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Abstract

There are many ways of synthesizing sound on a computer. ‘Etigoch that we consider, called
amass-spring systeraynthesizes sound by simulating the vibrations of a ndéwbmterconnected
masses, springs and dampers. Numerical methods are @:tumpproximate the differential equa-
tion of a mass-spring system. The standard numerical maiked in implementing mass-spring
systems for use in sound synthesis isgimplectic Eulemethod. Implementers and users of mass-
spring systems should be aware of the limitations of the mioalemethods used: in particular we
are interested in the stability and accuracy of the numenreghods used. We present an analysis
of the symplectic Euler method that shows the conditionseumdhich the method is stable and the

accuracy of the decay rates and frequencies of the soundsqed.

Keywords:mass-spring system, sound synthesis, stability, accuracy, symplectic Euler.

1 Introduction

Physical sound synthesis uses mathematical models based on the physiasidiproduction to syn-
thesize sound. In other words, physical sound synthesis uses a toaielulate the sound producing
object, rather than the sound produced by an object. In this paper we émcmass-spring systems:
networks of masses, springs and dampers. The mathematical model ofpniagssystems is based
on differential equations. To approximate these differential equatiorsdigital computer, numerical
methods are used. An important question to ask when using a numerical nigthoalv well does
this method approximate the differential equations used in the system? Numneeitelds can become
unstable This means that the numerical solution can deviate arbitrarily far from thet ewlution. In
many cases the error can grow without bound, making the results of theinahmethod meaningless.
As well, we want to be able to quantify the accuracy of our approximatiorstkhaisical sounds are

composed of a number of different frequencies. The lowest of tnegadncies is called tHendamental



frequency[3] . The fundamental frequency determines the perceived pitch obilneds and an error in
the fundamental frequency will cause the sound to be out of tune. Therigquency components
influence thetimbre, or tone colour, of the sound [3] and errors in these components giveaihnd
a different timbre than it should. An error in frequency caused by a nigalenethod is known as
frequency warping

The decay rate determines how quickly the amplitude (or volume) of the scecreéases. For
example, a note on a piano can be heard for 20 or 30 seconds after iidk, strhile on a banjo it
becomes imperceptible after only 3 or 4 seconds because the decay adtargb is much larger than
that of a piano. Numerical methods may add extraneous damping to vibrasitegrs/that are undamped.
This is known asiumerical damping

There have been several sound synthesis systems built using miagssygtems and described in
the literature [22, 24, 6, 8, 7] . Most of these systems have used a namagthod called theymplectic
Euler method. The previous literature on mass-spring systems used in soundsiyrdbscribe how
these systems work (i.e. the equations used and the finite difference eguagied to approximate
them), but have not addressed the issues of the stability and accurtdey miimerical methods. This
has been an important part of the criticism of mass-spring systems in theghgythesis literature.
Mass-spring system have been criticized as being computationally expéRkilacking an analysis of
stability [2], and having an unknown accuracy [9].

The symplectic Euler method has been studied by researchers outsideitldesgathesis commu-
nity. The book by Hairer, Lubich and Wanner [14] presents a thoraugtlysis of symplectic numer-
ical methods including the symplectic Euler method. Using different methods—eibeyot use the

z-transform—they arrive at the stability condition for the undamped ma#sgsgystem as
th < 27

which is the same as our results when the damping is zero. They do notetiadygymplectic Euler
method in terms of frequency warping or its effect on damping. The thesBelok [4] contains a
proof that symplectic Euler method is symplectic, which implies that it has no nushelamping for
an undamped mass-spring system, which agrees with our conclusioriss Besis looks at using the
symplectic Euler on the Lotka-Volterra (predator-prey) equations. dt@des not analyze its frequency
warping or its effect on damping. In a previous paper [20] we havergan analysis of the symplectic
Euler method when used to simulatadampedmass-spring systems. In this paper, we extend that
analysis to includelampedmass-spring systems.

The contributions of this paper are the equations for the stability, the fneguearping and nu-
merical damping of damped mass-spring systems presented in section 3.apéisignot presenting

a new method of doing sound synthesis or suggesting improvements to existimgdseThe question
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it proposes to answer is: Given a specification of a mass-spring systém the values for the mass,
spring stiffness and viscous damping constants, and the connectioreebdtvem — will the system be

stable, and if so, what sound will it produce? The three main questiomsssddl in this paper are:
1. Under what conditions are damped mass-spring systems using the syoriflder method stable?

2. What is the accuracy of the frequencies of the sounds producddrbged mass-spring systems

using the symplectic Euler method?

3. What is the accuracy of the decay rates of the sounds produceahiyyed mass-spring systems

using the symplectic Euler method?

Section 2 introduces the mass-spring system and explains why the sympldetiertethod is often
used to discretize the differential equations of a mass-spring system. Sggti@sents the analysis
of the symplectic Euler method. We begin by using the symplectic Euler method tetdisca mass-
spring system containing only one mass. We use the z-transform to fingirtimextic Euler method’s
effect on the frequency and decay rate of the system, and find théioosdor stability of the system.
This section contains the main contributions of the paper. We end this sectidanhgnstrating the
consistency of our theoretical results with the results of a computer simuldtiomass-spring system.
In section 4 we show how the results in the previous section can be extemdeaks-spring systems

with more than one mass. Section 5 concludes with a summary of our results.

2 The Mass-spring Model

The mass-springnodel builds complex musical instruments from simple components: massesgssprin
and dampers. Each element is discretized using finite difference methloelbehaviour of the system
depends solely on the network and the physical equations of each afitiooents. No other physical

equations are used.
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Figure 1: Simple mass-spring system

Figure 1 shows a simple mass-spring model, whidgeand M5 are massesy;, Sy andSg are springs

andD- is a damper.



2.1 Choosing a Numerical Method for Mass-Spring Systems

To simulate the vibrations of a mass-spring system on computer, we needaamusgerical method to
discretize the differential equations of the system. There are many nuhmagtdzods to choose from.
What should we look for when choosing a numerical method for sounthegis? Humans can hear
sounds that have frequencies from 20 to 20,000 Hz. Notes played waltypusical instruments such
as a piano, a guitar, a trumpet etc. may last for several seconds. This miked a note may contain
thousands or tens of thousands of cycles. The energy of a masg-spsiem is the sum of its potential
and kinetic energies, which depend on the amplitudes of the vibrations. knsftine important that
a numerical method used in sound synthesis be able to conserve enetgpusands of cycles. If
the numerical method causes the energy to increase over time, the simulatiomasithé unstable.
Conversely, if the numerical method causes the energy to decreaseutitewsill decay more rapidly
than it should. Numerical methods that do not conserve energy havedi@be a problem in fields such
as molecular [18] and planetary simulation [11]. There has been an initeresent years in numerical
methods that can accurately simulate the qualitative aspects of physicahsyStmplecticmumerical
algorithms, among other properties, conserve energy over long pefitidee [16].

Figure 2 shows an undamped mass-spring system containing one masseamiing.

Figure 2: Undamped mass-spring system

If we regard the equilibrium position of the spring to be= 0, the force of the spring, according to
Hooke’s Law, isF'(t) = —kx(t), wherek is the spring stiffness coefficient andt) is the position of the
mass at time. We can then write the differential equation for the system, usify the acceleration

and andn for the mass, as
ma(t) = —kxz(t) (by Newton'’s 2nd law) Q)
d?z(t) /dt* = —(k/m)x(t). (2)
This is a second order differential equation. The general solution is [5]
x(t) = Cy cos(y/k/mt) + Caysin(y/k/mt).

