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1 Introduction

We consider an important problem in mathematical modeling:

Exponential Decomposition. Given a finite sequence of signal values
{s1, s2, . . . , sn}, determine a minimal positive integer r, complex coefficients
{c1, c2, . . . , cr}, and distinct complex knots {z1, z2, . . . , zr}, so that the following
exponential decomposition signal model is satisfied:

sk =

r∑

i=1

ciz
k−1
i , for k = 1, . . . , n. (1.1)

We usually solve the above problem in three steps. First, determine the rank r of
the signal sequence. Second, find the knots zi. Third, calculate the coefficients
{ci} by solving an r × r Vandermonde system:

W (r)c = s(r), (1.2)

where

W (r) =





1 1 · · · 1
z1 z2 · · · zr

...
...

. . .
...

zr−1
1 zr−1

2 · · · zr−1
r




, c =





c1

c2

...
cr




and s(r) =





s1

s2

...
sr




.

A square Vandermonde system (1.2) can be solved efficiently and stably (see [1]).
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276 Exponential Decomposition and Hankel Matrix

There are two well known methods for solving our problem, namely, Prony [8]
and Kung [6]. Vandevoorde [9] presented a single matrix pencil based framework
that includes [8] and [6] as special cases. By adapting an implicit Lanczos pro-
cess in our matrix pencil framework, we present an exponential decomposition
algorithm which requires only O(n2) operations and O(n) storage, compared to
O(n3) operations and O(n2) storage required by previous methods.

The relation between this problem and a large subset of the class of Hankel
matrices was fairly widely known, but a generalization was unavailable [3]. We
propose a new variant of the Hankel-Vandermonde decomposition and prove
that it exists for any given Hankel matrix. We also observe that this Hankel-
Vandermonde decomposition of a Hankel matrix is rank-revealing. As with many
other rank-revealing factorizations, the Hankel-Vandermonde decomposition can
be used to find a low rank approximation to the given perturbed matrix. In
addition to the computational savings, our algorithm has an advantage over
many other popular methods in that it produces an approximation that exhibits
the exact desired Hankel structure.

This paper is organized as follows. After introducing notations in §2, we
discuss the techniques for determining rank and separating signals from noise in
§3. In §4, we describe the matrix pencil framework and show how it unifies two
previously known exponential decomposition methods. We devote §5 to our new
fast algorithm based on the framework and §6 to our new Hankel-Vandermonde
decomposition.

2 Notations

We adopt the Matlab notation; for example, the symbol Ai:j,k:l denotes a sub-
matrix formed by intersecting rows i through j and columns k through l of A,
and A:,k:l is a submatrix consisting of columns k through l of A. We define E(m)

as an m × m exchange matrix:

E(m) =





0 · · · 0 1
... . .

.
1 0

0 . .
.

. .
. ...

1 0 · · · 0




, for m = 1, 2, . . . .
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We also define a sequence of n-element vectors {w(0)(z),w(1)(z), . . . ,w(n−1)(z)}
as follows:

w(0)(z) =





1
...

zk−1

zk

zk+1

...
zn−1





and w(k)(z) =





0
...
0
1

(k + 1)z
...

(n−1)!
k! (n−1−k)!z

n−1−k





,

for k = 1, 2, . . . , n− 1. We see that w(k)(z) is a scaled k-th derivative of w(0)(z),
normalized so that the first nonzero element equals unity. We introduce the
concept of a confluent Vandermonde slice of order n × m:

C(m)(z) =
[
w(0)(z),w(1)(z), . . . ,w(m−1)(z)

]
, for m = 1, 2, . . . .

A confluent Vandermonde matrix [5] is a matrix of the form
[
C(m1)(z1), C

(m2)(z2), . . . , C
(mj)(zj)

]
.

