 1/2 for some j > i, a procedure called Reduce(i, j)
is applied to ensure condition (4).

Procedure 1 (Reduce(i, j)). Given a lattice genera-
tor matrix B, upper triangular U in the decomposition (3),
and a unimodular matrix M , form an n-by-n unimodular
matrix Mij = In − γeie

T
j where γ = ⌈ui,j⌋ is an integer

closest to ui,j and ei is the ith unit vector. Apply Mij to U ,
B and M :

U ← UMij , B ← BMij , and M ←MMij .

If |ui,j | > 1/2 for some j > i, then in the updated U , |ui,j | ≤
1/2.

If the condition (5) does not hold for some 2 ≤ i ≤ n,
another procedure called SwapRestore(i) is applied.

Procedure 2 (SwapRestore(i)). Given a lattice gen-
erator matrix B, diagonal D and upper triangular U in the

decomposition (3), and a unimodular matrix M , let µ =

ui−1,i, compute d̂i−1 = di + µ2di−1 and ξ = µdi−1/d̂i−1,
and the new

di ← di−1di/d̂i−1 and di−1 ← d̂i−1,

then form

Xi =

»
µ 1− µξ
1 −ξ

–
.

Swap the columns i and i− 1 of U , B and M , then update
U :

U ←

2
664

Ii−2

ξ 1− ξµ
1 −µ

In−i

3
775 U

= diag(Ii−2, X
−1
i , In−i)U.

It can be verified that the new D and U satisfy the condition
(5).

Now, we have the LLL algorithm.

Algorithm 1 (LLL algorithm). Given an m-by-n, where
m ≥ n, lattice generator matrix B, compute the D and U in
the decomposition (3) of B using the Gram-Schmidt method;

1 set M ← I ;
2 k ← 2;
3 while k ≤ n
4 if |uk−1,k| > 1/2
5 Reduce(k − 1, k);
6 endif
7 if dk < (ω − u2

k−1,k)dk−1

8 SwapRestore(k);
9 k ← max(k − 1, 2);
10 else
11 for i = k − 2 down to 1
12 if |ui,k| > 1/2
13 Reduce(i, k);
14 endif
15 endfor
16 k ← k + 1;
17 endif
18 endwhile

As we can see, the original LLL algorithm is very sequen-
tial.

3. THE LLL ALGORITHM WITH DELAYED
SIZE-REDUCTION

Recently, Zhang, Wei, and Qiao [7] proposed a modified
LLL algorithm, which can save a significant amount of op-
erations and also provides a basis for a parallel implementa-
tion. We begin with an example to illustrate the idea. Let
ω = 3/4 and a lattice basis matrix

B =

2
4

1 −1 3
1 0 5
1 2 6

3
5 . (6)

We trace the LLL algorithm but only give the values of D
and U in every step according to the decomposition (3).

2
4

1 −1 3
1 0 5
1 2 6

3
5 Gram-Schmidt (S1)
−−−−−−−−−−−−−−→

D = diag
`
3, 14

3
, 9

14

´
, U =

2
4

1 1
3

14
3

0 1 13
14

0 0 1

3
5

k = 2 do nothing (S2)
−−−−−−−−−−−−−−−−→
k = 3 Reduce(2,3) (S3)
−−−−−−−−−−−−−−−−−→

D = diag
`
3, 14

3
, 9

14

´
, U =

2
4

1 1
3

13
3

0 1 − 1
14

0 0 1

3
5

SwapRestore(3) (S4)
−−−−−−−−−−−−−−−→

D = diag
`
3, 2

3
, 9

2

´
, U =

2
4

1 13
3

1
3

0 1 − 1
2

0 0 1

3
5

k = 2 Reduce(1,2) (S5)
−−−−−−−−−−−−−−−−−−→

D = diag
`
3, 2

3
, 9

2

´
, U =

2
4

1 1
3

1
3

0 1 − 1
2

0 0 1

3
5

SwapRestore(2) (S6)
−−−−−−−−−−−−−−−→

D = diag
`
1, 2, 9

2

´
, U =

2
4

1 1 0
0 1 1

2
0 0 1

3
5

k = 2 Reduce(1,2) (S7)
−−−−−−−−−−−−−−−−−−→

D = diag
`
1, 2, 9

2

´
, U =

2
4

1 0 0
0 1 1

2
0 0 1

3
5

k = 3 do nothing (S8)
−−−−−−−−−−−−−−−−−→

end.

