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Abstract For an n×n complex matrix A with ind(A) = r, let AD and Aπ = I−
AAD be respectively the Drazin inverse and the eigenprojection corresponding
to the eigenvalue 0 of A. For an n×n complex singular matrix B with ind(B) =
s, it is said to be a stable perturbation of A, if I − (Bπ − Aπ)2 is nonsingular,
equivalently, if the matrix B satisfies the condition R(Bs)∩N (Ar) = {0} and
N (Bs) ∩ R(Ar) = {0}, introduced by Castro-González, Robles, and Vélez-
Cerrada. In this paper, we call B an acute perturbation of A with respect to the
Drazin inverse if the spectral radius ρ(Bπ−Aπ) < 1. We present a perturbation
analysis and give sufficient and necessary conditions for a perturbation of a
square matrix being acute with respect to the matrix Drazin inverse. Also, we
generalize our perturbation analysis to oblique projectors. In our analysis, the
spectral radius, instead of the usual spectral norm, is used. Our results include
the previous results on the Drazin inverse and the group inverse as special cases
and are consistent with the previous work on the spectral projections and the
Moore-Penrose inverse.

Keywords Drazin inverse, acute perturbation, stable perturbation, spectral
radius, spectral norm, oblique projection
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1 Introduction and preliminaries

The Drazin inverse has been extensively investigated and widely applied. For
instance, it is applied to the solution of singular linear systems [51], the theory
of finite Markov chains [5,20,28,29], control theory [5], and numerical analysis
[15,19,27,40,44,49]. Perturbation analysis is an important part of the study of
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the Drazin inverse. A number of papers on explicit formulas for the perturbation
of the Drazin inverse, the spectral norm of the upper bounds derived from
these formulas, and the error estimation have been published [6,8,10,16,21,23–
26,31,37,41–43,46–48,50,52,55].

In this paper, we use the following notations. The set of m × n complex
matrices is denoted by Cm×n; the idenity and null matrices are denoted by I
and O, respectively; the range and null spaces of a matrix A are denoted by
R(A) and N (A), respectively.

Recall that the Drazin inverse of A ∈ Cn×n is the unique matrix AD ∈ Cn×n
satisfying

ADA = AAD, ADAAD = AD, Al+1AD = Al, ∀ l > r, (1)

where r is the smallest nonnegative integer such that rank(Ar+1) = rank(Ar),
called the Drazin index of A and denoted by ind(A). Clearly, ind(A) = 0, if
and only if A is nonsingular. In the case when ind(A) = 1, the Drazin inverse
is called the group inverse, denoted by A#.

Now, we briefly review stable matrices and oblique projectors. A matrix
A is said to be stable, if its eigenvalues lie in the open left-half complex plane,
that is, Re(λ(A)) < 0, and it is said to be semi-stable, if all of its eigenvalues,
except a few semi-simple [18] zero eigenvalues, lie on the open left-half complex
plane. Semi-stability implies that A is singular and that the index of A is one,
consequently, A has a group inverse and

lim
t→∞

exp(At) = I −AA#.

The stable matrices are used in the stability analysis of ordinary differential
equations. The results presented in this paper can be applied to the
perturbation analysis of I −AA#.

A projection P is an idempotent operator, that is,

P 2 = P.

The operator P is a projection along its null space N (P ) onto its range
X = R(P ). If these two subspaces are orthogonal, the projection is said to
be orthogonal, which is the case if and only if P is Hermitian. Otherwise, it is
called an oblique projection. A nice and useful identity between the norm of a
projection P and that of its complementary projection I−P in an inner-product
space [36] is

‖P‖ = ‖I − P‖ > 1, ρ(P ) = ρ(I − P ) = 1,

where P is neither null nor the identity and the operator norm is the standard
norm induced by the vector norm defined by the inner product. From the first
equation in (1), ADA is a projection. Its complementary projection I − ADA,
denoted by Aπ, is the spectral projection of A corresponding to the eigenvalue
0 with

R(Aπ) = N (Ar), N (Aπ) = R(Ar).
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Since R(Aπ) and N (Aπ) need not be orthogonal, Aπ can be an oblique
projection.