Setting initial conditionz(0) = 1 (the initial position) and:/(0) = 0 (the initial velocity) the
particular solution is:

x(t) = cos(wpt),
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wherewy = \/% is the radial frequency of the system. So the solution of the system is simpjreeco
wave of frequencyy. Since there is no damping the amplitude of the cosine wave should not change
over time (i.e. the system should conserve energy). Next, we examine éibthis system is simulated

by three first order numerical methods: the forward Euler, the backizaler and the symplectic Euler.

In these simulations we set at 125 x 2« radians per second and the sample ratie @0 samples per
second (i.e. the frequency i$8 the sample rate).

The forward Euler method is defined as

Yn+l = Yn + y;’l,h7 (3)

wherey/ is the first derivative of; with respect to time andl is the length of each time step. We use the
subscript notation to represent numerical approximations {g.g: denotes the numerical approxima-
tion of y at time step: + 1). The forward Euler method gains energy over time, causing it to be uastab
for undamped or lightly damped systems. Figure 3 shows the result of simula¢irdpove mass-spring
system using the forward Euler method with equal tol/8 the sampling frequency. We can see that

this results in an unstable system.
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Figure 3: Forward Euler approximation of the undamped mass-springvsykste: .001)

The backward Euler method is defined as

Yn+l = Yn + y;H-lh- (4)

The backward Euler is called amplicit method since it uses the derivative at the new point which has
not yet been determined. The backward Euler method loses energgmeeiFigure 4 shows the result
of simulating the above mass-spring system using the backward Euler meithadyvequal tol/8 the

sampling frequency. We can see that this results in cosine wave that isyqeckped.



Undamped Mass-Spring System
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Figure 4: Backward Euler approximation of the undamped mass-spritensys = .001)

The symplectic Euler is defined as:

Tn+1 _ Tn “h Un+1 ’ (5)

Un+1 Un Qg
wherez is the displacement; is the velocity and: the acceleration. We first calculate the new velocity
vp+1, Since it can be calculated using the known acceleratjpand the known velocity,,. We can
then usey,y; to calculate the new positiom,, 1. This makes the entire systeerplicit This method is
therefore sometimes referred to as #éxplicit version of the symplectic Euler [4], since there is also an
implicit version [14, 4]. Since the symplectic Euler method, as its name implies gegsdthown to be a
symplectic numerical method [14, 4] unlike the forward and backward BEutihods, it should conserve
energy. Figure 5 shows the result of simulating the above mass-spriegsysing the symplectic Euler
method withw, equal tol/8 the sampling frequency. We can see that the results of this simulation are
much nearer to the analytic solution than either the forward or backward &udethat the amplitude of
the vibration appears to be constant. The ability of the Symplectic Euler Methmahs®rve energy is
probably the main reason why it has been used in several of the masg-sgmtems built for sound syn-
thesis, such as the CORDIS system [6, 8, 7] and the TAO system [22TR4symplectic Euler is a first
order method, meaning that its global truncation error (the cumulative) ésrproportional to the time
steph. In a previous paper [20] we explored the possibility of using higheersgmplectic methods.
We concluded that in cases where the mass-spring system is being usadl&tesa continuous system
such as a vibrating string or two dimensional membrane, the extra accuitheytogher order method is
not worth the increase in computational cost. When a small number of massesea to model a con-
tinuous system, the resulting mathematical model is not very accurate, aedsimzy the accuracy of the

numerical method does not noticeably improve the sound of the simulation.rfeamber of masses
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Figure 5: Symplectic Euler approximation of the undamped mass-spring s{fsten01)

are used to model the continuous system, the model is much more accuréte, $mtnd produced will
contain high frequency components. In order to keep the system stabie awvoid aliasing, the sample
rate has to be increased for both the symplectic Euler and the higher ordexdseAt a high sample
rate the symplectic Euler method is quite accurate for the low and medium frgguemponents of
the sound, and so there is still no appreciable difference in the sound siintlulation between the first
order symplectic Euler and higher order symplectic methods. This makestipdesyic Euler method a
good choice for most sound synthesis applications using mass-spriegisy8ut it is still important to
know the accuracy and stability limits of the method in order to set the sample riie simulation and

resolve problems in situations where the sound produced is not as ekpecte

2.2 Mass-spring Discretization

We now use the symplectic Euler method to discretize the mass-spring model.
Mass Element

We can derive the behaviour of a mass from Newton’s 2nd law:
F(t) = ma(t), (6)

where F'(t) is the force acting on the mass at timen is the mass, and(¢) is the acceleration of the

mass at time. Since acceleration is the derivative of the velocity we can write equat)cas(6

F(t) = mv'(t). (7)
We then have a system of two first order differential equations:
/
(t) v(t)
) 8
v(t) m



We then use the symplectic Euler method to discretize these equations. Subsdittitirg F'(t) /m in

equation (5) gives us

X X (Y
n+1 _ n Th n+1 : (9)

Una1 Up, FE,/m

wherez is the displacement; is the velocity and’), is the numerical approximation of the force acting
on the mass at time step

Note that if £}, was used instead aof,, in equation (5) we would have the backward Euler ap-
proximation. This is the way this numerical method has been described in the spothesis literature
[22, 6, 24]: as the backwards Euler method with the forces delayed éyime step, rather than the
symplectic Euler method.
Spring element

The equations for the spring are derived using Hooke’s Edw) = —kxz(t), wherek is a constant

denoting the spring stiffness. We write them as

Fa:n+1 = k;(xb:n—l-l - SUa:nJrl) (10)

Fb:n+1 = Lan+1- (11)

Here we letx,.,, andz;,., represent the distance from the equilibrium position of nidssand mass\{,
at either end of the spring. We usg.,, to denote the force acting on magk, at one end of the spring at
time stepn. The force,F,.,, acting on masd/, at the other end of the spring is, according to Newton’s
third law, equal and opposite 1@,.,,.
Damper element

The damper element is used to represent viscous friction. This is the shjesistance to motion
and is assumed to be proportional to the velocity. The formula for the dampét)is= —Zv,.(t), where
Z is a constant denoting the coefficient of viscoskyt) the force and,.(¢) the relative velocity of the

two ends of the damper. This can be written as
Fa:n+l = Z(Ub:n—i—l - Ua:n—‘rl) (12)
Fb:n+1 = Lamn+1,
whereF,, and F;, represent the forces acting on the masses at the ends of the dampey,aanad, are
the corresponding velocities.
2.3 Synthesizing Sound using a Mass-spring System

The mass-spring system works by discretizing the physical equatiorscbfad the elements — the

masses, springs and dampers — of a mass-spring system such as thewnensFigure 1. At each
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time step the sums of the forces acting on each of the masses are calculase slims consist of the
forces of the springs and dampers directly connected to the mass angtamakforces acting on the
mass. The external forces are used to simulate various physical intasagiib the instrument, such as
plucking, hitting, bowing, etc. The forces are used to calculate the neitigmssand velocities of the
masses. Once the new positions and velocities have been calculated gthisgdrto calculate the new
forces acting on each mass. This cycle then repeats for the duration sifrthiation. The position of
one of the masses at each time step in the simulation is written to a sound file teergghessound
produced at this point in the simulated instrument. Alternatively, the vibratiosswefral masses can be
summed together and written to the sound file.