After (S4), the algorithm found that |u1,2| = 13/3 > 1/2,
so we had step (S5) to reduce u1,2. Then step (S6) was
applied because d2 < (3/4 − u2

1,2)d1. After (S6), we found
that |u1,2| = 1, which is larger than 1/2, so Reduce(1, 2)
was applied again. If we did not reduce u1,2 in step (S5),
instead swapped d2 and d1 first, we would just need to ap-
ply Reduce(1, 2) once. This means that some size reduc-
tions can be delayed until the condition (5) is satisfied first.
This method is called the LLL algorithm with delayed size-
reduction [7].

Before presenting the new algorithm, we introduce the
following procedure, where γ = ⌈uk−1,k⌋ is an integer closest
to uk−1,k.

Procedure 3 (ReduceSwapRestore(i, γ)). Given a
lattice generator matrix B, diagonal D and upper triangu-
lar U in the decomposition (3), and a unimodular matrix

M , let µ = ui−1,i, compute d̂i−1 = di + (µ − γ)2di−1 and

ξ =
(µ−γ)di−1

d̂i−1

, and the new

di ←
di−1di

d̂i−1

and di−1 ← d̂i−1,

then form

bXi =

»
µ− γ 1− µξ + γξ

1 −ξ

–

=

»
1 −γ
0 1

– »
µ 1− µξ
1 −ξ

–
.

Let

P =

»
1 −γ
0 1

– »
0 1
1 0

–

and Πi = diag([Ii−2 P In−i]), apply Πi to U , B and M :

U ← UΠi, B ← BΠi, M ←MΠi.

Then apply bX−1
i to U :

U ←

2
664

Ii−2

ξ 1− ξµ + γξ
1 γ − µ

In−i

3
775 U

= diag(Ii−2, bX−1
i , In−i)U.

We can see that the above procedure is an integration of
Reduce(i− 1, i) and SwapRestore(i).

Now, we present the LLL algorithm with delayed size-
reduction.

Algorithm 2. (LLL Algorithm with delayed size-reduction)
Given an m-by-n, m ≥ n, lattice generator matrix B, com-
pute D and U in the decomposition (3) of B using the Gram-
Schmidt method;

1 set M ← I ;
2 k ← 2;
3 while k ≤ n
4 γ = ⌈uk−1,k⌋;
5 if dk < (ω − (uk−1,k − γ)2)dk−1

6 ReduceSwapRestore(k,γ);
7 k ← max(k − 1, 2);
8 else
9 k ← k + 1;
10 endif
11 endwhile
12 for k← 2 : n
13 for i = k − 1 down to 1
14 if |ui,k| > 1/2
15 Reduce(i, k);
16 endif
17 endfor
18 endfor

The above algorithm consists of two parts. The first part
enforces the condition (5) and the second part does the size
reduction.

Now we trace the LLL algorithm with delayed size-reduction
using the same matrix B in (6):2

4
1 −1 3
1 0 5
1 2 6

3
5 Gram-Schmidt (P1)
−−−−−−−−−−−−−−→

D = diag
`
3, 14

3
, 9

14

´
, U =

2
4

1 1
3

14
3

0 1 13
14

0 0 1

3
5

k = 2 do nothing (P2)
−−−−−−−−−−−−−−−−→
k = 3 ReduceSwapRestore(3, 1) (P3)
−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

D = diag
`
3, 2

3
, 9

2

´
, U =

2
4

1 13
3

1
3

0 1 − 1
2

0 0 1

3
5

k = 2 ReduceSwapRestore(2, 4) (P4)
−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