This paper focuses on the stable and acute perturbations with respect to
the Drazin inverse.

The concept of stable perturbation with respect to the Drazin inverse was
introduced by Castro-González, Robles and Vélez-Cerrada [9, Theorem 2.1]. A
perturbation B of A is said to be stable if I − (Bπ − Aπ)2 is nonsingular. A
perturbation B of A is said to be acute, if ‖B−A‖ is sufficiently small and the
spectral radius ρ(Bπ−Aπ) < 1. Let A be a square matrix with ind(A) = r > 0,
and let B be a perturbation of A with ind(B) = s. A formula for Bπ is given
in [9, Theorem 2.3] under the assumption

(Cs) R(Bs) ∩N (Ar) = {0}, N (Bs) ∩R(Ar) = {0}, (2)

in which case, Ar and Bs are called disjoint matrices [12].
Wei [53] conjectured that a perturbation B is an acute perturbation with

respect to the Drazin inverse provided that the spectral norm ‖Bπ −Aπ‖ < 1.
If B is a stable perturbation of A, does ‖Bπ −Aπ‖ < 1 always hold? Here is a
counterexample.

Example 1 [32, Example 2.1] Let

A =

(
A11 O
O A22

)
, B = A+ E =

(
A11 A12

O A22

)
,

where

A11 =
1√
2

(
0 0
0 1

)
, A22 =

(
0 0
1 1

)
, A12 =

2

5

(
0 0
1 −1

)
.

It can be verified that
ind(A) = ind(B) = 1

and

(A11)
# =

(
0 0

0
√

2

)
, (A22)

# = A22, B# =

(
(A11)

# L
O (A22)

#

)
,

where

L =
1

5

(
0 0

8 + 2
√

2 2
√

2

)
.

Then

‖A#‖ ‖B −A‖ =
√

2
2
√

2

5
=

4

5
< 1

and

Bπ −Aπ =
1

5


0 0 0 0

0 0 4
√

2 0
0 0 0 0
0 0 0 0

 .
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Thus,
I − (Bπ −Aπ)2 = I,

so B is a stable perturbation of A. However,

‖Bπ −Aπ‖ =
4
√

2

5
> 1.

Notice that in this example, ρ(Bπ−Aπ) = 0. This suggests that the spectral
radius is a better choice than the spectral norm.

In this paper, we present necessary and sufficient condtions for a
perturbation being acute with respect to the Drazin inverse. Our results are
generalization of those with respect to the group inverse [45]. Moreover,
following [9,10], we derive new formulae for the spectral radii ρ((I−Bπ)Aπ) and
ρ((I−Aπ)Bπ) under the condition (Cs) in (2) and upper bounds for ρ(Bπ−Aπ).

The paper is organized as follows. In Section 2, we present equivalent
conditions for the stable perturbation of the Drazin inverse, which is the same
as condition (Cs) for matrices [9, Theorem 2.1]. In Section 3, we derive
sufficient and necessary conditions for the acute perturbation of the Drazin
inverse in Theorem 1. In Section 4, we investigate the perturbation of oblique
projectors with the spectral radius. We present some applications in Section 5
and conclude with some remarks in the last section.

2 Equivalent conditions on stable perturbation

In the following discussion, we assume that A ∈ Cn×n is singular with

ind(A) = r > 1, rank(Ar) = d.