Since each element interacts only with the elements connected to it, the numlscwations
depends on the number of masses and average number of connectanh ofiass. For simple systems
these calculations can be done in real time [12]; more complex systems mugst bé-lime. More
detailed accounts of the implementation of mass-spring systems can be fouadaa, Cuciani and

Florens [6] and Pearson [22].

3 Analysis of a Damped Mass-spring System with a Single Mass

In this section we look at the stability and accuracy of the symplectic Euler methed used to simulate
a damped mass-spring system containing a single mass, a single springiagieé a@amper. We start
by finding the analytical solution of this system. We find the z-transform ofdgisation when it is
approximated by the symplectic Euler method. We then find the damping and theetfiey of the
discrete mass-spring system represented by transformed equationlsdMed the conditions under

which this system is stable.

3.1 The Analytical Solution of the Single Mass Damped Mass-sprg System

Figure 6 shows a damped mass-spring containing only one masxne spring,S; and one damper,
D;.

S,

v M,
|
|

A

D,

Figure 6: Damped mass-spring system



The equation for this system is:
mz” (t) + kx(t) + Z2'(t) = 0, (13)

wherex(t) is the distance of the mass from its equilibrium positienis the massk the spring stiffness
andZ the viscous damping coefficient.

We can solve this equation by finding the roots of the characteristic equation:
Z k
r’ 4+ =r+—=0.
m m
We use the substitutions= Z/m andw? = k/m:

7’2+'yr+w8:0.

The roots of this characteristic equation are

_ —y & /2 —4w(2)
5 )

r

For the system to vibrate we require thdt< 4w3, so

_ —’}/Zl:i\/4wg—"}’2 (14)

2

r

The condition dividing vibrating systems from those that do not vibratersaghen
4w(2) =~2 ory = 2uw. (15)

This value is known aseritical damping

The general solution of equation (13), wheh< 4w?, can be shown to be [5]
z(t) = e "2(Acos(ut) + Bsin(ut)),
whereA and B are constants depending on the initial conditions. This can be written as [5]
z(t) = Re /% cos(ut + ¢), (16)
where

R =A%+ B2,

B
g1
and¢ = tan <A>

This shows that the damped mass-spring system has a starting amplitRdd lois amplitude is being
decreased by the terem?*/2. The frequency (actually thguasi-frequencgince the system is not strictly
periodic) isp = (1/2)y/4w? —~2. As the damping approaches zero this equation becarfi¢s=

R cos(wot + ¢).
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3.2 The Damped Mass-spring System using the Symplectic Euler Matd

We next examine the damping and frequency of the damped mass-spitieig syden approximated by
the symplectic Euler method, by using the z-transform.

The equation of the damped mass-spring system shown in Figure 6 is
ma”(t) + kx(t) + Za'(t) = Feut(t), (17)

whereF,,; is an external force acting on the mass. Using the substitutions from thieysesection we

can write equation (17) as
2"(t) = a(t) = —wdz(t) — yo(t) + %Fext(t). (18)

We now discretize this equation using the symplectic Euler method by substitutirsgicag (18) in

equation (5):

T Tn Un
= +h o : (19)

Un+1 Un _w(Q)xn — YUn + %Fext:n
We should note that equation (19) can also be derived by substituting tlagiets for the spring (10)
and the damper (12) together with an external force in the equation for the (@& This is how mass-
spring systems actually work: by calculating the new values of each massy simd damper using
the equations from section 2.2 at each time step. We can write equation (&%catar equation by

substituting the second line in the first line:
9 1
Tni1 = Tn + h(vy + h(—wiz, — Yo, + EFert:n)) (20)

Since, from the first line of equation (19),+1 = 1/h(zp+1 — 2, ), We can writev,, asl/h(z, — x,_1).

Using this substitution in equation (20) gives us:

1 1 1
Tyl = Tp + h(ﬁ(l’n - xn—l) + h(_w(Z]J:n - ’Vﬁ(l‘n - xn—l) + EFext:n))v

which simplifies to

1 1 1
ﬁ(xn—‘rl — 2z + «Tn—l) = _w(2)xn - 7%(3771 - xn—l) + EFemt:n-
We can shift the time step back by one to get
1
ﬁ(inn —2Tp_1 + xan) =
- ngnfl - % (In,1 - 557172) + EFext:nfl- (21)
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3.3 The Z-Transform

The z-transform takes signals from the time domain and transforms them #dssamthe z-plane. The
z-plane represents the signals in terms of amplitude growth (the growth ay dste of the signal) and
frequency, which are particularly useful in the analysis of musical fgrighe z-transform is defined

[17]:

m=—o0
wherez = re/“. The z-transform of a system can be represented oz-fflane which is shown in
Figure 7. The z-plane uses polar coordinates \ith= r being the distance from the origin andthe
angle. The amplitude growth or decay of the signal is representedang the frequency by. The
frequency varies from on the positive real axis, to radians per sample on the negative real axis. This
frequency, also known as thidyquist limit is the maximum frequency a discrete system can have. If
the frequency goes above the Nyquist limit, it becomes indistinguishabledioeguency less than the
Nyquist limit and the resulting frequency will be perceived as the lower@two frequencies. This is

known asaliasing and causes inaccuracies in synthesized sound.tr@hsfer functionof a system is

A
g
> unstable
IS °
unstable =
[ ]
unit circle
stabl
= I
Nyq(ﬁist}-i[mit - )/ w w=0
>
(0,0) 1 real

Figure 7: The z-plane

defined as the z-transform of its output divided by the z-transform ofjitst. Thepolesof a system are
defined as the roots of the denominator of its transfer function. The padbenormal mode®r the
natural frequenciesf the system. A system is called stable if, when the input is absolutely summable,
the output is absolutely summable. The system is stable on the z-plane if all islipdleside the unit
circle [17] and marginally stable if it has a pole on the unit circle, but no patside the unit circle.

A marginally stable system has a bounded output in some conditions, sudieashe system has no
input; but oscillations in a marginally stable system do not die away but perdegdinitely [10]. If any

poles are outside the unit circle, the system is unstable. An important fexttive z-transform is that
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multiplying the z-transform of a signal by is the same as delaying the signal Sytime steps [23] ,

i.e.

if y(n) = 2(n — N) thenY (z) = 2=V X (2). (22)

3.4 Using the Z-Transform to Find the Poles of the System

Using the property of equation (22), the z-transform of equation (21) is

1
h

—wiX(2)z7t =

1

N

m
. 1 2 _ 1 _ 1 . _
X(Z> (h2+ <WS Z_h2>z 1+ (M—Z>Z 2> :EFext(z)z 11

and the transfer function is

(X(z) —2X(2) X(z)ﬂ) -

ﬁ(z)— X(z) B 2~ 1/m
Fot(z) gzt (Wi+7—75) 2+ (5 — %) 272
(h?/m)z""

T 1t (woh)2Hyh—2)z 1+ (1—qh)z 2

The poles of the transfer function occur when

1+ ((woh)2 + vh —2) (1 —qh) 22 =0,

22+ ((woh)? +vh —2) z + (1 — vh) = 0. (23)

The roots of equation (23) are

2= 5 (2= Got? = b () + 90 =2~ a1 =) (24)

2
= % (2 — (woh)? —yh £ woh\/(wgh)2 + 2vyh + <30> - 4) . (25)

3.5 Using the Poles to Analyze the Mass-spring System

The poles represent tieoder natural frequenciesf the system. If the poles are complex, the discrete
system will vibrate at a frequency in the ran@er) radians per sample. In this section we first determine
what the conditions are for complex poles. We then find an equation foraimpidg of the discrete
system when it has complex poles. The damping is determined by the distatiee mdle from the
origin on the z-plane. We then determine the frequency of the discretersiggténding the angle of the
poles on the z-plane.

