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ABSTRACT
Machine learning models are often criticised for being black-boxes.

Recent work in this field has aimed to address this criticism by

developing methods to explain the underlying behaviour of ma-

chine learning models. These explanations are designed to help the

end-user interpret how the models input features are used to make

a prediction. Here, we present an extension to one such method,

referred to as local interpretable model-agnostic explanations, to

interpret multimodal tumor type classification from multi-platform

genomic data. We propose a framework for transparent biomedi-

cal machine learning by leveraging interpretable dimensionality

reduction to facilitate gene-wise explanations for the model be-

haviour. Experimental results using RNA-seq expression and single

nucleotide variation (SNV) data from eight cancer types uncov-

ered the models use of clinically relevant genes for cancer cell

stratification. We demonstrate that model-agnostic explanations

can provide valuable information to a clinician or scientist when

predictive ability and interpretability are of absolute importance.

CCS CONCEPTS
• Computing methodologies → Supervised learning; • Ap-
plied computing→ Health informatics.
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1 INTRODUCTION
Recent advances in biotechnology have enabled a multidimensional

approach for exploring human disease. New high-throughput tech-

nologies can quantify and characterize the biomolecules that define
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the architecture, behaviour, and dynamics of a biological system. Re-

search in the last decade has introduced a multifaceted exploration

of cancer biology at an unprecedented scale [15]. Cancer research

projects are characterizing the genome, epigenome, and transcrip-

tome to capture the complexity and phenotypic heterogeneity of

cancer cells [8]. The prevalence of rich cellular descriptions of

cancer cells has encouraged the adoption of advanced predictive

analytics in clinical decision support. Clinicians are increasingly

adopting coupled frameworks of next-generation sequencing (NGS)

and predictive models to support cancer diagnosis and patient strat-

ification. Rapid developments in machine learning are enabling

opportunities for improved clinical decision making in the health-

care industry, however, several key challenges hinder its utility

by clinicians and researchers. The application of deep learning for

medical predictions often results in a hindered ability to interpret

the decision made by the classifier. Healthcare professionals require

informative tools that can explain their predictions. Domain experts

need to ensure a level of trust in predictive models by evaluating

the usefulness, reliability, and internal logic of the system.

The ability to interpret the behaviour of a machine learning

model can provide valuable insight into the internal logic of the

classifier and the structural importance of the features. As the appli-

cation of predictive systems is integrated deeper into the industrial

and scientific domains, it is becoming increasingly important to be

able to explain the basis of their decisions. Certain models benefit

from inherent transparency in interpretation. These techniques

provide a direct link to the features used to make a prediction.

Unfortunately, transparent models such as decision trees, sparse

linear models and rule-based systems have inferior predictive per-

formance compared to more complex model abstractions such as

random forest classifiers, support vector machines and deep neural

networks. The increased complexity of the more advanced models,

however, makes interpreting the underlying logic of the system

a difficult task. Despite the prevalence of diverse forms of ma-

chine learning models, not many systems provide explanations

of their decisions in biomedical applications. In other domains,

model-agnostic explanations have been used to address this prob-

lem. Model-agnostic explanations are of interest due to their wide

applicability. These interpretation methods are used to explain the

behaviour of models where the internal logic of the system is not

directly available for inspection. As well, model-agnostic methods

are flexible in that they can derive explanations from any under-

lying model, making them desirable for use in medical predictive

analytics.
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In this paper, we focus on extending a method for model-agnostic

explanations to a clinically relevant learning task. We assess meth-

ods that leverage interpretable dimensionality reduction and model-

agnostic explanations to help understand the underlying behaviour

of a multimodal machine learning model. We use differential expres-

sion (DE) and clustered gene filtering (CGF) to extract a meaningful

subset of genes from RNA-seq and SNV, respectively. We then uti-

lize these features to predict the class of eight cancer cell types with

a gated multimodal unit (GMU) based deep neural network. Finally,

we used model-agnostic explanations to analyze the behaviour of

our deep learning model. The performance of these methods affirms

that model-agnostic explanations are useful for interpreting how

a complex underlying model uses genetic information to make a

prediction.