Thus, A is similar to a matrix in the Jordan form, which can be rearranged so
that the Jordan block corresponding to the zero eigenvalue is at the lower-right
corner. That is, we can write A in the core-nilpotent block form [3,5,38]

A = V

(
A1 O
O A2

)
V −1, (3)

for some nonsingular matrix V such that A1 ∈ Cd×d is nonsingular, Ar2 = O
but Ar−12 6= O. Corresponding to the matrix V in (3), we denote

θ(B) = V −1BV, ∀B ∈ Cn×n. (4)

By [5, Theorem 7.2.1], corresponding to the decomposition (3), θ(AD) and
θ(Aπ) are given by

θ(AD) =

(
A−11 O

O O

)
, θ(Aπ) =

(
O O
O I

)
. (5)
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Denoting CB = B(BBD) with (CB)# = BD, for any B ∈ Cn×n, the core-
nilpotent decomposition (5) can be written as

A = CA +NA, CANA = NACA = O, ind(CA) 6 1, NA nilpotent, (6)

where CA = A(AAD) with (CA)# = AD, and NA = AAπ satisfying (NA)r = O.
For a perturbation B of A, the following lemma gives equivalent conditions

for B being a stable perturbation.

Lemma 1 [9, Theorem 2.1] The following statements on B ∈ Cn×n with
ind(B) = s are equivalent:

(a) B is a stable perturbation of A (I − (Bπ −Aπ)2 is nonsingular);

(b) B satisfies condition (Cs) in (2);

(c) rank(Bs) = rank(Ar) = rank(ArBs) = rank(BsAr) = rank(ArBsAr).

The following lemma for matrices is stated in [5] and extended to bounded
linear operators on Banach spaces in [10].

Lemma 2 Let B1 ∈ Cm×m be nonsingular, let T ∈ Cm×n and S ∈ Cn×m be
arbitrary, and define

B =

(
B1 B1T
SB1 SB1T

)
∈ C(m+n)×(m+n).

Then B is group invertible if and only if I + TS is nonsingular. In this case,
B# and Bπ can be given, respectively, by

B# =

(
[(I + TS)B1(I + TS)]−1 [(I + TS)B1(I + TS)]−1T

S[(I + TS)B1(I + TS)]−1 S[(I + TS)B1(I + TS)]−1T

)
, (7)

Bπ =

(
I − (I + TS)−1 −(I + TS)−1T
−S(I + TS)−1 I − S(I + TS)−1T

)
. (8)

The key point of the above two formulae is that B# and Bπ can be rewritten
in a more practical way as follows.

Lemma 3 [54, Lemma 2.5] Let B be as in Lemma 2 such that B1 and I+TS
both are nonsingular. Then

B# =

(
I O
S I

)([
B1(I + TS)

]−1 [
B1(I + TS)

]−2
B1T

O O

)(
I O
−S I

)
, (9)

Bπ =

(
I O
S I

)(
O −(I + TS)−1T
O I

)(
I O
−S I

)
. (10)

Now, we have more equivalent conditions for B being a stable perturbation
of A.

Lemma 4 [54, Lemma 2.6] The following statements on B ∈ Cn×n are
equivalent:
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(a) B is a stable perturbation of A;

(b) CB is a stable perturbation of A;

(c) I +AD(CB −A) is nonsingular and CB[I +AD(CB −A)]−1Aπ = O;

(d) there exist B1 ∈ Cd×d, T ∈ Cd×(n−d), and S ∈ C(n−d)×d with B1 and
I + TS are nonsingular, such that

θ(CB) =

(
B1 B1T
SB1 SB1T

)
; (11)

(e) for any k ∈ N, (θ(CB))k can be written as

(θ(CB))k =

(
[B1(I + TS)]k−1B1 [B1(I + TS)]k−1B1T

S[B1(I + TS)]k−1B1 S[B1(I + TS)]k−1B1T

)
for some B1 ∈ Cd×d, T ∈ Cd×(n−d), and S ∈ C(n−d)×d, such that B1 and I+TS
are nonsingular.

3 Acute perturbation of Drazin inverse

In this section, we investigate the acute perturbation with respect to the Drazin
inverse. Using the notations in Section 2 and denoting

Ek,l = Bk −Al, k, l ∈ N,

in the case when I + (AD)lEk,l is nonsingular, we define

Yk,l = [I + (AD)lEk,l]
−1(AD)lEk,lA

π, (12)

Zk,l = Aπ Ek,l(A
D)l[I + Ek,l(A

D)l]−1. (13)

From

θ(Bk) = θ((CB)k) = (θ(CB))k,

which can be verified by using the definition (4), we have

θ(Yk,l) = θ([I + (AD)lEk,l]
−1(AD)l)[(θ(CB))k − (θ(A))l]θ(Aπ).

