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ABSTRACT

This paper examines the stability and accuracy of mass-
spring systems used in sound synthesis. We show that the
standard method used in mass-spring systems has no nu-
merical damping, but does have frequency warping and is
unstable at frequencies above 1/7 times the sampling rate.
We compare the standard method with two higher order
numerical methods: the fourth order Runge-Kutta, and the
VEFRL algorithm, a fourth order symplectic algorithm. We
find that the VEFRL algorithm is much more accurate than
the standard method, but that this increase in accuracy does
not noticeably affect the quality of the sound produced by
the mass-spring system when used to simulate a vibrating
string. The increased accuracy of the VEFRL method may,
however, be useful for mass-spring spring systems used in
physics or engineering requiring high accuracy.

Categories and Subject Descriptors

H.5.5 INFORMATION INTERFACES AND PRE-
SENTATION]: Sound and Music Computing— Methodolo-
gies and techniques, Signal analysis, synthesis, and process-
ing; G.1.7T[NUMERICAL ANALYSIS]: Ordinary Differ-
ential Equations— Finite difference methods , Error analysis

General Terms
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1. INTRODUCTION

Systems of masses, springs and dampers have been tradi-
tionally used by physicists and engineers to model vibration.
In recent decades these systems have been used in sound
synthesis to model the vibrations of musical instruments.
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Since mass-spring systems model physical objects, they are
classified as physical sound synthesis models.

Synthesis is creating something new from a combination
of pre-existing parts. The name sound synthesis comes from
early analog synthesizers, which created sound by combin-
ing oscillators, envelope generators and filters. In recent
decades it has been increasingly common to use digital com-
puters to synthesize sounds. Most personal computers to-
day come equipped with a sound card. A sound card has
D/A converter to convert numbers representing sound pres-
sures (called samples) to analog signals that produce sounds.
Since there are many different sound cards, a programmer
will usually use an API such as RtAudio or JavaSound to
send samples to the sound card. The API will handle the
details of communicating with any of the standard sound
cards. The programmer can set various parameters such as
the sample rate and the number of bits per sample.

There are many ways to synthesize sound. Common meth-
ods are additive synthesis, subtractive synthesis and modu-
lation synthesis. While other synthesis methods model mu-
sical sound, physical synthesis models the sound produc-
ing mechanisms of musical instruments [13]. This method
takes mathematical models of sound production, developed
by physicists and acousticians, and simulates them on com-
puters.

1.1 Physical Synthesis

There are many methods used to implement physical syn-
thesis. Finite-difference models use numerical techniques
to discretize the differential equations of the mathematical
model of the instrument. The resulting difference equations
can be run on a digital computer, using parameters for the
initial conditions and constants.

When a solid object is struck, deformations are caused
which propagate through the object. The material and shape
of the object determine the possible frequencies—or modes—
that the object can vibrate at. Modal Synthesis approxi-
mates the sound of an instrument by summing up a finite
set of modes. Each mode is represented by a sine wave with
exponential damping.

Instead of simulating the wave equation itself, as is done
in finite difference modelling, digital waveguides simulate the
solution of the wave equation. Any shape that travels to the
left or right at speed ¢ = /K/e is a solution to this equation.
The left and right traveling waves can be simulated with 2
delay lines. We can then get the solution of the wave equa-
tion at any point in time by summing the left and right delay
lines. The simulation is exact if the waves are bandlimited
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Figure 1: Simple mass-spring system

to half the sampling frequency and it is very efficient. These
factors have made digital waveguides the most popular form
of physical synthesis.

Source-filter models have been used extensively in speech
synthesis and in analog music synthesizers. The source can
generate periodic wave forms (i.e. sine waves, square waves
etc.), random noise, or glottal noise (vibrations from vocal
chords). The sound is then processed by the filter before
being output. Both the source and the filter are controlled
by time varying parameters.

1.2 TheMass-Spring M odel

The mass-spring model builds complex musical instru-
ments from simple components: masses, springs and damp-
ers. Each element is discretized using finite difference meth-
ods. The behaviour of the system depends solely on the
network, not on physical equations.

Figure 1 shows a simple mass-spring model, where Ms3
and Ms are masses, Si, Si4 and Sg are springs and D3 is a
damper.