2 BACKGROUND
Clustering cancer cells with NGS data has been a well-studied area

of computational biology. Several approaches have been developed

to stratify cancer cells and benign cells using supervised learning

techniques. In addition, various clustering methods have been pro-

posed to identify cancer sub-class from multi-platform data, but

very few of them attempt to interpret the influence of input features

[13, 20, 29].

A key focus for researchers has involved producing expression

and sequence-based features with a manageable dimensionality.

Multi-platform biomedical datasets present numerous challenges

for machine learning and statistical approaches. Biological data is

often high-dimensional, noisy and sparse. High-throughput tran-

scriptome sequencing and genome-wide genotyping arrays can

produce tens of thousands to millions of features, making the iden-

tification of biomarkers a central issue in cancer research [32].

Representation learning for regularized and data-driven feature

identification has thus emerged as a critical component of both the

dimensionality reduction and model interpretation paradigms.

Various unsupervised methods have been used for dimension-

ality reduction and classification of sequencing data. Techniques

such as stacked denoising autoencoders (SDAEs) have been used

to acquire low dimension non-linear feature sets from breast can-

cer RNA expression data [30]. Transformative autoencoders have

achieved some success, but these techniques result in encodings

that lack direct interpretability. Furthermore, LASSO regression

has been applied as a simple method for selecting gene expression

features in a principled way [2, 27]. However, LASSO will only

provide a useful set of selected features, not necessarily the most

important features for a given application. Accordingly, conven-

tional DE analysis has remained an integral component in cancer

research [25]. Quantitative changes in expression levels between

cancer cell types allow the identification of specifically relevant

genes through statistical analysis [13]. For SNV data, recent work

has shown superior performance with mutual information based

feature selection. Due to the sparse nature of discrete point muta-

tion SNV data, a clustered gene filtering approach was developed to

identify subsets of the most informative gene regions to effectively

provide a form of interpretable dimensionality reduction [36].

In recent work, common strategies for evaluating feature impor-

tance in neural networks has been through gradient-based methods,
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Figure 1: Schematic representation of LIME workflow.

perturbation techniques or utilizing surrogate models [6, 24, 26].

Gradient-based methods have especially dominated in biomedical

imaging. This is due to the wide-ranging applicability of gradient-

based methods, such as guided Grad-Cam, with convolutional neu-

ral networks (CNN) [6, 21, 26]. Guided backpropagation and Grad-

Cam has been applied with a CNN to trace the most significant

genes in gene expression profiles converted to 2D images [21]. How-

ever, guided Grad-Cam is specifically designed to leverage spatial

information in CNNs, and thus are not particularly transferable to

the dense layers of other neural networks. Alternatively, surrogates

models approximate the behaviour of a complex model by using an

interpretable model [9]. Interpretable models, such as generalized

regression models or decision trees, are trained to approximate the

predictions of an underlying model, and global explanations are

derived from analyzing the surrogate. More recently, perturbation

analysis has been used to model the impact of local perturbations

to explain the sensitivity of machine learning models [5, 14]. These

methods employ permuting the input and observing the variation

to the model output. Local perturbation analysis allows the deter-

mination of the specific output variance caused by permuting the

elements of the input for a training example. Recently, a combi-

nation of these approaches was developed to extend the utility of

surrogate models with permutation analysis, producing an algo-

rithm referred to as local interpretable model-agnostic explanations

(LIME) [24]. LIME generates interpretable explanations by approxi-

mating the prediction of any classifier locally for a given training

example. Local explanations of the underlying model are captured

by training an interpretable model on perturbations of the input

data. LIME generates a sample set of perturbed examples in the

neighborhood of the local instance and uses an interpretable model

to draw a decision boundary. Explanations are derived from ana-

lyzing the parameters of the decision boundary. Formally, a local

surrogate model д is defined through the following expression:

min

д∈G
J (f ,д, µxi ) + λ(д), (1)

where J (f ,д, µxi ) is a cost function that measures how closely

the surrogate model д approximates the underlying model f while
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keeping the model complexity λ(д) low. The proximity measure