If the poles are real, then the frequency of the discrete system is eitleglifabie larger magnitude

pole is on the positive real axis, arradians per sample, if the larger magnitude pole is on the negative
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real axis. We find the conditions determining whether the larger pole is positivegative. We also find
conditions for a pole being outside the unit circle, which will make the discyeties unstable.

We consider 2 cases in equation (25)z13% complex and 2} is real.

3.5.1 Casel) zis Complex

We look at the case in whichcontains an imaginary component — i.e. when

<(w0h)2 + 2k + <30>2> <4

We first calculate the range of values fay of this case. If

( h)2 <7>2_
woh)® 4+ 2vh + oo =1 (26)

4 2
thenwg + <QZ - h2> wg + (%) =0,

by multiplying both sides byw?/h? and rearranging. The roots of this equation are

1({4 2v v 4)\? 7\ 2
2—7 e — —_— — — J— J—
0T (h? h jE\/<2h h2> 1))

This simplifies to

2 1 ¥
2 _
D= Ty E N e 7

If z is complexw; falls between these two roots.

We now look at the damping for case t)i§ complex). In this case equation (25) becomes

2
z= % (2 — (woh)? = yh + iwoh\/4 — (woh)? — 27h — <’y> ) : (28)
wo

We can calculate the length efusing the imaginary and real parts:

2] = V/re(2)? + imag(2)?

2
2
= % (2 — (woh)? — vh)* + (woh\/4 — (woh)? — 2vh — ((30) ) .

This simplifies to

|z| = /1 —~h. (29)

We see from equation (29) that, for this case, the lengthdifes not depend on the frequency.
Figure 8 shows an example of the poles on the z-plane of the symplectic Bpleixanation of the

damped mass-spring equation. The value for usedfois .04. Rootl and root2 are the two roots of
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equation (25): rootl has the surd added, while in root2 it is subtractedarfbws show how these roots

— the poles of the system — movewagh varies from zero to aboveradians per sample. The poles start

on the positive real axis where the frequency is zero. Whitecomplex, each pole traces a semi-circle,
rootl — where the surd is added — is the upper semi-circle and root2 — wieeseird is subtracted —

is the lower semi-circle. lfoy becomes large enough, the solutions of equation (25) become real again
— but now they are on the negative real axis. Rootl moves toward the ,ongire root2 becomes
increasingly negative. When root2 moves outside the unit circle, the systeames unstable. Figure

9 shows the same plot with: at.98. The radius of the circular region whetds complex is now very
small.

The radius of the circle containing the poles\id& — vk, which depends on both and the time
steph. If the damping or the time step increase, the radius of the circle will become smidltbe
system is undamped (i.e.= 0), the circle will have a radius of one. This means that for the undamped
system there is no numerical damping. This is consistent with the fact thatrtipextic Euler method

conserves energy.

We next look at the frequency warping whers complex. From equation (28), we can calculate the
frequency using the real and imaginary components. Usintp denote the actual frequency obtained
using the symplectic Euler,

o — tan—] imaginary(z)
d real(z)

2
woh\/4 — (woh)? — 2vh — (wlo)
2 — (woh)? — vh

= tan""

(30)

Figure 10 shows the frequency warping for the undamped mass-systens Note that for the
undamped system the low frequencies are very accurate, and theofange wherez is complex, goes
from 0 to 2 radians per sample. Agyh increases, the digital frequency (the actual frequency produced
by the symplectic Euler approximation) becomes increasingly warped upWéirenwyh has reached
radians per sample, the digital frequencyigadians per sample — the Nyquist limit.

Figure 11 shows an example of the frequency warping of the symplectic Ewdhod when the
damping is quite high:h = .001, v = 500 andyh = .5. The analog frequency is calculated as
= (1/2)\/4%2)7—72, and is slightly lower thaw,. Note that the digital frequency has reached the
Nyquist limit of 7 radians per sample at aroungh = 1.7 radians per sample. This is consistent with
equation (27), which give293 as the lower limit and..707 as the upper limit for: being complex.

As vh increases, the range wherds complex decreases and the frequency warping becomes more

pronounced.
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3.5.2 Case 2) z is Real

Equation (27) gives us 2 conditions foto be real. Equation (24) yields 2 roots, which are the two poles
of the system. The pole with the larger magnitude will dominate the system. If thevitbléhe larger
magnitude is real and positive, the frequency of the system is zero. Iifadisand negative, the system
will vibrate atr radians per sample.

We show that, ifvZ is greater than the root of equation (27) in which the surd is added, theatieq
(24) will have its largest magnitude root less than zero. Since the surg &éded or subtracted in (24)

is the same, what we want to show is simply that
2 5 I oy ). 1
2 2
wg > <h2 257 h3> implies <2 (2 — (woh)* — 'yh)> <0. (31)

We also assume that: is less tharl. The case whergh > 1 is considered later. We can write the

left side of equation (31) as
(woh)? > (2= 7k +2y/T=h).
From these facts we can derive that
(; (2 — (woh)? — fyh)) < % (2 - (2 A4 2\/@) - fyh)
=—/1—~9h <0 (assumingyh < 1).

Since the pole with the larger magnitude is on the negative real axis of thae;pke frequency is
radians per sample.

Similarly, if w3 is less than the root of equation (27) in which the surd is subtracted — i.e. if
(woh)? < (2—7h—2 1—’yh),

then
1

(2 (2- (woh)? — vh)) >
=/1—~h >0 (assumingyh < 1).

<2—(2—7h—2 1—’yh>—’yh)

N | =

So in this case, since the pole with the larger magnitude is on the positive iealfdke z-plane, the
frequency is zero.
As the leftmost pole approached, the damping becomes smaller. The system will become unstable

whenz becomes less thanl. This happens when from equation (25)

1 2
5 (2 — (woh)2 —~h — woh\/(woh)2 + 2vh + ((j) — 4) =1
0

2
4 — (woh)? —~yh = woh\/(woh)2 +2vh + <J> —4.
0
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Squaring both sides and simplifying results in
(woh)? + 2yh — 4 = 0.