We can derive the behaviour of a mass from Newton’s 2nd
law:

F(t) = ma(t), (1)

where F(t) is the force acting on the mass at time ¢, m is
the mass, and a(t) is the acceleration of the mass at time
t. Since acceleration is the derivative of the velocity we can
write equation (1) as

F(t) = mv'(t). (2)

We then have a system of two first order differential equa-

tions:
-0 e

We then use the backward Euler approximation to discretize
the equations. The backward Euler approximation is:

x(n+1) = x(n) + hf(x(n + 1)), (4)

where f(x(n+1)) is the value of the derivative at the (n+1)th
time step, h is the length of the time step and the vector
x(n + 1) consists of the position and velocity at time step
n+ 1. It is an implicit numerical method since x(n + 1) is
on both the left and right sides of the equation. So equation
(3) is approximated by

o =) +n(d). o

m

The equations for the spring are derived using Hooke’s
Law F(t) = —kx(t), where k is the spring stiffness. We

write them as

Fa(
Fy(

n+1)=k(xpy(n+1) —zq(n+ 1)) (6)
n+1)=—F,(n+1). (7)
Here we let x,(n), and x4(n) represent the distance from the
equilibrium position of mass, and mass, at either end of the
spring. We use Fgy(n) to denote the force acting on massq
at one end of the spring at time step n. The force, Fp(n),
acting on massy at the other end of the spring is, according
to Newton’s third law, equal and opposite to F,(n).

Note that the equations for the mass and the spring are
interdependent: in order to calculate the position of the
mass at time n 4+ 1 we need to know the force of the spring
at time n + 1, but to find the force of the spring at time
n + 1 we need to know the position of the mass at time
n + 1. These are known as delay-free loops and make the
system non-computable. We will see how this problem is
dealt with in section 2.

The damper element is used to represent viscous fric-
tion. This is the object’s resistance to motion and is pro-
portional to the velocity. The formula for the damper is
F(t) = —Zv,(t), where Z is the coefficient of viscosity, F'(t)
the force and v, (t) the relative velocity of the two ends of
the damper. This can be written as

Fo(n+1)=Z(w(n+1) —ve(n+ 1))
Fy(n+1)=—-F,(n+1),

where F, and F}, represent the forces acting on the masses at
the ends of the damper, and v, and v, are the corresponding
velocities.

1.3 Previous Work

The first mass-spring system used in sound synthesis was
the CORDIS-ANIMA system [5], built in 1978. This system
consists of two main modules: the CORDIS module which
does the sound synthesis and the ANIMA module which
creates the computer graphics. The philosophy behind the
system was that instead of simulating the sounds themselves,
as in signal processing or wave table synthesis, CORDIS-
ANIMA would simulate the sound producing object [4], i.e.
simulate the musical instrument rather than just simulating
the sound it produces.

Another approach to mass-spring systems is TAO, created
by Mark Pearson as part of his PHD thesis [12] at the Uni-
versity of York in 1996 under the supervision of Dr. David
M. Howard. The program uses the concept of cellular au-
tomata to produce the sound synthesis. One of the main
difference between TAO and CORDIS-ANIMA is the user
interaction with the instruments. Whereas CORDIS uses
physical actions and transducers to produce the excitations
of the instruments, TAO uses a script. This makes TAO’s
interface resemble a musical score created by a composer
and given to an orchestra, rather than a musician playing
an instrument as in CORDIS.

There is also a survey paper by Vilimé#ki et. al. [14] that
contains an analysis of mass-spring systems. They describe
the basic elements of mass-spring systems and how they
are connected together. They suggest that adding delays
between elements to eliminate delay-free loops may cause
problems.

None of the previous papers give a quantitative analysis
of the stability and accuracy of the numerical methods used



in implementing mass-spring systems, the issue we address
in this paper.

1.4 Contributionsand Outline

Mass-spring networks represent a method of creating com-
plexity from simple building blocks. While each of the com-
ponents, the mass, the spring and the damper, are easy
to understand, the networks built from these components
can become complex. Mass-spring models have tradition-
ally been used in physics and engineering to model vibra-
tion and can be used to model a large family of vibration
patterns. Thus, mass-spring systems have the advantages of
conceptual simplicity, uniformity and generality.