µxi determines the size of the neighborhood around an example xi .
For a training example, the probability that a classifier maps the

input to a class label k is denoted by yk = f (xi ). Accordingly, LIME

works to optimize the expression in (1) to interpret why f maps

feature vector xi to a class label k .
In order to produce an explanation, LIME first builds a dataset of

perturbed instances x̃ by adding noise Zi to the mass center of the

training data. The noise, Zi ∼ N (0,σ 2), is drawn from a zero-mean

normal distribution with variance σ 2
. The underlying model can

then be used to generate a sample set that is weighted by their

proximity to the selected instance. The surrogate model can then

be trained using a cost function of the mean squared error:

J (f ,д, µxi ) =
∑
i

µxi (f (x̃i ) − д(x̃i
′))2, (2)

where x̃ ′ is the interpretable representation of the perturbed

data point. The learned weights of the trained model д form an n
dimensional vector where each weight corresponds to a feature in

training vector xi . The magnitude of the n-th weight, |wn |, defines

the importance of that features on the prediction. The feature effect

is defined by the polarity of the weight, wherewn > 0 orwn < 0

suggests that the feature has a positive or negative influence on the

prediction of the given class, respectively.

3 MATERIALS AND METHODS
In this study, the LIME procedure was extended to explain the use

of RNA-seq and SNV in a multimodal machine learning model.

The predictive behaviour of the underlying model was examined

using a linear model to approximate the decision boundary in the

neighborhood of each correctly labeled instance. The workflow for

our method is shown in Fig. 1. This process involved (1) individual

preprocessing of the RNA-seq and SNV data with interpretable di-

mensionality reduction, (2) generating cancer cell class predictions

with the multimodal machine learning model, (3) using gene-wise

model-agnostic explanations to interpret the underlying model, and

(4) a clinical analysis of the explanatory genes.

3.1 Transcriptome Expression
In this study, we utilized RNA sequence (RNA-seq) transcriptome ex-

pression profiling as the first input modality. The RNA-seq data was

derived from the HTSeq-Counts expression quantification frame-

work [3]. The expression profile contained the feature dimensional-

ity of all assayed genes in the HTSeq-Counts pipeline. As a result,

the RNA-seq expression data contained the normalized expression

counts of 60484 genes for each cell mass sample.

For the transcriptome expression data, interpretable features

were produced by computing the significantly differentially ex-

pressed genes. The log2(fold change) was computed between the

median tumour cell mass expression and healthy cell mass expres-

sion. The most statistically significant features were identified by

fitting the differential expression to a Gaussian distribution and

computing a two-tailed p-value. Features that match the prese-

lected experimental dimensions were acquired by selecting the top

most significant deferentially expressed genes using the two-tailed

p-values.

3.2 Single Nucleotide Variation
The second input modality was SNV data. This data was obtained

in the form of masked somatic mutations, derived from a MuTect2

Variant Aggregation and Masking workflow [7]. The analysis of

the raw SNV data was based on the variant occurrence frequency

of the genetic data. Variation occurrence was mapped to every

listed gene for all available cell samples. This was performed by

mapping mutated genes to cell samples in the raw SNV data, and

accumulating the number of mutations for each respective cell

sample. After preprocessing the SNV data, the variant occurrence

frequency was obtained for 20516 human genes for each cell mass

sample.

Clustered gene filtering (CGF) was used to select an interpretable

subset of the most discriminatory genes based on the variant occur-

rence frequency of the SNV data [36]. The genes are selected based

on highmutation frequency because genes with more mutations are

likely of more interest. The procedure involves filtering the genes

into groups based on a distance threshold, dcдf , and then selecting

the top, ncдf , genes from each group. Interpretable dimensionality

reduction was controlled algorithmically through the modulation

of distance threshold dcдf , and the group element threshold ncдf .
The distance threshold dictates how similar the mutation profiles

of two genes need to be grouped together, and the group element

threshold is the number of genes kept from each group.

3.3 Deep Gated Multimodal Unit
The multimodal biomedical classification was conducted with a

deep gated multimodal unit (dGMU) [4]. This model is defined by

the function of a representation network and a decision network

as shown in Fig. 2.
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Figure 2: Deep Gated Multimodal Unit.