For a fixed time step), we can solve fowy:

4 — 2vh
wf = =" (32)
1
= —+/4 — 2vh.
wo h v

So for stability we require that
1
wo < E\/Zl — 27vh. (33)

As the value ofyh increases, the circular region on the z-plane whdsscomplex becomes smaller,
as can be seenin Figure 9 whete= .98. Whenvyh = 1.0 the circular region disappears. Fgr > 1.0,
there are only two possible digital frequencies: zeroamnddians per sample. If the pole with the larger
magnitude is negative, the digital frequency willbeadians per sample; otherwise it will be zero. From

equation (25), the pole with the larger magnitude is negative when
2 — (woh)? = vh < 0,

so, whenyh > 1.0, the curve dividing systems that do not vibrate and those that vibratesatians per
sample is

2 — (woh)? — vh = 0. (34)

3.6 Regions of the S-Plane

We are using a mass-spring system as a way of mathematically modelling a vilplagisigal system.
We then use numerical methods to approximate this mathematical model and implesimealzdion of

the system on a computer. There are 2 sources of error:
1. Discrepancies between the vibrating system and the mathematical model.
2. Discrepancies between the mathematical model and the computer simulation.

In this paper, our concern is with the second error. We want to kneenghe mathematical model,
how accurate is the computer simulation? The mathematical model, which is a caostimealel, can
be analyzed on the s-plane. Analogous to the z-plane, the s-plansaei¢he poles of the analog
(continuous) system where= o + pj. The s-plane uses rectangular coordinates with the horizontal
axis—the real axis—representing the decay rate and the vertical axismdbeary axis—representing
the frequency. The decay rate is denotedbby: —+/2 and the frequency by = (1/2)@.

The mathematical model, which we refer to as the analog system, is stable if aleissgwe on the left
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hand side of the s-plane. Ideally, all stable analog systems would restabie somputer simulations.
However, this is not necessarily the case, since numerical methodspoxiapations. In this section,
we show which systems having stable mathematical models will be stable when sdrusatg the
symplectic Euler method. We do this by showing graphically which parts of thédefd side of the
s-plane will be mapped to stable systems on the z-plane — i.e. which poles ompldreeswill, when
the system is simulated using the symplectic Euler method, result in poles withinithercie on the
z-plane.

We can find the region on the s-plane that maps to stable poles on the z-plasiadpequation (33).

In this case, however, we need it in termsucdindo. First we findw3 in terms ofu ando:
1
o= 5\/4w3 — 2
1
p = 1(4“/3 —40?)
wi =+ o2 (35)

We then substitute equation (35) in equation (32)

pto?= %(4 — 29h)
. i%\/él T+ doh— (oh)2. (36)
The system is then stable if
—%\/4+40h— (ch)? < p < %\/4+4ah— (ch)2. (37)

We can also solve equations (27) and (34) in termg @indo. Equation (27) divides poles that are

complex from those that are real. Substituting equation (35) into (27) we get

2y 1 ol
2., 2 _
e R A [
1
w= iﬁ\/—(ah)z + 2+ 20h +2v1+ 20h. (38)

Similarly, solving equation (34)—the curve dividing vibrating poles from-wdrating poles—foru in

terms ofo results in

= :I:%\/—((Ih)2 + 20h + 2. (39)

Using these equations, we can divide the left half on the s-plane into seclibiese regions represent
the qualitative properties that any pole on the s-plane within the region widl thdaen the systems is
approximated with the symplectic Euler method. Figure 12 shows the regions fatane for positive
frequencies. The negative frequencies are mirror images of the jgosites. If any of the poles of the
analog system lie within the unstable region, the discrete system resultinghHesymplectic Euler

method with be unstable.
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Figure 12: Regions of the s-plane

3.7 The Accuracy of the Damping

In this section we determine the accuracy of the damping of a mass-sprimgnsgliscretized by the
symplectic Euler method. We determine the equation for the digital damping antrexaome of
its points of interest. We find that it has a sharp change of direction whenviésrioom one region
(from Figure 12) to another. It turns out that in some places, countigithirely, increasing the damping
coefficienty actually decreases the digital damping. We also find that equation also ingsi&ispoint
where the damping becomes infinite, and we determine exactly where thaispoint

From equation (16), the damping of the analog systeaT¥%/2. On the s-plane this is”. The
damping of the discrete systemsi% wherer = |z|. How do these two values compare? If we sample
the continuous damping at each time step, we kéte as the samples of the analog damping, where

is the sample number aridthe length of the time step. The discrete damping is:

- enln’r _ eadnh’

whereo, denotes the damping of the discrete system. So,

1 1
Udzﬁlnr:Eln]z\. (40)

Using the value of from equation (25) we can compare the analog to the digital damping. FiGure 1
shows the damping of the symplectic Euler method when= .1. When the analog damping is small
(i.e. o is near zero), it is quite accurate. Note that, since the accuracy of thardpdgpends on both
andh, we can increase the accuracy of the damping by decreasing the tinve, stepause, for a fixed

value ofo, decreasing: will move the digital damping of the system toward the right side of the figure
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where the value of ;A is very close tarh. There are two points when the function has a sharp corner:
the first is when: leaves the region where it is complex and enters the region where thef®gis
zero; the second is wheteenters the region where the system vibrates eddians per sample. Once

z is in the region where the digital frequencyssradians per sample, the digital damping decreases
(i.e. o4 approache$) and the system becomes unstable when the digital damping is greater than zer
The positions of the vertical lines marking where the digital frequencyrbes@ero and radians per
sample are found by solving equations (38) and (39), respectivelyifn terms ofuh, and finding the

value ofch, given the known value gfh. For equation (39) this works out to
oh=1++/3— (uh)?.

For equation (38), solving farh results in a very long fourth degree equation.

Solving forah whenpuh = .1 results in the valueh = —0.1954 for the line at whichz leaves the
region where it is complex and enters the region where the digital fregugnero, andrh = —0.7292
for the line dividing systems that have digital frequencies of zero froreetaving digital frequencies
of = radians per sample. We can also see these values by drawing a horiimentar this example at
wh = .1, in Figure 12. We see that the points at which the horizontal line entersdianse,; = 0

andwy = 7 match those of Figure 13. Figure 14 shows the digital damping wihes .8. Solving for

Symplectic Euler
0.4 - — —y=X 5

0.3F

0.2

0.1f Wy =T W, =0 zis complex{

digital damping o, h

. . . B
-1 -0.8 -0.6 -0.4 -0.2 0
analog damping ¢ h

Figure 13: Digital damping vs. analog damping+k = .1

oh whenph = .8 results in the valueh = —0.4983 for the line at whichz leaves the region where
it is complex and enters the region where the digital frequency is zerayfard —0.5362 for the line
dividing systems that have digital frequencies of zero from those haligi@l frequencies ofr radians
per sample.

Figure 15 shows the digital damping whegh = .87. Solving forah whenuh = .87 results in the
valuech = —0.4977 for the line at whichz leaves the region where it is complex and enters the region

where the digital frequency is radians per sample.
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Figure 15: Digital damping vs. analog damping+ = .87

From equation (40) we see that wher= |z| approaches zero, the digital damping approackes

This happens when, from equation (24)

z= % <2 — (woh)? — yh % \/((woh)2 +yh—2)* —4(1 — ’yh)) =0

(woh)? + 7k — 2 = %4/ ((woh)? + vh — 2)° — 4(1 — 7h)

((woh)? + 7yh —2)?