The positive integer mi is called the multiplicity of zi in the confluent Vander-
monde matrix. For our purposes, we define a new and more general structure
that we call a biconfluent Vandermonde matrix:

[
B(m1)(z1), B

(m2)(z2), . . . , B
(mj)(zj)

]
,

where B(mi)(zi) equals either C(mi)(zi) or E(n)C(mi)(zi).

3 Finding Rank and Denoising Data

Recall our sequence of signal values. We want to find r, the rank of the data.
Since the values contain errors, finding the rank means separating the signals
from the noise. We modify our notations and use {ŝj} to represent the sequence
of “polluted” signal values. Although we do not know the exact value of r, we
would know a range in which r must lie. So we find two positive integers k and
l such that

k + 1 ≥ r, l ≥ r and k + l ≤ n.

Since n is usually large and r quite small, choosing k and l to satisfy the above
inequalities is not a problem. We construct a (k + 1) × l Hankel matrix Ĥ by

Ĥ =





ŝ1 ŝ2 · · · ŝl

ŝ2 ŝ3 · · · ŝl+1

...
...

. . .
...

ŝk ŝk+1 · · · ŝk+l−1

ŝk+1 ŝk+2 · · · ŝk+l




.
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If there is no noise in the signal values, the rank of Ĥ will be exactly r. Due to
noise, the rank of Ĥ will be greater than r. Compute a singular value decompo-
sition (SVD) of Ĥ :

Ĥ = UΣV H,

where U and V are unitary matrices, and

Σ = diag(σ1, σ2, . . . , σmin(k+1,l)) ∈ R(k+1)×l.

We find r from looking for a “gap” in the singular values:

σ1 ≥ σ2 ≥ · · · ≥ σr ≫ σr+1 ≥ σr+2 ≥ · · · ≥ σmin(k+1,l) ≥ 0. (3.1)

There could be multiple gaps in the sequence of singular values, in which case
we could either pick the first gap or use other information to choose r from the
several possibilities. This is how we determine the numerical rank r of Ĥ , and
thereby the rank of the signal data. A (k + 1) × l matrix A of exact rank r is
obtained from

A = U:,1:rΣ1:r,1:r(V:,1:r)
H.

Unfortunately, the matrix A would have lost its Hankel structure. We want to
find a Hankel matrix H that will be “close” to A.

Hankel Matrix Approximation. Given a (k + 1) × l matrix A of rank-r,
find a (k + 1) × l Hankel matrix H of rank-r such that ‖A − H‖F = min.

A simple way to get a Hankel structure from A is to average along the an-
tidiagonals; that is,

s1 = a11, s2 = (a12 + a21)/2, s3 = (a13 + a22 + a31)/3, . . .

However, the rank of the resultant Hankel matrix would inevitably be greater
than r. An SVD could be used to reduce the rank to r, but the decomposition
would destroy the Hankel form. Cadzow [2] proposed that we iterate using a
two-step cycle of an SVD followed by averaging along the antidiagonals. He
proved that the iteration would converge under some mild assumptions.

Note that in the matrix approximation problem, the obvious selection of the
Frobenius norm may not be appropriate, since this norm would give an unduly
large weighting to the central elements of the Hankel structure. A weighted
Frobenius matrix could be constructed, but such a norm is no longer unitarily
invariant.

Nonetheless, let us assume that we have denoised the data and obtained a
(k + 1) × l Hankel matrix H of rank r:

H =





s1 s2 · · · sl

s2 s3 · · · sl+1

...
...

. . .
...

sk sk+1 · · · sk+l−1

sk+1 sk+2 · · · sk+l




. (3.2)
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4 Matrix Pencil Framework

For this section, we take

l = r

in (3.2) and we assume that rank(H) = r. We present a matrix pencil framework
which includes the methods of Prony [8] and Kung [6] as special cases.

We begin by defining two k-by-r submatrices of H :

H1 ≡ H1:k,: and H2 ≡ H2:k+1,:. (4.1)

So,

H1 =





s1 s2 · · · sr−1 sr

s2 s3 · · · sr sr+1

...
...

. . .
...