Let
G = θ([I + (AD)lEk,l]

−1(AD)l)

= [I + (θ(AD))l[(θ(CB))k − (θ(A))l]]−1(θ(AD))l.

Then, when B is a stable perturbation of A, applying Lemma 4, we get

G =

(
B−11 [B1(I + TS)]1−k O

O O

)
,
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implying that

θ(Yk,l) = G[(θ(CB))k − (θ(A))l]θ(Aπ) =

(
O T
O O

)
.

Similarly, we have

θ(Zk,l) =

(
O O
S O

)
.

Consequently,

θ(I + Yk,lZk,l) =

(
I + TS O

O I

)
(14)

is nonsingular.
To summarize, we have the following lemma.

Lemma 5 [54, Lemma 3.1] Let B ∈ Cn×n be a stable perturbation of A
with ind(B) = s. Then Yk,l and Zk,l defined in (12) and (13), respectively, are
independent of the indices k, l with k > s. Moreover, I +Yk,lZk,l is nonsingular
for k > s.

Using the notations above, we have explicit expressions of BD and Bπ in
the following lemma.

Lemma 6 [54, Theorem 3.2] Let B ∈ Cn×n be a stable perturbation of A with
ind(B) = s. Then, for any k, l ∈ N with k > s,

BD = W−1k,l [I + (AD)l+1Ek+1,l+1]
−1AD[I + (AD)lEk,l]Wk,l, (15)

Bπ = W−1k,l [I + (AD)lEk,l]
−1Aπ[I + (AD)lEk,l]Wk,l, (16)

where Yk,l and Zk,l are defined in (12) and (13), respectively, and

Wk,l = (I + Yk,lZk,l)(I − Zk,l), W−1k,l = (I + Zk,l)(I + Yk,lZk,l)
−1. (17)

Now, we are ready for an upper bound for the spectral radius ρ(Bπ −Aπ).

Theorem 1 Let B = A+ E ∈ Cn×n with

ind(A) = r, ind(B) = s, rank(Ar) = rank(Bs).

If the perturbation Ek,l = Bk −Al satisfies

max{‖(AD)lEk,l‖, ‖Ek,l(AD)l‖} < 1

1 +
√

2‖Aπ‖
, (18)

then we have

(a) ρ(Yk,lZk,l) < 1/2;

(b) ρ(BBD(I−AAD)) = ρ(AAD(I−BBD)) 6 ρ(Yk,lZk,l)/(1− ρ(Yk,lZk,l));

(c) [ρ(Bπ −Aπ)]2 = ρ(BBD(I −AAD)) = ρ(AAD(I −BBD)) < 1;
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(d) I−BBD(I−AAD), I−AAD(I−BBD), I−(Bπ−Aπ) and I−(Bπ−Aπ)2

are invertible.

Proof We first show that

ρ(BBD(I −AAD)) = ρ((I + TS)−1TS). (19)

Indeed,
θ(BBD(I −AAD)) = θ(CB(CB)#)θ(I −AAD).

Let

θ(CB) =

(
B1 B1T
SB1 SB1T

)
.

Then, from (9), we get

θ(CB(CB)#) = θ(CB)(θ(CB))#

=

(
I O
S I

)(
B1(I + TS) B1T

0 0

)
·
(

[B1(I + TS)]−1 [B1(I + TS)]−2B1T
0 0

)(
I O
−S I

)
=

(
I O
S I

)(
I (I + TS)−1T
0 0

)(
I O
−S I

)
.