D = diag
`
1, 2, 9

2

´
, U =

2
4

1 1 0
0 1 1

2
0 0 1

3
5

k = 2 do nothing (P5)
−−−−−−−−−−−−−−−−→

k = 3 do nothing (P6)
−−−−−−−−−−−−−−−−→

endwhile

Reduce(1, 2) (P7)
−−−−−−−−−−−−−→

D = diag
`
1, 2, 9

2

´
, U =

2
4

1 0 0
0 1 1

2
0 0 1

3
5

endfor → end.
As expected, in this process, the procedure Reduce(1, 2)

was applied only once. Typically, the LLL algorithm with
delayed size-reduction runs twice as fast as the original LLL
algorithm.

4. A PARALLEL LLL ALGORITHM
For a parallel implementation of Algorithm 2, we call the

first part of the algorithm, including the lines from 3 to 11,
the Swap part, and the second part, the lines from 12 to 18,
the Reduce part.

In the Swap part, we apply the odd-even ordering tech-
nique. We first execute ReduceSwapRestore(k, γ) for all
even k such that the condition dk < (ω− (uk−1,k−γ)2)dk−1

is true, then for all odd k such that the condition is true. The
while-loop terminates when the condition is false for all k.
Thus we design two for-loops, one for even k and one for odd
k. While the two for-loops must be executed sequentially,
the iterations in each for-loop can be executed in parallel.
For example, the first for-loop, when k = 2, if the condition
d2 < (ω − (u1,2 − γ)2)d1 is true, ReduceSwapRestore(2, γ)
permutes the columns 1 and 2 and modifies the rows 1 and 2.
For k = 4, if the condition is true, ReduceSwapRestore(4, γ)
permutes the columns 3 and 4 and modifies the rows 3
and 4. Therefore, they can be executed in parallel, be-
cause there is no data conflict. Note that the permuta-
tion in ReduceSwapRestore(4, γ) and the row operation in
ReduceSwapRestore(2, γ) can be executed in any order with-
out affecting the result at the end of the loop, although they
share variables u1,3, u1,4, u2,3, and u2,4. Similarly, the sec-
ond for-loop for odd k can be executed in parallel.

In the Reduce part, the off diagonal elements ui,j are re-
duced. In order to modify ui,j and up,q in parallel without
data conflict, the indices i, j, p, q must be distinct, because
reducing ui,j modifies the jth column using the ith column.
Consider two elements ui,j and up,q on a same antidiagonal,
their indices satisfy i + j = p + q. Also, two different en-
tries on a same antidiagonal must be in different rows and
columns, that is, i 6= p and j 6= q. Moreover, in the Reduced
part, we modify the entries in the upper triangular part,
implying that i < j and p < q. Thus i, j, p, q are distinct
and can be modified in parallel without data conflict. As
shown in Figure 3, the elements on a same antidiagonal can
be reduced in parallel. There are 2n− 3 antidiagonals.

In summary, we have the following parallel algorithm.

Algorithm 3 (A Parallel LLL Algorithm). Given
an m-by-n, m ≥ n, lattice generator matrix B, compute the
D and U in the decomposition (3) of B using the Gram-
Schmidt method;

1 set M ← I ;
2 f ← false;
3 while f 6= true
4 f ← true;
5 for k← 2 : +2 : n (run in parallel)
6 γ = ⌈uk−1,k⌋;
7 if dk < (ω − (uk−1,k − γ)2)dk−1

8 f ← false;

Figure 3: Reordering the procedure Reduce(i, j). For
legibility, we use ⊗ to represent ui,j in the relative
position.