...
sk sk+1 · · · sr+k−2 sr+k−1





and

H2 =





s2 s3 · · · sr sr+1

s3 s4 · · · sr+1 sr+2

...
...

. . .
...

...
sk+1 sk+2 · · · sr+k−1 sr+k




.

Note that column i of H2 equals column (i + 1) of H1, for i = 1, 2, . . . , r − 1.
What about the last column of H2? Let {zi} denote the roots of the polynomial

qr(z) = zr + γr−1z
r−1 + · · · + γ1z + γ0. (4.2)

For any m = 1, 2, . . . , k, we can verify that

sr+m +

r−1∑

i=0

γisi+m = c1z
m−1
1 qr(z1) + c2z

m−1
2 qr(z2) + · · · + crz

m−1
r qr(zr) = 0.

It follows that

sr+m = −

r−1∑

i=0

γisi+m.

Thus,

H1X = H2, (4.3)

where

X =





0 0 · · · 0 −γ0

1 0 · · · 0 −γ1

0 1 · · · 0 −γ2

...
...

. . .
...

...
0 0 · · · 1 −γr−1




.
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Hence X is the companion matrix of the polynomial (4.2), and the knots zi are
the eigenvalues of the X .

Let vi denote an eigenvector of X corresponding to zi; that is

Xvi = zivi.

It follows from (4.3) that
ziH1vi = H2vi.

In general, the knots zi are the eigenvalues of matrix Y satisfying the matrix
equation:

FH1GY = FH2G, (4.4)

for any nonsingular F and G. In other words, let F and G be any nonsingular
matrices of orders k and r respectively, then the knots zi are the eigenvalues of
the pencil-equation

FH2Gv − λFH1Gv = 0.

4.1 Prony’s Method

For Prony’s method, we consider the case when n = 2r and set k = r. Let
F = G = I in the framework (4.4), then the knots are the eigenvalues of the
matrix Y satisfying H1Y = H2. Now, (4.3) shows that the companion matrix
X of the polynomial (4.2) satisfies this matrix equation. Thus the roots of the
polynomial (4.2) are the knots. Moreover, the last column of (4.3) indicates
that the coefficient vector g = (γ0, γ1, . . . , γr−1)

T of the polynomial (4.2) is the
solution of the r × r Yule-Walker system:

H1g = −(sr+1, sr+2, · · · , s2r)
T. (4.5)

This leads to the Prony’s method:

Prony’s Method

1. Solve a square equation (4.5), i.e., n = 2r, for the coefficients γi;

2. Determine the roots zi of the polynomial qr(z) of (4.2);

3. Find the coefficients ci by solving the square Vandermonde system:
W (r)c = s(r) of (1.2).

4.2 Kung’s Method

Now, we derive Kung’s Hankel SVD method [6] using our framework. Let

H = UΣV H

be the SVD of H in (3.2). Denote

U1 = U1:k,: and U2 = U2:k+1,:.
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Then we have
H1 = U1ΣV H and H2 = U2ΣV H.

Setting F = I and G = V Σ−1 in the framework (4.4), we know that the eigen-
values of Y in

U1Y = U2 (4.6)

are the knots zi. The matrix Y can be solved by an approximation method, for
example, least squares.

The following procedure is sometimes referred to as the Hankel SVD (HSVD)
algorithm:

Kung’s HSVD Method

1. Solve (4.6) for Y in a least squares sense;

2. Find the knots zi as the eigenvalues of Y ;

3. Find the coefficients ci by solving (1.2).

Kung’s method computes better results than Prony’s method. See [9] for
numerical examples. However, it is based on the SVD, which is expensive to
compute.