Thus,

θ(BBD(I −AAD))

=

(
I O
S I

)(
I (I + TS)−1T
O O

)(
I O
−S I

)(
O O
O I

)
=

(
I O
S I

)(
(I + TS)−1 (I + TS)−1T

O O

)(
O O
O I

)(
I O
S I

)(
I O
−S I

)
=

(
I O
S I

)(
(I + TS)−1TS (I + TS)−1T

O O

)(
I O
−S I

)
,

implying (19). Similarly,

θ(AAD(I −BBD)) = θ(AAD)θ(I − CB(CB)#)

=

(
I O
O O

)(
I O
S I

)(
O −(I + TS)−1T
O I

)(
I O
−S I

)
=

(
I O
S I

)(
I O
−S I

)(
O −(I + TS)−1T
O 0

)(
I O
−S I

)
=

(
I O
S I

)(
O −(I + TS)−1T
O S(I + TS)−1T

)(
I O
−S I

)
,

which implies that

ρ(AAD(I −BBD)) = ρ(S(I + TS)−1T ).
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Recalling (14), we have

ρ(BBD(I −AAD)) = ρ((I + TS)−1TS)

= ρ(S(I + TS)−1T )

= ρ(AAD(I −BBD))

= ρ((I + Yk,lZk,l)
−1Yk,lZk,l)

6 ρ((I + Yk,lZk,l)
−1)ρ(Yk,lZk,l)

6
ρ(Yk,lZk,l)

1− ρ(Yk,lZk,l)
.

For (c), under condition (18), we have

ρ(Yk,lZk,l) 6 ‖Yk,lZk,l‖
6 ‖[I + (AD)lEk,l]

−1(AD)lEk,lA
πAπEk,l(A

D)l[I + Ek,l(A
D)l]−1‖

6
‖(AD)lEk,l‖ ‖Ek,l(AD)l‖ ‖Aπ‖

(1− ‖(AD)lEk,l‖)(1− ‖Ek,l(AD)l‖)

<
1

2
,

noticing that (Aπ)2 = Aπ. Consequently,

ρ(BBD(I −AAD)) = ρ(AAD(I −BBD)) 6
ρ(Yk,lZk,l)

1− ρ(Yk,lZk,l)
< 1.

Next, we consider ρ(Bπ −Aπ). Applying (10), we have

θ(Bπ −Aπ) = θ(Bπ)− θ(Aπ)

=

(
I O
S I

)(
O −(I + TS)−1T
O I

)(
I O
−S I

)
−
(
O O
O I

)
=

(
I O
S I

)[(
O −(I + TS)−1T
O I

)
−
(
O O
S I

)](
I O
−S I

)
=

(
I O
S I

)(
O −(I + TS)−1T
−S O

)(
I O
−S I

)
,

and then

[θ(Bπ −Aπ)]2 =

(
I O
S I

)(
(I + TS)−1TS O

O S(I + TS)−1T

)(
I O
−S I

)
.

Thus, we have

[ρ(Bπ−Aπ)]2 = ρ((Bπ−Aπ)2) = ρ(BBD(I−AAD)) = ρ(AAD(I−BBD)) < 1.

Finally, (d) follows immediately from (c). �
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From the definition of acute perturbation, we have the following corollary.

Corollary 1 If

rank(Ar) = rank(Bs), max{‖(AD)lEk,l‖, ‖Ek,l(AD)l‖} < 1

1 +
√
‖2Aπ‖

,

then B is an acute perturbation of A.

Finally, we have the following necessary and sufficient conditions for the
acute perturbation with respect to the Drazin inverse, which are the same as
those for the stable perturbation with respect to the Drazin inverse [9, Theorem
2.1].

Theorem 2 A perturbation B of A is acute with respect to the Drazin inverse,
if and only if (Cs) in (2) holds.

Proof If R(Bs)∩N (Ar) 6= {0}, then there exists a nonzero vector x ∈ R(Bs)
∩N (Ar) such that

BBDx = x, AADx = 0.