In the representation network, the input modalities learn a la-

tent representation of the combined input data. Each modality

becomes the input for a multilayer perceptron (MLP) with a max-

out activation function, maxout(·) [12]. In Fig. 2, this produces

h1 =maxout(θh1 · x1) and h2 =maxout(θh2 · x2), for modalities x1
and x2, respectively. Activated by the sigmoid activation function,

σ (·), the gating neuron, z = σ (θz · [x1,x2]), ties both modalities and

controls their contribution to the output of the unit. The output of

the representation network is governed by the following equation:

x3(x1,x2;ΘR ) = z ∗ h1 + (1 − z) ∗ h2, (3)
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where latent space, x3(x1,x2;ΘR ), depends on inputs x1 and x2,
and ΘR = {θh1,θh2,θx3} is the set of parameters used for encoding

the latent space.

In the representation network, each modality becomes the input

to an MLP with a rectified linear unit (ReLU) activation function.

Here, gating neuron σ (·) controls the untied contributions of deci-

sion gates d1, d2, and d3. The decision network is governed by the

following equation:

ŷ(x1,x2,x3;ΘD ) =

3∑
i=1

ReLu(θdi · xi )σ (θdi · [x1,x2,x3]), (4)

where the network output, ŷ(x1,x2,x3;ΘD ), depends on inputs

x1, x2, and x3, and ΘD =
{
θd1,θd2,θd3,θд1,θд2,θд3

}
is the set of

network parameters used across the untied gates in the decision

network.

The dGMU model was implemented with original code in Ten-

sorflow version 1.11.0 on an Nvidia Tesla K80 GPU [1]. The global

loss was computed using the softmax cross entropy loss with L2
regularization, and model parameters were learned using batch

stochastic gradient descent with ADAM optimization [18].

3.4 Gene-Wise Interpretable Explanations
To find a gene-wise explanation, the LIME procedure is used to

approximate the dGMU model with a linear model of class G, such
that д(x̃) = wд

T x̃ . Perturbed instance x̃ is generated by individu-

ally noising each feature by drawing from a normal distribution.

The mean and standard deviation is taken from each feature in

the original dataset X . The perturbed instance is weighted using

an exponential kernel learned over a Euclidean distance by letting

µxi (x̃) = exp(−
√∑n

i=1(x − x̃)
2)/σ ). The kernel width σ is defined

as 0.75 times the square root of the number of training instances

(default value for σ is used as established in [24]). With a locally

weighted squared error J , as defined in Eq. (1), we learn the weights

wд of the sparse linear model via least squares. Each trained model

provides interpretable explanations through the learned weights.

The magnitude of a coefficient relates to the importance of the

respective gene in sample xi . Furthermore, genes with a positive

weight coefficient are positively correlated with the prediction of

the dGMU model and genes with a negative weight coefficient are

negatively correlated. Accordingly, the explanation of a single pre-

diction provides an interpretable framework by indicating the genes

that are most influential. Specifically, a single LIME explanation can

explain how the RNA-seq expression or SNV of the gene correlates

with the model prediction.

The gene-wise explanations for a single prediction provide lo-

cally faithful insight into the logic of the classifier. In order to assess

the global fidelity of the model, gene-wise explanations are pooled

to evaluate the reliability of the predictions as a whole. A proce-

dure for generating gene-wise LIME explanations is summarized in

Algorithm 1. Gene-wise explanations are extended to understand

the set of individual instances associated with correctly labelled

predictions. Explanations for a set of correctly labelled instances

are relevant in understanding the reliability of the classifier and

assessing how the model behaves globally. For a given cancer class

k , we can denote the dataset of correctly labelled instances as Xk .