5 Lanczos Process

In this section, we assume that k = r. First, we expand H into a 2r× 2r Hankel
matrix:

Ĥ =




s1 · · · s2r

... . .
.

s2r 0





and assume that it is strongly nonsingular, i.e., all its leading principal sub-
matrices are nonsingular. Suppose that we have a triangular decomposition
Ĥ = RTDR where R is upper triangular and D diagonal. Since the Hankel
matrix H in (3.2) equals Ĥ1:k+1,1:r, we have

H = (R1:r,1:k+1)
TD1:r,1:rR1:r,1:r. (5.1)

Thus,
H1 ≡ H1:k,: = (R1:r,1:k)TDR1:r,1:r

and
H2 ≡ H2:k+1,: = (R1:r,2:k+1)

TDR1:r,1:r.

Setting F = I and G = (R1:r,1:r)
−1(D1:r,1:r)

−1 in our framework (4.4), we know
that the eigenvalues of a matrix Y satisfying

(R1:r,1:k)TY = (R1:r,2:k+1)
T (5.2)
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are the desired knots. Now, using Lanczos process, we show that we can find a
tridiagonal matrix satisfying (5.2).

Let e = (1, 1, . . . , 1)T and D(z) = diag(z1, . . . , zr), then the transpose of the
Vandermonde matrix

WT = [e, D(z)e, . . . , D(z)k+1e]

is a Krylov matrix. Similar to the standard Lanczos method [5], we can find a
tridiagonal matrix T such that

BT = D(z)B or T TBT = BTD(z), (5.3)

where B is orthogonal with respect to D(c) = diag(c1, . . . , cr), i.e., BTD(c)B =
D, a diagonal matrix.

Lanczos method also gives a QR decomposition of the Krylov matrix

WT = BR1:r,1:k+1 (5.4)

where R is an r × (k + 1) upper trapezoidal matrix. It follows that

(W1:k,:)
T = BR1:r,1:k and (W2:k+1,:)

T = BR1:r,2:k+1.

It is obvious that (W2:k+1,:)
T = D(z)(W1:k,:)

T. Then we have

D(z)BR1:r,1:k = BR1:r,2:k+1.

From (5.3), substituting D(z)B with BT in the above equation, we get

TR1:r,1:k = R1:r,2:k+1 or (R1:r,1:k)TT T = (R1:r,2:k+1)
T. (5.5)

On the other hand, it can be easily verified from straightforward multiplication
that

H = W1:k+1,:D(c)(W1:r,:)
T. (5.6)

Then, from (5.4), we have the decomposition H = (R1:r,1:k+1)
TDR1:r,1:r. This

says that the upper trapezoidal matrix R1:r,1:k+1 computed by the Lanczos
method gives the decomposition (5.1) of H and we can find a tridiagonal T T

satisfying (5.2). Thus the eigenvalues of T T are the knots. In fact, the equations
in (5.3) also show that the eigenvalues of T T are the knots zi. Moreover, (5.5)
gives a three-term recursion of the rows of R, which leads to an efficient method
for generating the tridiagonal T and the rows of R. To start the process, we note
that the first row of R, or the first column of RT, is the scaled first column of
Ĥ since Ĥ = RTDR and R is upper triangular and D is diagonal. The process
is outlined as follows. For details, see [9].
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Lanczos Process

1. Initialize R1,1:2r = (s1, . . . , s2r)/s1;

2. Set α1 = R1,2;

3. Use the recurrence

Ri−2,i:2r−i+1 = Ri−1,i+1:2r−i+2 − αi−1Ri−1,i:2r−i+1 − β2
i−1Ri,i:2r−i+1

to compute a new row Ri,i:2r−i+1;

4. Compute new αi = Ri,i+1 − Ri−1,i; β2
i−1 = Ri,i+2 − αiRi,i+1 − Ri−1,i+1.

The tridiagonal T T is of the form

T T =





α1 β2
1 0

1 α2 β2
2

. . .
. . .

. . .

1 αr−1 β2
r−1

0 1 αr




.

Then we transform T into a complex symmetric tridiagonal matrix by scaling
its rows and columns. Since the transformed T is complex symmetric, we apply
the complex-orthogonal transformations in the QR method [4, 7] to compute its
eigenvalues, i.e., the knots.