When numerical methods are used to approximate the
differential equations of a physical system used for sound
synthesis, we need to be aware of the their stability and ac-
curacy. An unstable system is one in which the output grows
without bound. In this case, no usable output is available
to produce sound. A system that is inaccurate may, for ex-
ample, produce sounds that have a different frequency than
expected. Errors in frequency can cause a sound to be out
of tune if the error is in the fundamental (lowest) frequency,
or, give the sound a different timbre (tone colour) than it
should, if the error is in the higher frequency components of
the sound.

Mass-spring system have been criticized as being compu-
tationally expensive [1], lacking an analysis of stability [1],
and of unknown accuracy [6]. This paper addresses the later
two of these criticisms — the questions of stability and ac-
curacy of mass-spring systems. We begin by showing how
the “standard” method used in mass-spring systems elimi-
nates numerical damping (damping caused by the numer-
ical method that is not in the mathematical model), but
that it does have frequency warping (alteration of the fre-
quency caused by the numerical method) and can become
unstable. We further address the question of accuracy by
considering how higher order numerical methods might be
used in mass-spring systems. We then examine the simula-
tion of a vibrating string using a series of masses, springs
and dampers. We compare the analytical solution to both
the “standard” mass-spring model and the two models using
higher order numerical methods. We present a method of
correcting the frequency error in the fundamental frequency
(the lowest frequency) of the “standard” method.

2. ANALYSISOF THE MASS-SPRING
SYSTEMS

We have seen in the introduction that using the backward
Euler method to discretize the equations of the components
of mass-spring systems leads to delay-free loops that make
the system non-computable. A simple way to eliminate this
problem is to calculate the positions at time step n based
on the forces at time step n — 1. This is the method used in
the TAO system. Equation (5) for the mass then becomes

2(n+1)\ _ ((n) o(n +1)

(v(n + 1)) - (v(n) th L?(y:l) ’ (8)
where equation (8) now uses F(n) instead of F(n +1). We
will see in section 4, that this is equivalent to the symplectic
Euler method and we will refer to it by this name.

The z-transform takes signals from the time domain and
transforms them to signals on the z-plane. The z-plane rep-

resents the signals in terms of amplitude growth (the growth
or decay rate of the signal) and frequency, which are par-
ticularly useful in the analysis of musical signals. The z-
transform is defined:

m=—o00

where z = re’”. The z-plane uses polar coordinates with
|z] = r the distance from the origin and w as the angle. The
amplitude growth of the signal is represented by r and the
frequency by w. The transfer function of system is defined
as the z-transform of its input divided by the z-transform of
its output. The poles of a system are defined as the roots
of the denominator of its transfer function. A system is
called stable if when the input is absolutely summable the
output is absolutely summable. The system is stable on the
z-plane if all its poles lie on or inside the unit circle [9] and
asymptotically stable if the poles are inside the unit circle.
If the poles are outside the unit circle it is unstable.

Figure 2 shows a simple mass-spring system without a
damper. It shows an external force acting on mass M.
Spring S3 has one end connect to M; and the other end is
fixed at point X>. If we regard the equilibrium position of

S,
Eaxt X

ﬁ

Figure 2: Mass-spring system

the spring to be x(t) = 0, where x(¢) is the position of M,
the equation of this system is

d’z/dt*> = (1/m)Fepe — (k/m)x(t). (9)

Using the symplectic Euler approximation from equation (8)
on this equation results in

z(n) —2z(n — 1)+ z(n — 2)
h2
—(k/m)z(n —1) +m " Fep(n — 1).

Then we take the z-transform
(h™) (X(2) = 2% (2)27" + X(2)272)
= —(k/m)f((z)z_l + m_lﬁ'ewt(z)z_l,

where we make use of the fact that the the z-transform of
a unit delay is equal to z~'. The z-transform of z(n) is
denoted by X (z) and that of Fegi(n) by Fezi(z). We then

find the transfer function:

iy X(2) B (h2/m)z""
H(z) = Fez't(z) = T+ (hw)2 —2)z- 1+ 22 (10)

where w? = k/m. The poles of the transfer function occur
when

22+ (hw)® —2)z4+1=0.



Solving this quadratic equation gives us:

L —(hw)? + 2 £ (hw)~/(hw)? — 4
- 5 .