Algorithm 1 Gene-Wise Global Importance with LIME

Require: Data matrix X , Perturbed data X̃
Require: Decision function f , True labels y
Require: Number of samplesM , Class k , Kernel width σ
1: procedure GeneLIME(X , X̃ , f ,σ ,N ,k)
2: Xk ← {}

3: for i ∈ {1 . . .M} do
4: if f (X (i)) = k and y(i) = k then
5: Xk ← Xk ∪ X

(i)

6: for all x (i) ∈ Xk do
7: Initializew

(i)
д

8: д(i) ← (w
(i)
д )

T x̃ (i)

9: µ
(i)
x ← exp

(
−

√∑n
i=1(x

(i) − x̃ (i))2)/σ

)
10: J (f ,д, µx ) =

∑
i µ
(i)
x (f (x̃

(i)) − д(x̃ (i)))2

11: W ← minд∈G J (f ,д, µx ) + λ(д)
12: G ←

∑n
i=1W

13: return G

The process of producing the matrix Xk is shown in lines 2 to 5 in

Algorithm 1. Furthermore, we can denote the process of deriving an

explanation from a subset of samples with a function ξ (·). Applying
the function ξ (·) is equivalent to performing lines 6 to 11 in Algo-

rithm 1. We now construct an n×p dimensional explanation matrix

by settingW = ξ (Xk ). The matrixW represents the local impor-

tance of all n genes for each of the p correctly labelled instances

for a given class. The gene-wise global weights can then be pooled

in an n dimensional vector G =
∑n
i=1Wi j . Accordingly, genes that

explain more instances will be ranked with higher importance.

4 RESULTS AND DISCUSSION
4.1 dGMU Model Interpretation
We examined the functional enrichment of the top 400 interpretable

gene components through a GO term and KEGG pathway analy-

sis. The top 400 genes that promote positive explanations for the

eight cancer types were identified as having significantly enriched

GO terms and related pathways. The biological process related GO

terms with a p-value smaller than 10
−10

and the related KEGG

pathways with p-value smaller than 10
−3

are presented on Table

1. Many of the statistically significant pathways and terms are re-

lated to DNA replication, DNA repair, and cell cycle processes. This

suggests that the genes most attributed to explaining the cancer

classifications are related to cell proliferation and tumor growth.

Furthermore, an additional review of literature was used to identify

relationships between the significantly enriched pathways and the

cancer types. The enrichment analysis of LIHC identified the carbon

metabolism (hsa01200) KEGG pathway, and the response to insulin

(GO:0032868), response to activity (GO:0014823), and fatty acid

metabolic process (GO:0006631) GO terms. The identification of

these biological processes supports significant research describing

the pathophysiological link between the human bodies response

to insulin and the incidence of LIHC [19, 28]. Insulin stimulates

the liver to store glucose, and the liver is the primary site for con-

verting excess carbohydrates into fatty acids. Dysregulated cellular
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metabolism, where aberrant oncogenic signals alter the expres-

sion of metabolic enzymes, is a reoccurring theme in cancer cells.

Currently, there is substantial evidence supporting dysregulated

fatty acid metabolism and lipid metabolic reprogramming in LIHC

[23, 33]. Through the application of LIME, we identified that the

dGMU model is using biologically relevant information to stratify

cancer classifications. These results suggest that a domain expert

can use the interpretable gene components to understand why the

dGMU model correctly classifies true positive cancer instances.

The cell division (GO:0051301) GO term was found to be signifi-

cantly enriched in four cancer types. For HNSC, the pathway related

genes were BUB1, LIG1, BIM, CIB1, SAC3D1, SPC24, BORA, BIRC,

ECT2, KIF14, BUB3, andNCAPG. For KIRP, the geneswereMAD2L2,

ZWINT, CDCA3, CDK5, CDK7, KIRF2C, PARD3B, PRKCE, CDT1,

BUB1, and TACC1. For LUAD, the genes were ATAD3B, BUB1B,

BUB1, DSN1, NEK2, BIRC5, CDC25C, CDC6, CHEK2, KIF18B, NCAPG,

RCC1, SGO1, UBE2C. Lastly, for LUSC the genes were ATAD3B,

BUB1, LIG1, DSN1,MAD2L2, SPC25, ZWINT,MCM5, PRKCE, RCC2,

TACC1, UBE2C. The greatest overlapping similarity was shared

between the two lung cancers LUAD and LUSC, where four genes

were shown to be shared. Despite representing the same biological

process related to cell division, between the four cancer types, the

gene sets were observed to be quite heterogeneous. This suggests

that the genes identified as interpretable components have potential

applications as biomarkers.