Thus,
(BBD −AAD)x = x,

i.e.,
ρ(BBD −AAD) = ρ(Bπ −Aπ) > 1,

B is not an acute perturbation of A.
It follows from Lemma 1 that (Cs) in (2) is equivalent to

rank(Bs) = rank(Ar) = rank(ArBsAr). (20)

With the help of Theorem 1, we can prove that ρ(BBD −AAD) < 1. �

Corollary 2 A perturbation B of A is acute with respect to the Drazin inverse,
if and only if (20) holds.

Remark 1 If B is not an acute perturbation of A and rank(Bs) > rank(Ak),
then ‖Bπ −Aπ‖ > 1 (see [52]).

4 Oblique projector

Applying the theory of condition developed by Rice [30], Sun [35] defined a
condition number of the spectral projection, which plays an important role in
the perturbation theory of eigenvalue problems. Although there is a substantial
number of literature on the numerical properties of orthogonal projectors, the
literature on oblique projectors is largely confined to purely mathematical
investigations [4] and applications and specific algorithms [13]. Stewart [34]
analyzed the numerical properties of oblique projectors, including their
perturbation theory, their various representations, their behavior in the
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presence of rounding error, the computation of complementary projections, and
updating algorithms.

Inspired by the use of spectral radius, in this section, we investigate the
perturbation of oblique projectors by using the spectral radius of the difference
of two oblique projectors P and Q, instead of the spectral norm ‖P − Q‖ of
their difference. We generalized the previous discussion of Aπ and Bπ to general
oblique projectors.

First, we consider the case when rank(P ) > rank(Q). Note that if the rank
is not preserved, an oblique projector is discontinuous.

Theorem 3 Let P and Q be oblique projectors. If rank(P ) > rank(Q), then

1 6 ρ(P −Q) 6 ‖P −Q‖.

Proof If rank(P ) > rank(Q), then there exists a nonzero vector x ∈ R(P ) ∩
N (Q), that is,

Px = x, Qx = 0.

Thus, (P −Q)x = x, implying that ρ(P −Q) > 1. �

In the following discussion, we assume

rank(P ) = rank(Q) = rank(PQP ), P ≈ Q.

Theorem 4 Let P and Q be oblique projectors. If rank(P ) = rank(Q) =
rank(PQP ) and P is sufficiently close to Q, then the spectral radii of Q(I −P )
and P (I −Q) satisfy

(a) ρ(Q(I − P )) = ρ(P (I −Q));

(b) [ρ(P −Q)]2 = ρ(Q(I − P )) = ρ(P (I −Q)) < 1.

Proof From [35], an oblique projector P can be decomposed into

P = S

(
I O
O O

)
S−1 (21)

for some nonsingular matrix S.
Let

Q = S

(
Q11 Q12

Q21 Q22

)
S−1 = S

(
I
E

)
Q11(I F )S−1,

where, since P ≈ Q, Q11 is nonsingular,

rank(Q11) = rank(PQP ) = rank(Q) = rank(P ),

E = Q21Q
−1
11 , F = Q−111 Q12, ρ(FE) = ρ(Q12Q21) <

1

2
,

which implies that I + FE is invertible.
Since Q2 = Q, we have

S−1QS = (S−1QS)2 =
(
I
E

)
Q11(I + FE)Q11(I F ).
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As (I ET)T is of full column rank and (I F ) is of full row rank, we have

Q11(I + FE)Q11 = Q11,

implying that

Q11 = (I + FE)−1, Q21 = E(I + FE)−1, Q12 = (I + FE)−1F.

Thus, we can write θ(I −Q) and θ(Q) as

I − θ(Q) = I − S−1QS

=

(
I − (I + FE)−1 −(I + FE)−1F
−E(I + FE)−1 I − E(I + FE)−1F

)
=

(
I O
E I

)(
O −(I + FE)−1F
O I

)(
I O
−E I

)
,

θ(Q) =

(
I O
E I

)(
I (I + FE)−1F
O O

)(
I O
−E I

)
.