If (hw)? < 4 then

(hw)? + 2 n Jhwy/4 — (hw)?
2 2 '

Using the real and imaginary parts, we can calculate 7:

r=z| = (77(’1(‘))2 +2)2 + <hwm>2 =1

2 2

So on this interval, the poles map exactly to the unit circle.
This means there is no numerical damping. We can calculate
the frequencies in this range. Using the facts that w = 27 f,
where f is the frequency and h = 1/fs, where fs is the
sample rate, we find that (hw)? < 4 is equivalent to f < %fs,
i.e. all cases in which the frequency is less than % times the
sample rate.

We now find the frequency warping. Using wq for the
digital angular frequency (the actual angular frequency us-
ing the numerical method) and w, as the analog angular
frequency (the angular frequency of the original continuous
system):

o — tan~! im(z) — tan~! hwav/4 — (hwq)?
a=1t (sz)) t <—(hwa)2+2 > (11)

Figure 3 shows the graph of this function. As hw, ap-
proaches 2 (i.e. fq approaches (1/7)f,) the frequency be-
comes progressively warped. Notice that the frequency warp-
ing of symplectic Euler causes the digital frequency to be
higher than the original analog frequency. The digital fre-
quency, fq, is in radians per sample, so to convert to radians
per second we need to multiply it by the sample rate fs.

Mass—Spring System —Symplectic Euler —Frequency Warping.
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Figure 3: w, versus hw, for symplectic Euler
Next we examine the the interval where (wh)? > 4. We
examine the pole

L —(hw)? + 2 — (hw)~/(hw)? — 4
= 5 .

First, notice that this is a real number. Looking at the first
2 terms of the numerator, we see that

(—(hw)® +2) < (—4+2) = 2.

The radical in the last term of the numerator is positive
when (wh)? > 4, so the last term is always positive. There-
fore, the numerator is always less than —2 and value of the
pole is always less than —1. Since this pole is outside the unit
circle, the system is unstable in all cases in which (wh)? > 4.
So when the analog frequency is more than (1/7) fs, the sys-
tem in unstable.

The final case is when (wh)? = 4. This results in z = —1.

Figure 4 shows the plot of the poles on the z-plane. The
two sets of conjugate poles trace the upper and lower halves
of the unit circle. At frequency fo, = (1/7)fs, they meet at
z = —1. Then one pole continues along the real axis toward
the left and the other along the real axis to the right.

So for stability, it is required that

fa=/m) fs, (12)

where f, is the frequency and fs the sample rate.

Mass-Spring System ~Symplectic Euler ~Poles on z-plane.
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Figure 4: Poles on the z-plane for the symplectic
Euler

3. MUTLI-STAGE
NUMERICAL METHODS

We have seen in the previous section that although the
symplectic Euler method used in mass-spring systems has
no numerical damping, it does have frequency warping and
does become unstable. The Euler method is a first order
method, meaning that its error at each step (local truncation
error) is order(n?) and the overall error (global truncation
error) order(n). We next look at more accurate methods.

Runge-Kutta methods are a family of methods used to
solve ordinary differential equations. They may be either
implicit or explicit, and work by sampling the derivative at
several points in the interval between time n and time n+ 1.
These methods are called multi-stage methods. The most
popular of these —usually just referred to as the Runge-
Kutta method— has four stages and is explicit. The deriva-
tives are found at four points in the interval —k; to ks—
and then these four derivatives are averaged to get an esti-
mate of the derivate for the n + 1 step. For the differential
equation x'(t) = f(t,x), the function f(¢(n),x(n)) deter-
mines the value of the derivative at time step n using the



time ¢(n) and the vector x(n), which consists of the position
z(n) and the velocity v(n) . The fourth order Runge-Kutta
method is then [3]:

ki = f(t(n), x(n))

ke = f(t(n) + (1/2)h,x(n) + (1/2)hky)
ks = f(t(n) + (1/2)h,x(n) + (1/2)hk2)
ks = f(¢t(n) + h,x(n) + hks)

k]_ —+ 2k2 + 2ks + k4
6 .

The method has a local truncation error of order h® and a
global truncation error of order h* [3]. This should make it
much more accurate than the Euler method.