Figure 3: Top 3 explanatory genes for each cancer class.

The intuition of the dGMU model was further investigated by

examining the top three explanatory genes derived from LIME anal-

ysis for each cancer class. The weighted contribution of these genes

along with their respective log
2
FC from the differential expression

analysis are shown in Fig. 3. For HNSC, CDC25A was identified as

one of the explanatory genes. CDC25A is a protein-coding gene

that performs an integral role in cell cycle progression. In litera-

ture, CDC25A is a known oncogene that is overexpressed in head

and neck cancers [11]. This validates the explanation derived from

the model that found CDC25A as a key explanatory gene with an

overexpressed log
2
FC of 5.9. For THCA, LIME identified PRKCQ

and BMP1 as the top two explanatory genes for the dGMU model.

PRKCQ has been identified as having a potential role in the pro-

gression of thyroid cancer, and BMP1 is a known oncogene with

potential gene interactions that are influential in the carcinogen-

esis of thyroid cancer [10, 35]. For both KIRC and KIRP the top

explanatory genes, TTYH3 and ALDH2, were identified as prog-

nostic markers for kidney cancer [31]. Accordingly, through the

application of LIME explanations, the dGMU model has shown a

substantial utility of biologically relevant information for predicting

cancer type class.

The location and variability of explanations were visualized

using 2D embeddings of the RNA-seq input data. The RNA-seq data

were embedded into 2D images by ordering the genes based on

gene function and then reshaping the 3025 × 1 arrays into 55 × 55

images. An example is shown for five correctly classified HNSC

RNA-seq profiles in Fig. 4. The first row shows the 2D embedding of

the RNA-seq instances and the second row shows the respective top

five positive and negative gene explanations. On the second row,

the positive gene explanations that encouraged the prediction of the

correct class were labeled in red, and the negative gene explanations

were labeled in blue. The circled regions indicate a cluster with a

high density of explanatory genes between examples. Although the

explanatory genes were determined locally for a given instance,

a general consistency in positive explanations remained between

RNA-seq data input.

During the dGMUmodel training scheme, the cumulativeweighted

contributions for the RNA-seq and SNV features were examined.

We found that as the model increased in efficacy, the influence of

the RNA-seq modality increasingly dominated in weighted contri-

bution as shown in the top part of Fig. 5. The red kernel density

function for the RNA-seq modality progressively separates and set-

tles at a larger average value than the blue kernel density function

for the SNV modality. This suggests that the RNA-seq modality

contributes stronger explanatory information on average than the

SNV modality. This makes sense as the baseline linear model ob-

tained a higher accuracy with the RNA-seq modality than the SNV

modality as shown by the associated line chart of error rates illus-

trated alongside the labelled training epochs on the bottom half of

Fig. 5.

The genetic variations of the top 3 explanatory SNV gene regions

were visualized across the cell samples for each cancer class on

Fig. 6. Each column represents a sample and each row a different

gene. The fields are labeled to indicate the category of SNV that

is present in the region of the respective gene. The left barplot

shows the frequency of variations for each gene, and the associated

cancer class is labeled on the right. The mutation frequency of

the top 3 SNV gene regions varied widely across the cancer types.

The lung cancers LUAD and LUSC had the highest presence of

SNVs and the remaining cancers had very sparse variations across

cell samples. An exception to this appeared for the BRAF gene in

the THCA cancer cell samples. The genetic aberrations of all top

three genes have been implicated in the development of various

cancers, but genetic variations in HMCN1 and BRCA2 were only

found in one case each [16, 17, 22]. Genetic variations in BRAF

were found in more than half of the cell samples, the majority of

which were missense mutations. BRAF is a protein-coding gene

involved in the regulation of signalling pathways that influence

cell division, differentiation, and secretion. Mutations in this gene

are recurrent in THCA and the missense point mutation in which

a single nucleotide change results in valine 600 to glutamic acid
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Table 1: Summary of Enriched Gene Ontology Terms and Related Pathways.