9 ReduceSwapRestore(k,γ);
10 endif
11 endfor
12 for k← 3 : +2 : n (run in parallel)
13 γ = ⌈uk−1,jk⌋;
14 if dk < (ω − (uk−1,k − γ)2)dk−1

15 f ← false;
16 ReduceSwapRestore(k,γ);
17 endif
18 endfor
19 endwhile
20 for k← 2n− 3 : 1
21 if k ≤ n− 1
22 h = 1;
23 else
24 h = k − n + 2;
25 endif
26 for i← h : (k + 3)/2 (run in parallel)
27 j = k + 2− i;
28 if |ui,j | > 1/2
29 Reduce(i, j);
30 endif
31 endfor
32 endfor

Note that the Reduce part in the algorithm is executed in
the order shown in Figure 3.

5. IMPLEMENTATION OF THE PARALLEL
LLL ALGORITHM WITH PTHREADS

Both threads and processes can provide parallel program
execution, but a thread can be created with much less op-
erating system overhead than a process. Managing threads
requires fewer system resources than managing processes.

Pthreads is a standardized model for dividing a program
into subtasks whose execution can be interleaved or run in
parallel. The primary motivation for considering the use of
Pthreads on an SMP architecture is to achieve high perfor-
mance [1].

The Pthreads library aims to be expressive as well as
portable and provides a fairly comprehensive set of features
to create, terminate, and synchronize threads and to prevent
different threads from trying to modify the same values at

Figure 4: Implementation of the Swap part by using
a threads pool.

the same time. It includes synchronization mechanisms mu-
texes, locks, condition variables, and semaphores.

There are no set rules for threading a program, but there
are some models [6], such as the Boss/Worker Model, the
Peer Model, and the Pipeline Model, that define how a
threaded application delegates its work to its threads and
how these threads communicate with each other.

Now we present our thread implement of the parallel Al-
gorithm 3. As described in Section 4, the parallel algorithm
consists of two parts: the Swap part and the Reduce part.

5.1 Implementation of the Swap Part
To implement the Swap part, we create a fixed number of

threads, called Threads Pool method, as shown in Figure 4.
The iterations of each of these two for-loops are divided into
several groups, each of which contains a fixed number of the
values of k. Each thread is assigned a group. So in each iter-
ation of the while-loop, these threads are running in parallel.
At the end of the first for-loop, we should make a synchro-
nization point to ensure that all threads finish their work
before starting the second for-loop. Otherwise, a thread
may enter the second for-loop while some threads are still
in the first for-loop, causing data conflict. Similarly, a syn-
chronization point should be added at the end of the second
for-loop.

Now, we address two issues, common in parallel program-
ming.

• Overhead : The implementation has a few synchroniza-
tion points. The there are two synchronization points
in each iteration of the while-loop. When one thread
holds the lock, other threads have to wait, introduc-
ing overhead. In addition, threads intercommunicate
when the program enters into the synchronization part
in order for each thread to know states of the others,
introducing more overhead.

• Load imbalance: We know the major cost in this part
is the procedure ReduceSwapRestore. When we group
the values of k, there may be a load imbalance prob-
lem. For example, assuming n = 20 and we have four

Figure 5: Implementation of the Reduce part by us-
ing a reduction list.

threads A, B, C, and D, so the values of k assigned
to these threads for the first for-loop may be A:(2, 10,
18), B:(4, 12, 20), C:(6, 14), and D:(8, 16). If in an
iteration of the while-loop only in positions 2, 10 and
18 ReduceSwapRestore is called, then the work load
of thread A is much heavier than the other threads
B, C, and D, providing no benefit while requiring syn-
chronization overhead. Since the work distribution is
unpredictable, there is no fixed solution for this prob-
lem.

5.2 Implementation of the Reduce Part
We can also apply the Threads Pool method to a paral-

lel implementation of the Reduce part. After the threads
check and reduce the entries on the same antidiagonal, we
also need to add a synchronization point at the end. How-
ever, we have found that sometimes the Reduce procedure
may not be called on an antidiagonal, especially when the
antidiagonal is short. On the other hand, the major cost
is the Reduce procedure, the cost of checking the condition
and the simple assignment is minor, less than the cost of the
synchronization between threads. So there is no need to use
several threads on short antidiagonals.