There are, however, some complications in using the Runge-
Kutta method on mass-spring systems. The Runge-Kutta
method assumes we can calculate the derivative using the
function f(t(n),x(n)) at any point. This is not straightfor-
ward in a mass-spring system. Recall equation (3):

() - i)
v(t)) — \F()/mi)"
Here F'(t) represents the total forces acting on the mass
at time step ¢t. Calculating k; is not a problem, since the
forces at time step n have already been calculated. But,
calculating k2 is a problem, since we need the forces when
z =x(n)+ (1/2)hk1,1 and v = v(n) + (1/2)hk; 2, where k11
and k12 are ki’s components corresponding to the position
and velocity respectively. The force for spring s;, connected
to mass m;, is based on the positions of the masses at either
end of the spring, so we need to know not just the position
of m; but the position of the mass mj connected to m;
by spring s;. Since a mass can be connected to an arbitrary
number of springs, we need to know the positions of all these
masses in order to calculate the force acting on mass m;.
The situation is similar for the damper, except that it needs
the velocities of the 2 masses instead of the positions. Since
each of these masses may be connected to other masses, we
need to know the positions and velocities of all the masses
at x = z(n)+ (1/2)hki,1 and v = v(n) + (1/2)hk1,2 in order
to compute the forces acting on each mass. After computing
all the forces, we can finally compute the derivative ka.
This means, for each stage, s = 1...4, we must first cal-
culate the positions of all the masses and then use these po-
sitions to calculate the forces of all the springs and dampers.
After this we can calculate ks for each mass. After stage 4
is completed, we can calculate the new positions and veloc-
ities of all the masses and finally, the new forces of all the
springs and dampers. This means that instead of one loop
through each of the masses, springs and dampers as in the
Euler method, we need 5 loops through each of the compo-
nents. This means that the Runge-Kutta method will take
about 5 times longer than the Euler method.

y(n+1)=x(n) +h

4. SYMPLECTIC
NUMERICAL METHODS

Some numerical methods, such as the backward Euler
method, can cause numerical damping — damping caused
by the numerical methods that is not contained in the equa-
tion itself. This has proved to be a problem, especially in
fields such as molecular and planetary simulation. In such
systems conservation of energy over long periods of time

is very important. Although all real systems that produce
sound have some damping, many are very lightly damped,
so a numerical method that preserves energy is important
in physical sound synthesis. A numerical method is called
symplectic if it preserves area on the position/momentum
phase plane. Among other properties, symplectic systems
conserve energy.

The Euler-Cromer method, also called the symplectic Eu-
ler, is a first order symplectic method defined as [8]:

(o) =) (") o0

If we replace a with F/m, we see that this equation is the
same as (8).

Next, we plot the energy of the mass-spring system. The
total energy of a mass-spring system is the sum of the kinetic
energy of the masses, K = %mv2, and the potential energy
stored in the springs, U = %kmg. Momentum is mass times
velocity so the total energy

1 1
—pz + Zka®.

71 2 1 271 1 2
E=—-mv +2kz —2pv+2kw =5 5

2

Setting k = 1 and m = 1, we get

1 1 2
E:§p2+§:c2; (\/QE) :p2+m2.

This is a circle of radius v2FE. If the starting conditions

are x = 1, v = 0 the potential energy is %ka = % and the

2
kinetic energy is 0. The radius is then (,/2 X %) = 1. The

phase plot, therefor, should be a unit circle.

Figure 5 shows a plot of the position/momentum phase
plane of the symplectic Euler. The plot covers a thousand
oscillations. This would be 1 second of sound at 1000 Hz or
just .1 seconds at 10, 000 Hz, which is still within the range of
hearing. So it is important that a numerical method be able
to maintain relatively constant energy over this many cycles.
From figure 5 we can notice that the shape is somewhat
elliptical due to inaccuracies of the first order method. But,
the symplectic Euler is able to maintain the energy over a
thousands cycles.

In contrast, figure 6 shows the phase plot of the forward
Euler. The energy of the forward Euler increases without
bound.

Next we try a higher order algorithm —the fourth order
Runge-Kutta— which is not symplectic. The results are
shown in figure 7. The more accurate Runge-Kutta method
results in a circle, not an ellipse. The energy, however, does
not stay constant, which can be seen by the fact the the
graph slowly spirals inwards toward the center of the circle.