It then follows that

θ(P (I −Q)) = θ(P )θ(I −Q)

=

(
I O
O O

)(
I O
E I

)(
O −(I + FE)−1F
O I

)(
I O
−E I

)
=

(
I O
E I

)(
I O
−E I

)(
I O
O O

)(
O −(I + FE)−1F
O I

)(
I O
−E I

)
=

(
I O
E I

)(
O −(I + FE)−1F
O E(I + FE)−1F

)(
I O
−E I

)
,

θ[Q(I − P )] = θ(Q)θ(I − P )

=

(
I O
E I

)(
I (I + FE)−1F
O O

)(
I O
−E I

)(
O O
O I

)
=

(
I O
E I

)(
I (I + FE)−1F
O O

)(
O O
O I

)(
I O
E I

)(
I O
−E I

)
=

(
I O
E I

)(
(I + FE)−1FE (I + FE)−1F

O O

)(
I O
−E I

)
.

On the other hand, we have

θ(P −Q) = θ(P )− θ(Q)

=

(
I O
O O

)
−
(
I O
E I

)(
I (I + FE)−1F
O O

)(
I O
−E I

)
=

(
I O
E I

)(
O −(I + FE)−1F
−E O

)(
I O
−E I

)
,
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and then

θ((P −Q)2) = [θ(P −Q)]2

=

(
I O
E I

)(
(I + FE)−1FE O

O E(I + FE)−1F

)(
I O
−E I

)
.

Putting things together, we have

ρ(Q(I − P )) = ρ((I + FE)−1FE)

= ρ(E(I + FE)−1F )

= ρ(P (I −Q))

= [ρ(P −Q)]2

6
ρ(FE)

1− ρ(FE)

< 1,

since ρ(FE) < 1/2 when P is sufficiently close to Q. �

Since
ind(P ) = ind(Q) = 1, P# = P, Q# = Q,

from [45], we have the following necessary and sufficient condition for ρ(P−Q) <
1.

Corollary 3 Let P and Q be two oblique projectors, and assume that P
approximates Q. Then ρ(P −Q) < 1 if and only if

R(P ) ∩N (Q) = {0}, R(Q) ∩N (P ) = {0}. (22)

Example 2 Let us consider the following modified example of the two oblique
projectors P and Q from [22]:

P =

0 0.01 0
0 1.0 0
0 0 1.0

 , Q =

 0 0 0
1.44 1.0 0

0 0 1.0

 .

It can be verified that

rank(P ) = rank(Q) = rank(PQP ) = 2, P −Q =

 0 0.01 0
−1.44 0 0

0 0 0

 ,

Q(I − P ) =

 0 0 0
1.44 −0.0144 0

0 0 0

 , P (I −Q) =

−0.0144 0 0
−1.44 0 0

0 0 0

 ,

ρ(P −Q) = 0.12 < 1, ρ(Q(I − P )) = ρ(P (I −Q)) = 0.0144 = [ρ(P −Q)]2.
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In contrast,
‖P −Q‖ = 1.44 > 1.

This shows that the spectral radius is a better measurement than the spectral
norm.

5 Applications

Wei [42] investigated the one-sided perturbation of the Drazin inverse, which
actually is a special kind of acute perturbation.

Theorem 5 [42, Theorem 1] Let B = A+ E with ind(A) = r, such that

E = AADE, ‖ADE‖ < 1.

Then

BD = (I +ADE)−1AD +

r−1∑
i=0

[(I +ADE)−1AD]i+2E(I −AAD)Ai, (23)

BBD = AAD+AADA(I+ADE)
r−1∑
i=0

[(I+ADE)−1AD]i+2E(I−AAD)Ai. (24)

Moreover, B is an acute perturbation of A.