This gives rise to another method, called Reduction List
method, as shown in Figure 5. The main thread checks the
conditions of all entries on an antidiagonal, records those
entries which need to be reduced, and adds them into a list,
but without calling the Reduce procedure. After checking all
the entries on the current antidiagonal, if there are entries on
the list, the worker threads remove one entry at a time from
the list and reduce these entries until the list becomes empty.
If there is no such entry, the program moves to the next an-
tidiagonal without using any worker threads. In addition to
reducing the synchronization cost, this method also balances
thread workload by assigning the worker threads almost the
equal number of entries that need to be reduced.

5.3 Testing
We tested the algorithm by using three different imple-

mentations as shown in Table 1, where serial denotes the
sequential Algorithm 2, TP represents that both the Swap
and Reduce parts are implemented by using the Threads
Pool method, and RL means that the Swap part is imple-

Implementation Type Swap Part Reduce Part

serial Sequential Sequential
TP (2,3,4) Thread Pool Thread Pool
RL (2,3,4) Thread Pool Reduction List

Table 1: Implementations types. The numbers
(2,3,4) represent the number of threads used. Since
the test platform has a 4-core cpu, we use at most
four threads.

mented by using the Threads Pool method, and the Reduce
part is implemented by using the Reduction List method.

Figures 6 to 15 show the results of 100 random matrices,
10 matrices for each dimension, by using the seven kinds of
implementations in Table 1.

From Figures 6 to 9 we can see that no parallel imple-
mentation can outperform the serial implementation when
dimension is smaller than (50,50). However, Figure 10 be-
gins to show that the thread-pool implementation by using
2 threads (TP2) is better in some cases.

Figure 11 shows that the thread-pool implementation us-
ing 3 or 4 threads is a bad choice, but no clear winner for
others.

From Figures 12 to 15we notice that the reduction list im-
plementation using 3 or 4 threads (TR3 or TR4) is always
the most efficient, showing that the reduction list imple-
mentation is a good choice for matrices of size larger than
(100,100).

6. REFERENCES
[1] Blaise Barney. POSIX threads programming. Lawrence

Livermore National Laboratory.
https://computing.llnl.gov/tutorials/pthreads/

[2] G.H. Golub and C.F. Van Loan. Matrix Computations,
Third Edition. The Johns Hopkins University Press,
Baltimore, MD, 1996.

[3] A.K. Lenstra, H.W. Lenstra, Jr. and L. Lovász.
Factorizing polynomials with rational coefficients.
Mathematicsche Annalen, 261, 1982, 515–534.

[4] Franklin T. Luk, Sanzheng Qiao, Wen Zhang. A Lattice
Basis Reduction Algorithm. Institute for Computational
Mathematics Technical Report 10-04. Hong Kong
Baptist University, Kowloon, Hong Kong, China, 2010.

[5] Franklin T. Luk and Daniel M. Tracy. An improved
LLL algorithm. Linear Algebra and its Applications,
428(2-3), 2008, 441–452.

[6] Bradford Nichols, Dick Buttlar, and Jackie Farrell.
Pthreads Programming. O’Reilly & Associates, Inc.
1996.

[7] Wen Zhang, Yimin Wei, and Sanzheng Qiao. LLL algo-
rithm with delayed size reduction. Manuscript, 2010. Per-
sonal Communication.

Figure 6: Costs of ten 10− by − 10 matrices

Figure 7: Costs of ten 20− by − 20 matrices

Figure 8: Costs of ten 30− by − 30 matrices

Figure 9: Costs of ten 40− by − 40 matrices

Figure 10: Costs of ten 50− by − 50 matrices

Figure 11: Costs of ten 100 − by − 100 matrices

Figure 12: Costs of ten 200− by − 200 matrices

Figure 13: Costs of ten 300− by − 300 matrices

Figure 14: Costs of ten 400 − by − 400 matrices

Figure 15: Costs of ten 500 − by − 500 matrices