Recently, several higher order symplectic methods have
been developed. One of these methods is called the “Velocity
Extended Forest-Ruth Like” (VEFRL) algorithm, which is
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a fourth order method defined as [11]

o = v(t) + - flr(1))éh
ri=7r(t) +vi(1—2\)h/2
ve = v1 + %f[ﬁ]xh

ro = 11 + v2\h

vs = s + = flral(1 - 20+ €)h
r3 = ro + v3A\h
vy = v3 + lf[r:’)])(h
m
r(t+h) =rs+va(l —2\)h/2
Wt +h) = vs + %f[r(t + h)¢h, (14)

where r is the position, v the velocity, m the mass, f the
force. The constants are:

& = +0.1644986515575760F + 00
A = —0.2094333910398989E — 01
X = +0.1235692651138917F + 01.

The phase plot for this algorithm is shown in figure 8.
This plot shows that the algorithm is both accurate —since
it plots a circle— and symplectic —since it maintains a con-
stant energy over a thousand cycles.

This algorithm can be implemented similarly to the Runge-
Kutta, with each stage requiring an update of the velocities
and positions of all the masses and then the force of each
spring and damper is calculated based on the new velocities
and positions. The last step has an additional problem, since
for mass-spring systems the force calculation is a function
of both the position and the velocity (since viscous damping
is a function of the velocity). This makes equation in (14)
implicit. A simple solution is to calculate the positions of all
the masses for r(¢t + h) and calculate an estimated velocity
for time t+h as vest = v(t)+(f(t)/m)h; then, update all the
forces of the springs and dampers using the new positions
and estimated velocities; now we can calculate the velocity
at time t+h using f(r(t+h), vest); finally we use r(t+h) and
v(t+ h) to calculate the force of the springs and dampers at
time ¢ + h.

ALGoriTHM 1 (VEFRL FOR MASS-SPRING SYSTEM).

1. For stage s = 1 to 4
2. For each mass
3. calculate position and velocity for stage s
according to equation (14).
4. end for
5. For each spring or damper
6. calculate the force for stage s.
7. end for
. end for
9. For each mass
10. calculate the position of the mass for time step
n—+ 1.
11. calculate estimated velocity
Vest = ’U(TZ) + (f(n)/m)h
12. end for

Co

18. For each spring or damper
14. calculate force using positions at time step n + 1
and estimated velocities.
15. end for
16. For each mass
17. calculate velocity of the mass for time step n + 1
using forces from step 14.
18. end for
19. For each spring or damper
20. calculate force at time step n + 1 using positions
and velocities at time step n + 1.
21. end for

5. RESULTSAND DISCUSSION

In this section, we simulate a string by connecting springs
between 20 masses as shown in Figure 9. The mass of each
mass and the stiffness of each string are all identical.

We first find the analytical solution, using the eigenvalue
method presented by Meirovitch [10]. The mass matrix, M,
contains each of the masses along its diagonal

mi 0 0 O
M = 0 ma 0 ... 0
0 0 0 ma20

The stiffness influence coefficients, k;j, are defined as the
forces required for a unit displacement of mass 7, with all
other masses j # 4 having a displacement of zero. On a
simulated string such as Figure 9, the force required to dis-
place mass m; one unit to the right is k; + k41, since the
spring on the left must be expanded by one unit and the
spring on the right compressed by one unit. Masses m;_1
and m;y1 require forces in the opposite direction to keep
them in place. The stiffness matrix, K, for a linear string
is then a tridiagonal matrix with the ith plus the (i + 1)th
spring’s stiffness coefficient on the diagonal, the negative of
the ith stiffness coefficient to its left, and the negative of the
(i 4+ 1)th stiffness coefficient to its right:

k1 + ko —ko 0 L. 0

—ko ko + ks —ks3 . 0

K = 0 —ks3 ks + ks —ka 0
0 e 0  —k2o k2o+ ko

We can write the equation of the system in vector form
as an eigenvalue problem [10],

Ku = w’Mu, (15)

where u is a vector of the displacement of each of the masses
from its equilibrium position.

By using the Cholesky factorization M = LL”, where L
is a lower triangular matrix, we can turn this equation into
a standard eigenvalue problem [10]:

Av = \v where A = LT'K(L™")" and A = *.