— ((woh)? +vh —2)% — 4(1 — ~h)

1—~vh=0

vh = 1.
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If yh =1andz = 0, then

= 5 (2= b = 2t ion)? 02— a(1=91)) =0
1= (woh)? £/ ((woh)? = 1) =0
1 — (woh)? £ ((woh)®> —1) =0
0=00r2—2(woh)? =0
(woh)? =
If (woh)? = 1 then from equation (35)
(1% + a?)h? = 1. (41)
If vyh =1, thenoch = —.5, so

(uh)? =1 — .52

i

As ph approaches/3/2 ~ 0.866, the digital damping becomes increasingly large whénap-
proaches-0.5. We can observe this in figures 14 and 15 by the large diphat —0.5. We can also
observe this in Figure 17 in the next section. Wheris greater thar/3/2, the region where the digital

frequency is zero disappears, as can be seen in Figure 15.

3.8 Iso-Frequencies and Iso-Damping of the Symplectic Euler

Figure 16 graphically represents how the symplectic Euler affects thedneg of a mass-spring system.
The horizontal lines have the same digital frequencies (iso-frequénE@sexample, the labelS;h =

2" on the right side of Figure 16, marks the line where the digital frequengyaslians per sample. The
right endpoint of the line occurs when the damping is zero. At this pointtladog frequency (using
the scale on the left side of the figure) is arounéR radians per sample. As we follow this line to
the left it gets lower and lower on the graph, indicating that the frequemeping is increasing as the
damping increases. When the dampingts = —0.4, the analog frequency is around radians per
sample, for a digital frequency aof;h = 2. By plotting an s-plane pole on this graph, we can find the
effect the symplectic Euler will have on the frequency by noting which isgtfency line the pole is
near. Figure 16 was created by solving equation (30), which calculadeetiuency warping, fapgh.
This allows us to calculate the value fogh for fixed values of the digital frequency;~ and damping
oh. We can then convettyh to ph, the analog frequency, using equation (35) and plot the point on the
graph. This is repeated for each valuesdf going fromoh = 0to ch = —0.5 in small increments,

resulting in one iso-frequency line. The process is repeated for eadrecpuency.
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Figure 17 shows how the symplectic Euler affects the damping of a masgrsyatem. Note that,
in the area where z is complex, the iso-damping has straight vertical linesisecause, in this region,
the digital damping does not depend on the frequency, as shown btiag(29): |z| = /1 — vh. We
can also see that as we approach the region of instability, the digital dang@repdes to zero. Figure 17
was created in a similar manner to Figure 16. This time equation (40) is solved fior fixed values
of o4h andph. Each iso-damping line is plotted by holdiag at the desired value while increasing

in small increments.
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Figure 16: Iso-frequencies of symplectic Euler
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3.9 Testing the Theory

We can test our theoretical results by comparing samples from a cosieeusig the digital frequency
and damping calculated by equations (30) and (29) to the actual outpliga® by software running
the symplectic Euler method. For our test we use the constants:
wo = 125 x 27,y = 50, h = 1/1000,2(0) = 1,v(0) = 0.
We usez(0) for the initial displacement ang0) for the initial velocity. Using the equations from section
3.1 we calculate the analytical solution as
z(t) = Re™ "2 cos(ut + ¢),
with R = 1.00050699121789, 1 = 785.0001752025822 and¢ = 0.03183636632642.
For the theoretical results of the symplectic Euler method, we use equatipto(88lculate the dig-
ital frequency,w,, and equation (29) to calculate the digital dampings= |z|. The equation for the
theoretical results is
xn, = Rr" cos(wgnh + ¢), (42)
with » = 0.97467943448090, wy = 817.7132374981528 and¢ = 0.03183636632642
R =1.00050699121789.
Figure 18 shows a plot of the theoretical model of the symplectic Euler meti@solution of continuous
system and actual samples produced by the symplectic Euler method usirgqu#times from section
2.2 which result in a system represented by equation (19). The exfernalin this example is set to
zero. We see that the theoretical model’'s samples match almost exactly the sanopleced by the
actual symplectic Euler method (since the o’s and the x’s on the graph pyagiang us confidence the
theory is correct.
Figure 19 shows a second test,this time use the constants
wo = 1708,y = 500, h = 1/1000, 2(0) = 1,v(0) = 2324.

For this simulation the digital frequency isradians per sample, although the simulation is still stable.
The dotted line in Figure 19 shows the equation for the theoretical resuligtieq (42), for a continuous

time scale — i.€ instead ofnh.

4 Generalizing to Mass-spring Systems

with Multiple Degrees of Freedom

So far, we have just analyzed mass-spring systems with a single mass.wWwéemsider systems with

multiple masses. Since each mass can move independently of the other massesys$tems are said
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to have multiple degrees of freedom. We first look at the analytical solutitimeofeneral mass-spring
system withn degrees of freedom using the method presented by Meirovitch [19] anddbk at how

discretization by the symplectic Euler method affects a mass-spring system wiiplenmasses.

4.1 Analytical Solution of Mass-Spring Systems

We can find the analytical solution of a mass-spring system by using thesgtate-method. The state
space method uses a vectg(t), of state variables. The equation describing the state variables of the

state-space system is [1]
d

%x(t) = Ax(t) + Bu(t), (43)
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where the vecton(¢) is the input andA and B are matrices. The output is produced from the state

variables and input by the equation
y(t) = Cx(t) + Du(t).

The state variables should contain the information needed to calculate tha'systafiguration at each
point in time, so for a mass-spring system an obvious choice is the displacantevelocity of each of

the masses. So’ () is

(m To ... my Ty xh ... x;L)a

wherez; represents the displacement of maasdz/ the velocity of mass.
The first step is to determine the matuk Following Meirovitch [19], we createl in terms of

the mass, stiffness and damping matrices. The mass mafrixgontains each of the masses along its

diagonal
m; 0 0 0
0 me O 0
M =
0O ... 0 0 mgm

The stiffness matrixk’, contains stiffness influence coefficients;, that are defined as the forces
required for a unit displacement of massvith all other masses$ # i having a displacement of zero.

The damping matrixZ, contains damping coefficient&;, that are defined as the forces required
for a unit velocity of mass to the right, with all other massegs# i having a velocity of zero [15]. If we

assumau(t) = 0 (i.e. no external force is acting on the system), we can then write equa8pag4

where the inputu(t), is zero and the matrid is the matrix on the right side of the equation. This is the
general form of matrixA for a state space mass-spring system. If thererar@ssesA is an2n x 2n
matrix, 0 is ann x n matrix of zeros/ is then x n identity matrix, and-A/~! K and—M ' Z are both
n x n matrices.

For a mass-spring system the inpuis an external force acting on each mass. If the system has no
external forceu is equal to zero. The matri® is then x n identity matrix. Since we want the state

vectorx as output, the matrig’ is then x n identity matrix andD = 0.
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The solution to the state space system is [1]

t
x(t) = ex(0) +/ e "Budr
0

t
y(t)=C <etAx(O) +/ "™ Bu d7'> + Du.
0

The matrix exponentialgtA is defined as

tk:

k
HA

o tayte

If there is no external force (i.eu(t) is equal to zero) and the matrix = 0, then solution of the state

space system simplifies to
y(t) = Cetx(0).

More detailed information on the analytical solution of mass-spring systentsedannd in the book

by Meirovitch [19], which this section is based on.