Cancer Name

Enriched GO term and Related Pathway

ID Name Enrichment P-value

HNSC

hsa04110 Cell cycle 5.2 4.1E-5

hsa03030 DNA replication 9.8 3.1E-4

hsa04914 Progesterone-mediated oocyte maturation 5.4 6.2E-4

GO:0051301 Cell division 4.7 3.3E-11

GO:0007062 Sister chromatid cohesion 9.2 8.3E-11

GO:0008283 Cell population proliferation 4.4 4.3E-15

KIRC

GO:0007162 Negative regulation of cell adhesion 16.5 1.8E-13

GO:0001666 Response to hypoxia 4.4 5.3E-13

KIRP

hsa04210 Apoptotic process 18.2 1.3E-5

hsa04914 Progesterone-mediated oocyte maturation 5.4 6.2E-4

GO:0051301 Cell division 4.7 3.3E-11

GO:0007062 Sister chromatid cohesion 9.2 8.3E-11

LIHC

hsa01200 Carbon metabolism 6.4 7.04E-4

GO:0032868 Response to insulin 8.6 2.6E-13

GO:0014823 Response to activity 10.8 5.9E-13

GO:0006631 Fatty acid metabolic process 8.9 1.0E-12

LUAD

hsa00630 Glyoxylate and dicarboxylate metabolism 11 9.7E-4

GO:0001525 Angiogenesis 4.1 1.9E-14

GO:0031568 G1/S transition of mitotic cell cycle 5.9 4.1E-14

GO:0007062 Sister chromatid cohesion 6.4 2.5E-15

GO:0051301 Cell division 6.0 8.2E-15

LUSC

hsa03440 Homologous recombination 28.2 8.6E-6

hsa03030 DNA replication 13.6 1.9E-4

GO:0051301 Cell division 5.4 2.8E-17

GO:0000724 Double-strand break repair via homologous recombination 16.4 2.3E-14

PRAD hsa04530 Tight junction 6.5 2.2E-4

THCA

GO:0006260 DNA replication 10.2 3.3E-12

GO:0006974 Cellular response to DNA damage stimulus 4.4 5.03E-13

GO:0006915 Apoptotic process 2.5 1.1E-12

Figure 4: 2D embedding of RNA-seq and explanation heatmap with a localization of persistent explanations.



Interpretation of Cancer Classification ACM-BCB ’19, September 07–10, 2019, Niagara, NY

Model

E
rr

o
r 

R
a

te
  

 
 

 
   

C
u

m
u

la
ti

v
e

 C
o

n
tr

ib
u

ti
o

n

-3.0

0.8

0.6

0.4

0.2

3.0

2.0

1.0

0

-2.0

-1.0

Epoch

0

Modality

Figure 5: Distribution of cumulative contribution for posi-
tive explanations over a range of training epochs.

(V600E) is the most prevalent [34]. Although THCA has a low

mortality rate, the presence of the V600E mutation is associated

with faster cancer growth and a higher death rate [34]. Accordingly,

the interpretable local explanations derived from LIME indicate that

the dGMU model draws from clinically relevant information. This

trend is found across the different cancer types. The LIME algorithm

indicated SNVs in cancer-related genes in all cancer types which

provides reasonable explanations that a domain expert can use to

understand the prediction of the dGMU model.

5 CONCLUSION
The LIME algorithm was extended to facilitate the interpretation

of multi-platform genomic data. We demonstrated the use of this

algorithm on a multimodal neural network to generate gene-wise

RNA-seq and SNV explanations for the classification of correctly

labelled instances. We found that gene-wise explanations are useful

for revealing clinically relevant genes used by the machine learning

model to make accurate predictions. We also demonstrated that the

explanations derived from multi-platform genomic data are helpful

for identifying potential biomarkers and validating the predictive

influence of known oncogenes. The additional insight gained by ex-

amining the explanations is helpful to gain trust in the predictions

of the dGMU model. For a given classification, a domain expert can

obtain the relative contributions of the modalities and the top ex-

planatory RNA-seq expression and SNV gene regions. In the future,

we would like to evaluate enhanced interpretable representations

that incorporate the interaction between modalities. This involves

incorporating known pathways and gene-gene relationships as a

part of the model. We believe that correlating deeper biological

relationships will help facilitate greater insight into the underlying

machine learning model.
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