Proof Suppose

A = V

(
A1 O
O A2

)
V −1, AD = V

(
A−11 O

O O

)
V −1,

for some nonsingular V and A1. Since E = AADE, we have the exact form of
the perturbation matrix

E = V

(
E11 E12

O O

)
V −1

for some E11 and E12. Thus,

B = A+ E = V

(
A1 + E11 E12

O A2

)
V −1

BD = V

(
(A1 + E11)

−1 X
O O

)
V −1,

BDB = V

(
I (A1 + E11)X
O O

)
V −1,

where

X =

r−1∑
i=0

[(A1 + E11)
−1]i+2E12A

i
2.
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From the above expressions of A, AD, E, and X, it can be verified that

V

(
(A1 + E11)

−1 O
O O

)
V −1 = (I +ADE)−1AD,

V

(
O X
O O

)
V −1 =

r−1∑
i=0

[(I +ADE)−1AD]i+2E(I −AAD)Ai.

Equation (23) then follows. Similarly, equation (24) can be obtained.
Also, we have

ρ(BBD −AAD) = 0, R(Bs) = R(Ar),

implying (Cs) in (2). Thus, B is an acute perturbation of A. �

Theorem 5 includes the following result in [7,50] as a special case when
E = AADE = EAAD.

Corollary 4 ([7], [50, Theorem 3.2]) Let B = A+ E with

ind(A) = r, E = AADE = EAAD, ‖ADE‖ < 1.

Then
BD = (I +ADE)−1AD, BBD = AAD.

Furthermore, B is an acute perturbation of A.

Example 3 Sun [35, Remark 2.2] presented an example for the spectral
projection. Consider the matrix

A =
(

0 0
0 α

)
, α > 0.

The spectral projection P of A corresponding to the eigenvalue λ = 0 is

P =
(

1 0
0 0

)
.

Suppose that the matrix A is perturbed to

B =
(

0 ε
0 α

)
.

Then the spectral projection is perturbed to

Q =
(

1 −ε/α
0 0

)
and

rank(P ) = rank(Q) = rank(PQP ).
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Also, we have

ρ(Q− P ) = 0,
‖Q− P‖2
‖B −A‖2

=
|ε|/α
|ε|

=
1

α
,

and Q is an acute perturbation of P.

Wedin [39] and Stewart [33] presented the concept of the acute perturbation
with respect to the Moore-Penrose inverse. They stated that the range spaces
R(A) and R(B) are acute, when

ρ(BB† −AA†) = ‖BB† −AA†‖ < 1,

if and only if

R(A) ∩N (B∗) = {0}, R(B) ∩N (A∗) = {0}.

Similarly, the range spaces R(A∗) and R(B∗) are said to be acute, if

ρ(B†B −A†A) = ‖B†B −A†A‖ < 1.

The matrices A and B are called acute, if R(A) and R(B) are acute and R(A∗)
and R(B∗) are acute. In this case, they called B an acute perturbation of A
[33,39].

Example 4 For an important class of matrices [1], the core inverse A#©, in
relation with the Moore-Penrose inverse and the group inverse, satisfies

AA#© = AA†, A#©A = A#A.

If B is a perturbation of A and has the core inverse, then

ρ(BB#© −AA#©) = ρ(BB† −AA†), ρ(B#©B −A#©A) = ρ(B#B −A#A).

A perturbation B of A is acute, if and only if

R(A) ∩N (B∗) = {0}, R(B) ∩N (A∗) = {0},
R(B) ∩N (A) = {0}, N (B) ∩R(A) = {0}.

The above examples show that our results on the acute perturbation with
respect to the Drazin inverse are consistent with previous results on other
generalized inverses.

6 Concluding remarks

In this paper, we prove that a perturbation B of A ∈ Cn×n is acute with
respect to the Drazin inverse (ρ(BBD − AAD) < 1), if and only if (Cs) in (2)
or (20) holds. We then generalize the spectral projections AAD and BBD to
general oblique projectors P and Q and show that if P approximates Q, then
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ρ(P − Q) < 1 if and only if (22) holds. Our results are a generalization of
the previous work on the Drazin inverse [42,50] and the group inverse [45], and
consistent with the previous work on the Moore-Penrose inverse [33,39] and the
core inverse [1].

The spectral radius is used in our analysis. Is the spectral radius ρ(P −Q)
closely related to the measurement of separation or the minimal angle between
subspaces [2,11,14,17]? It will be our future work.
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