We can now calculate the eigenvalues, A,, and the eigen-
vectors, vy, numerically using software such as MATLAB.
We then use u, = (LT)_IVlr to get the eigenvectors of the
original system. The eigenvectors, u, make up the normal
modes of any vibration of the system. This means that any
vibration can be described as a linear combination of the
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eigenvectors. We can calculate the positions of the masses
at any time with

N
x(t) = Z u, " Mxg cos(wrt)ur,

r=1

where x¢ is the vector of the initial positions of the masses
and w, = V.

Figure 10 compares the analytical solution with that of a
mass-spring system using the symplectic Euler method on
a simulated string using 20 masses. The sample rate used
was 44,100 samples per second. The initial conditions were
that the 6th mass was displaced by one unit and all the other
masses had a displacement of zero. The first 200 samples are
shown using the displacement of mass 1. Notice that at the
start the symplectic Euler is fairly close to the analytical
solution, but that it quickly diverges from it. Notice also
that the frequency of the Symplectic Euler is a little higher
than that of the analytical solution. This is consistent with
the frequency warping noted in section 2.

Figure 11 shows the same system comparing the fourth
order Runge-Kutta and the VEFRL algorithm with the an-
alytical solution. For the first 200 samples both methods
match the analytical solution almost perfectly. The situa-
tion, however, changes over time. Figure 12 shows the same
simulation after 4,000 samples. The VEFRL algorithm is
still quite close to the analytical solution, but the Runge-
Kutta is showing the effects of numerical damping.

What is the aural effect of these different methods? The
numerical damping of the Runge-Kutta method is clearly
audible. But, the symplectic Euler and the VEFRL are vir-
tually indistinguishable. To understand why this is the case,
we consider a continuous string. The frequencies that make
up the continuous string are all integer multiples of the fun-
damental frequency [2]. For example, if the fundamental
frequency is 440 Hz, the other frequencies (or modes) that
make up the sound will be 880 Hz, 1320 Hz etc. In a string
simulated with lumped masses, if the all the masses and
spring constants are the same, the frequencies are [7]

nmw
n = 2wosin [ ——— 16
w wosm(Q(NJrl)) (16)
where w,, is the nth frequency, wo = y/k/m, and N is the
number of masses. We can solve this equation for wo with
n=1

~ (17)

wop =
2sin (Q(NLH))
This allows us to calculate wp for a given frequency and
number of masses. So, for 20 masses and a fundamental fre-
quency of 440 Hz, w is 440 x 27 and wy is 18,497.2439. We
can now calculate the frequencies for our simulated string.
The second frequency is 877.54 Hz as opposed to 880 Hz for
the continuous string. The third frequency is 1310.17 Hz as
opposed to 1320 Hz. The twentieth frequency is 5, 822.09 Hz

as opposed to 8,800 Hz. We can see that the low frequencies
are close to those of the continuous string, while the higher
frequencies are quite inaccurate. All the frequencies of the
mass-spring approximation are lower than those of the con-
tinuous string. When we use the symplectic Euler method
these frequencies become warped according to equation(11)
with h = 1/44100. The fundamental is warped from 440
Hz to 440.07 Hz, the second frequency from 877.54 Hz to
878.11 Hz and the third from 1310.17 Hz to 1312.08 Hz.
The change of frequency in the fundamental is almost im-
perceptible. The other frequencies are shifted by a small
amount upwards — toward the frequencies that a continu-
ous string would have. So if anything, the symplectic Euler
should sound a little more like a continuous string than the
more accurate methods.

Computing the Fourier transform of the output of the
simulated string produces results that are consistent with
equation (11). Figure 13 shows the Fourier transform of
the analytical solution and the symplectic Euler simulation.
Each spike in the graph represents the frequency of one of the
modes. We used 8192 “buckets”, so, using a sample rate of
44,100 Hz, each bucket is about 5.4 Hz wide. This means the
results should be accurate within 2.7 Hz. As expected, the
low frequency modes of the symplectic Euler are very close to
those of the analytical solution. As the frequency becomes
higher the frequency of the symplectic Euler is noticeably
higher than that of the analytical solution. For the 20th
mode, the spike for the analytical solution occurs at 5873
Hz, which is close to the expected 5971 Hz. The spike for
the 20th mode in symplectic Euler simulation is at 6056 Hz,
which is close to the calculated 6058 Hz.