4.2 Mass-spring Systems with Multiple Masses using the Symplec Euler Method

The poles of the analog system on the s-plane are the eigenvalues oftbm syatrix (the matrix A
described in the previous section). For each mass in the mass-spring sy&dave a conjugate pair
of poles. We can view numerical methods as mapping for the s-plane to e-glarf any pole on the
s-plane is mapped outside the unit circle on the z-plane, the system will tablemsWe can determine
if a mass-spring system with multiple masses will be stable when simulated with the sjimpleler
method by calculating the eigenvalues of the system matrix and testing eacvedigeior stability using
equation (37). The real part of the eigenvalue isnd the imaginary part ig. If all the eigenvalues are
stable, the simulation of the system will be stable; otherwise it will be unstableivéegntly, we can
plot the poles against the regions of the s-plane as shown in Figure aR1Hé poles are in the stable

regions, the simulation of the system will be stable.

4.3 Example — Finding Coefficients for a Vibrating String

We show how to use the results from the previous sections to to find thectemeng stiffness and
damping coefficients for a vibrating string simulated with a mass-spring syssarg the symplectic
Euler method. Figure 20 shows a simulated string constructed using N maashsgonnected by a
spring and damper. For an ideal continuous string, there are an infimtbarwf frequencies, each of
which are integer multiples of the fundamental frequency [13], which isatifon of the tension, the
string length, and the mass per unit length. For example, if the fundamesdaleincy ist40 Hz., the
frequencies aret40 Hz., 880 Hz., 1320 Hz., 1760 Hz., etc.
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Figure 20: Damped mass-spring system with N masses

For a mass-spring system, the number of frequencies depends on therrafimasses. A simulated
string with N masses will havéV frequencies [13]. As the number of masses in the mass-spring system
becomes very large, the audible frequencies also approach integer nsudfipthe fundamental [13], but
for smaller systems, the higher partials have lower frequencies than thasewtinuous string.

We now consider an algorithm that, when given the sample timehe number of massesy,
the desired fundamental frequendy, and the time constant;, calculates the values for the mass-
spring system’s coefficientsgo,: = \/W andy,,: = Z/m. The time constant for the fundamental
frequencyy, is the length of time it takes for the amplitude to decay tethat of the starting amplitude.
It is assumed that the mass, spring stiffness and damping coefficiente &amntle for each mass, spring
and damper respectively.

We start by calculating the value for the digital dampisg, given the value of the time constant

The damping of the system é§?, so from the definition of the time constant

= (44)

This is the value for the digital damping that has the time constawe want to find ther;, which after

numerical damping, has the time constantn other words we want to finel; such that
D(o1) = a4,

whereD is numerical damping function. To do this we use the inverse of the numeaicgidg function,
D1, with

D_l(o‘d) =01.

The equation for numerical dampingdg = + Inr (equation (40)). When is complex,r = |z| =

V1 —~h (equation (29)) . Equating this with equation (44) and solvingyfgives us

1 1
o4 = Eln(\/l —~h) = -

7= 31—, (45)
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Sinces = —+/2, the value fow; is
DY og) = ——(1 —e M) = 5.

This is the value for the damping of the lowest frequency, that after nuatetémping will give the
correct value for-. That means that the real part of the eigenvalue with the lowest fregsaoald have
this value. We create a function(vy, wg, V), that creates a system matrix with fixed valuesfdoand
wp, and the variabley. It then calculates the eigenvalues of the system matrix and returns tipareaf
the eigenvalue with the lowest frequency. Since the damping values depend onvy, we can use a
rough approximation for it. We can then solve the equadio.:, wo, N) — 01 = 0 numerically to find
the value ofy,,,; whereg(vout, wo, N) = o1. We can use any zero finding method to solve this equation.
The resulting valuey,., is the value we use to calculate the coefficighwwhereZ = ~,,sm, for the
damping coefficient of each damper.

We then use the same approach to find,:, the value used to set the spring stiffness coefficient,
k = wd,,m, for each spring. We first find the frequengy, for the imaginary part of the eigenvalue
with the lowest frequency. We want this to be the value that, after frequeacping, results in the

desired fundamental frequendy, So
W (p1,7,h) = FandW = (F,~,h) = 1,

wherelV is the frequency warping function. To il —!, we solve the equation for frequency warping,
equation (30), fotwg. This works out to be a quadratic equatior(iyh)?, with

s —bEVb?—4ac
B 2a

wherea = tan®(wg) +1,b = 2vh — 4 + tan®(wg) (27h — 4),

(wo h) = Rl y RQ

andc = (’yh)2 + tanz(wd)(‘l —dvyh + (’Yh)2)7

whereR; andR; are the two roots of the quadratic equation. We then use the substititiery.? + o2

(equation (35)) and solve forto get
(uh)? + (oh)? = Ry, Ry

VR —0? /R3S —0% \/R%_§ \/R%_VTQ
h ' h N h ’ h .

M:

If we calculate the derivative of equation (30), we find that it is alwaysitjve, showing that the fre-
quency warping is an increasing function. This means that the inverseoig at®notonic function.

Squaring, and then taking the square root has introduced extrar@mss The correct function for the
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inverse frequency warping is

Jr-2

h

2
Ve

7 .

wdh S
W_l(wda 7) =

wgh >

woln

N

The value ofuy, the imaginary part of the eigenvalue with the smallest frequency, isitheh F, , h),
whereF is the desired fundamental frequency ang —20.

The last step is to find,.:, the value of o, to use for each spring of the mass-spring system. We
create a functionf (vout, woout, IV), that creates a system matrix with fixed valuesfband-,,:, and
the variablewq,,:. It then calculates the eigenvalues of the system matrix and returns the imygqugna
of the eigenvalue with the lowest frequency. We can then solve the equyadtion, woout, V) — 11 =0
numerically to find the value @y, Where f(vVout, wWoout, N) = p1.

Once we have values fafy,,; and~,,:, we can choose any value for the mass,of each mass
element. We then calculate the spring stiffness coefficients-ass2,, ,m and the damping coefficients

as”Z = Youm.

Algorithm 1 Calculate System Coefficients for Vibrating String
input: The desired fundamental frequengky the desired time constant the number of masses,

and the length of the time stép
output: The value used to calculate the spring stiffness coefficiepis;, and the value used to
calculate the damping coefficienis,;.
1: Calculate real part of the eigenvalue with lowest frequengy:= —i(l — e 2h/TY;
2: Find the damping/mass coefficient for mass-spring system:
find 5, SUCh thay (Vout, woest, N) — o1 = 0, wherewq,s; is a rough estimate ofy;
3: Calculate imaginary part of the eigenvalue with lowest frequency:

p1 = W=YF,~,h) wherey = —207 ;

4: Find the\/stiffness/mass value for mass-spring system:

find woou: SUCH thatf(’}/outa Woout » N) —p1 =0;

Suppose that for our mass-spring system we want to simulate a stringbusiagses{ = 5), with
a fundamental frequency a@fl0 Hz. (F' = 27 x 440), a time constant of second for the fundamental
frequency ¢ = 1), and a sample rate @f, 000 samples per second (= 1/6000). Our algorithm

produces the values:

Woout = 9293.239300336853

Yout = 7.46285773640857.
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Algorithm 2 W~1(w,, v, h): Calculate Inverse Frequency Warping
input: The digital frequencw,, the damping coefficient, the length of the time stefp.

output: The analog frequency.
1: [Ry, Ry = —bEvlir—dac VQZZ_‘MC wherea = tan?(wg) +1,b = 2yh — 4 + tan?(wy)(27h — 4), andc =
(Yh)? + tan®(wg) (4 — 4yh + (vh)?);

2
Vr
h

wgh <

20 p= g
R2_2°%
wgh > \/ 1h .