6 A New Hankel-Vandermonde Decomposition

The matrix product formulation (5.6) does not apply to an arbitrary Hankel ma-
trix. Even when it exists, the exponential decomposition is not always unique.
In this section, we will generalize this Hankel factorization so that the new de-
composition will exist for any Hankel matrix and exhibit the rank of the given
Hankel matrix. We start by establishing some useful properties of Hankel ma-
trices which are closely related to Prony’s method.

Observe that the signal model (1.1) describes the solution of a linear differ-
ence equation (LDE) and that Prony’s method computes the coefficients γi in
its characteristic polynomial

yk+r + γr−1yk+r−1 + · · · + γ0yk = 0,

whose solution starts with the sequence (s1, s2, . . . , s2r−1). Indeed, the coeffi-
cients γi form the solution of the Hankel system:





s1 s2 · · · sr

s2 s3 · · · sr+1

...
...

. . .
...

sr−1 sr · · · s2r−2

sr sr+1 · · · s2r−1









γ0

γ1

...
γr−1




= −





sr+1

sr+2

...
s2r−1

η




, (6.1)
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where η can be chosen arbitrarily. Thus γi are determined by the parameter η.
In preparation of a general result, we introduce a new concept of a Prony

η-continuation.
Let H be an r×r nonsingular Hankel matrix. The k×m Prony η-continuation

of H is the Hankel matrix

Pro(H, η) =





s1(η) s2(η) · · · sm(η)
s2(η) s3(η) · · · sm+1(η)

...
...

. . .
...

sk(η) sk+1(η) · · · sk+m−1(η)





whose entries si(η) are determined by the solution (γ0, . . . , γr−1)
T of (6.1).

Note that si(η) = si for i < 2r and s2r(η) = η and rank(Pro(H, η)) = r
if k ≥ r and m ≥ r. Thus we embed a square and nonsingular H into a
general Hankel matrix. Using the Prony continuation, we are able to prove that
a Hankel matrix can be decomposed into a sum of two Prony continuations of
two nonsingular Hankel matrices. We refer the proof to [9].

Let H be a k× k Hankel matrix of rank r, then there exist values η1 and η2,
and nonsingular Hankel matrices H1 and H2, with respective sizes r1 × r1 and
r2 × r2, such that r = r1 + r2 and

H = Pro(H1, η1) + EkPro(EkH2Ek, η2)Ek.

Then, using confluent Vandermonde matrix, we obtain the following theorem
of Hankel-Vandermonde decomposition [9].

Let H be an arbitrary k × m real or complex Hankel matrix. There exist
positive integers mi (i = 1, . . . , j) and distinct complex numbers zi (i = 1, . . . , j)
such that

H = Wkdiag(C1, C2, . . . , Cj)W
T
m, (6.2)

where Wl denotes an l × r biconfluent Vandermonde matrix:

Wl =
[
Bm1

(z1), . . . , Bmj
(zj)

]
,

with r = m1+m2+ · · ·+mj, and the Ci are nonsingular “left” (upper) triangular
mi × mi Hankel matrices:

Ci =





c
(i)
1 c

(i)
2 · · · c

(i)
mi

c
(i)
2 . .

.
. .

. 0
... . .

.
. .

.

c
(i)
mi 0 0




.

Obviously, (6.2) is a generalization of (5.6) in that H can be any Hankel
matrix. Also, we note that
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• rank(H) = min(k, m, r);

• The values zi can be chosen to lie on the unit disk, i.e., |zi| ≤ 1.

Conclusion We have proposed a matrix-pencil framework, which unifies previ-
ously known exponential decomposition methods; developed a new fast Lanc-
zos based exponential decomposition algorithm; presented a general Hankel-
Vandermonde decomposition. A low rank Hankel approximation to a given Han-
kel matrix can be derived from our general Hankel-Vandermonde decomposition
(see [9]).
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