If a lower samples rate is used, the frequency warping of
the symplectic Euler becomes more noticeable. For example,
at 8,000 samples per second, the symplectic Euler warps
the fundamental frequency, 440 Hz, to 442.19 Hz, which is
noticeably higher. However, since the VEFRL method takes
around 6 times longer to run, it is much more efficient to
use the symplectic Euler and compensate for the frequency
warping. We can do this by using the inverse of equation
(11), which comes out to

; (18)

(19)

_ 2(a+1+Va+1)
e = a+1

where o = tan?(hwa), wa is the analog frequency and wg
the actual frequency resulting from the symplectic Euler
method. So if we set wq to the desired frequency (i.e. 440 x
27) we get back the frequency we should use in equation(17)
to calculate wg. This will correct the fundamental frequency
so that it is exactly 440 Hz.

The more masses used in the simulated string, the more
accurate the simulation becomes. We note in section 2 that
the symplectic Euler becomes unstable at 1/7 times the sam-
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pling frequency. This puts a limitation on the number of
masses we can use to simulate a string vibrating at frequency
w and sample rate f;. Consider for example, the simulation
of a string vibrating at 440 Hz and using a sample rate of
44,100 Hz. The maximum frequency that the symplectic
Euler can have at this sample rate is 44,100/7 = 14,037.5
Hz. If we list the highest frequencies by using equation (16)
with n = N, where N is the number of masses, we find that
at 44 masses the highest frequency is 13,957 Hz and with
45 masses the highest frequency is 14,045 Hz. This tells
us that the maximum number of masses we can use for a
string vibrating at 440 Hz with a sample rate of 44,100 is
44. If we want to use more masses we have to go to a higher
sampling rate. The Runge-Kutta and VEFRL can go up
to near the Nyquist limit, fs/2, before becoming unstable.
Even if a numerical method can go above the Nyquist limit
without becoming unstable, aliasing will occur, resulting in
an inaccurate sound. It is computationally more efficient to
use the symplectic Euler at a higher sample rate, than it is
to use the VEFRL algorithm. At some point, though, the
sampling rate of the sound card will be exceeded. At that
point the results of the simulation must be put through a
low pass filter to remove the frequencies above Nyquist limit,
and then downsampled to the maximum sample rate of the
sound card.

We also simulated damped strings. The damping gives
the simulation a much more realistic sound. The results are
similar to those of the undamped string in that the VEFRL
algorithm tracks the analytical results very closely, while the
symplectic Euler quickly diverges from it. The Runge-Kutta
method shows more damping than it should, so after a few
thousand samples it is not very accurate. At a sampling rate
of 44,100 samples per second, the sounds of the symplectic
Euler and the VEFRL are indistinguishable.

6. CONCLUSIONS

We have addressed the issues of stability and accuracy of
mass-spring systems in sound synthesis. We find that, using
the symplectic Euler method (the standard method used
in implementing mass-spring systems), mass-spring systems
are stable up to frequencies of 1/7 times the sample rate.
When simulating a vibrating string, the highest mode of
string, therefore, must be less than 1/7 times the sample
rate for the simulation to be stable.

We find that the symplectic Euler method has no nu-
merical damping, but that it is not accurate in frequency,
warping frequencies upward. We compare the symplectic
Euler method with two higher-order methods: the fourth
order Runge Kutta, and the VEFRL algorithm, a fourth or-
der symplectic algorithm. We find that the Runge-Kutta
method has numerical damping which makes it become in-
creasingly inaccurate in long lasting sounds. The VEFRL
algorithm, on the other hand, conserves energy, and is much
more accurate than either the Symplectic Euler or the Runge-
Kutta. We find, however, that perceptually —the way the
simulation sounds— there is little or no difference between
the symplectic Euler and the VEFRL algorithm for the sim-
ulation of a vibrating string. This is because, when a small
number of masses are used, the difference between the math-
ematical model used by the mass-spring system and an ac-
tual vibrating string is much greater than the difference in
accuracy of the two numerical methods. If a large number
of masses are used the model becomes much more accurate,

but a high sample rate is required to avoid aliasing, and
so both methods are quite accurate in frequency range of
human hearing.

Since the VEFRL method takes about 6 times as long to
run as the Symplectic Euler, we conclude that it is not likely
to be useful in mass-spring systems used for sound synthesis.
However, mass-spring systems are used in other area, and
for applications in physics and engineering requiring high
accuracy the VEFRL method should be useful.
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