N

wla

Algorithm 3 f(~,wp, N): Find the Imaginary Part of Eigenvalue with the Lowest Frequency

input: Damping/massy, +/stiffnesgmass:wy, number of massesy.
output: The imaginary part of the eigenvalue with the lowest frequeteyig(eig ).

1: Create the mass matrix (the identity matriX): = Iy; //The mass matrix)/, is the N dimensional
identity matrix. We are dividing through by: to normalize the mass.

2: k = w3; Il If masses are normalized tod3 = k/m = k.

2k -k 0 ... 0
-k 2k -k ... 0 _ . o ,
3 K= /I K isanN x N tridiagonal matrix with2k on the diag-
0 ... 0 -k 2k
onal, and—k£ above and below the diagonal.
2y —y 0 ... 0
-y 2y - ... o1 ., .. . N .
4. 7 = i/l Z isanN x N tridiagonal matrix witi2~ on the diagonal,
0o ... 0 —v 2y
and—~ above and below the diagonal.
0 | I
5 A= | - — - __ | ————— :
-M7'K | -M7'Z

6: eigenValues = calculateEigenValues(A);
7: eig1 = element okigenV alues with the smallest imaginary part;

8: RETURNimag(eig; ); Il return the imaginary part of the eigenvalue with the lowest frequency.

Algorithm 4 ¢(v,wp, N): Find the Real Part of Eigenvalue with the Lowest Frequency
This is identical tof — algorithm 3 — except that it returns the real part of the eigenvalue with the

lowest frequency.
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We choosel.0 for the mass making = w3,,, andZ = ~,,; as the constants for the system. These
values are used for each mass, spring and damper, respectivelysiystam.

Table 1 shows the eigenvalues of the system in the left hand column. Thd tligigaencies and
damping are then calculated according to equations (30) and (40). Tited &igquency in Hertz and
the digital time constant are shown in the last two columns. We note that the drgitgieihcy and
time constant of the first eigenvalue are the values we intended. The palessystem are plotted in
Figure 21 against the regions of the s-plane. We can see that the sysi@tlés since all the poles are

in the region where is complex.

analog digital
eigenvalue Wy o4 freq. T
rads/sec I/sec Hz. sec.
-0.99983335 + 2739.98210i| 2764.60154| -1.000000| 440.00000| 1.000000
-3.73142886 + 5293.23798i|| 5483.76570| -3.733751| 872.76842| 0.2678272
-7.46285773 + 7485.76708i| 8089.32370| -7.472156 | 1287.45585 0.1338302
-11.19428660 + 9168.15257( 10447.41229 -11.215224|| 1662.75731 0.0891645
-13.92588212 + 10225.74360i12263.63276 -13.958304|| 1951.81777| 0.0716419

Table 1: Eigenvalues of the system.

s-plane poles
12000 T

w, = 18000
®, = 15000

unstable

10000 - 4w, = 12000

8000 |, = 9000

6000 [

prads/s

7wd:6000

4000 -

w, = 3000

2000

0
-3000

Figure 21: Poles of simulated string with 5 masses

We built a mass-spring system, following the method outlined in sections 2.2 andsg the
coefficients calculated above and set it vibrating by displacing one of tekegraWe played the resulting
sound file along with a pure sine wave of 440 Hz. There was no dissettween the pure sine wave
and the frequencies produced by the simulated string. If two tones teygcincies that are similar, but

not exactly the saméeatsor fluctuations in amplitude, are heard. In our simulation no beats were heard
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indicating that the fundamental frequency was extremely close to 440 Hzh&kealtered the system,
using values fok andZ that did not correct for frequency warping and digital damping — i.e. tve$bd
frequency eigenvalue wasl +440 x 2. This time, when we played the sound file from the simulation,
beats could be clearly heard, indicating that the lowest frequency wadméiz. Using equation (30),
we find the actual frequency produced by this systedds026 Hz., an error 0f).915%. We can verify
this by playing the results of the simulation along with a sine wav#4df026 Hz. This time no beats
are heard.

In this section we have given an example of how to use the frequencyngapd numerical damping
equations developed in section 3 to build a mass-spring system with presiedbadiour. We do this
by building a system with eigenvalues that, after the frequency warpinghamerical damping have
occurred, will have the desired values. We have also shown how tipeeiiney warping and numerical
damping can be used to accurately predict the behaviour of a mass-systegh implemented with the
symplectic Euler method and that if these effects are not taken into cortgdetae results produced

by the system will not be as expected.

5 Conclusions

We have now answered the questions we asked in the introduction.

e By equation (33), symplectic Euler method is stable when:

1

wo S EM7

wherewy = +/k/m, k is the spring stiffnessy is the massh is the time step, and is the
damping coefficientZ divided by the mass. We can solve this equation/fdo find the largest

time step to ensure stability for given valuesiofn andZ. The equation is

2
he 2o <Z> 4™
m m k
e By equation (30), the symplectic Euler method warps the frequency of Hiegsystem according

to

2
woh\/4 — (woh)? — 2vh — (%)
2 — (woh)? — yh

1

wqg = tan~

e By equation (40), the symplectic Euler method’s effect on the damping ofle@ system is

og= —1Inr.

h
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Herer = |z| andz is calculated from equation (25):

z= % 2 — (woh)? —yh + (,uoh\/(woh)2 + 29h + (;})2 —4

These results are necessary if we want to precisely understandehetb& numerical method —
in this case the symplectic Euler method — has on the mathematical model of thepriags-s
system. From the eigenvalues of the analog system, which represergdbericy and damping
values of the mathematical model, we can determine whether the symplectic Eulenangdéion
of the system will be stable, and if so, what the frequency and dampingsvalithe discretized
system will be. We give an example of a simulated vibrating string, createddenies of masses,
springs and dampers and show how to calculate the system coefficienteghhtin a prede-
termined fundamental frequency and time constant. This example showsrooviekige of the

effects of the numerical method can be used in simulating sound producingmests.

We built a simple model of a guitar by creating six simulated strings each contéifiingasses.
Using the methods presented in section 4.3 we derived the valugs faandm for each string so
that the guitar had the correct tuning. The fretted notes — those creatadthwh player presses
his or her finger against the fingerboard at a certain fret — wereextdxy stopping the mass that
is closest to the calculated position of the fret from vibrating. This in effhottens the length of
the string and raises its pitch. Because there are a finite number of maspéstihie somewhat
inaccurate, but with 80 masses per string the tuning discrepancies atg baticeable. The
guitar is “played” by means of a script file that contains a series of sougt® such a plucking a
particular string, placing a finger on a particular fret on a particular strelgoving a finger from

a fret and damping a string. Each event happens at a specified time.

The results of the simulation were surprisingly good, considering the simpli€itgeomodel.
Only the strings were simulated; not the body of the guitar. This made it sourallike a solid
body electric guitar than an acoustic guitar. We could imitate the pickup posititire @juitar by
choosing which mass’s vibration is used to create the output of the simulatiercldser the mass
is to end of the string, the brighter the tone is — i.e. the more high frequency cantzoit has.
By using the sum of the displacements of several masses as the sount] auigher tone can be

created.
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