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ABSTRACT
This paper considers the problem of integer least squares,
where the least squares solution is an integer vector, whereas
the coefficient matrix is real. In particular, we discuss the
sphere decoding method in communications. One of the key
issues in sphere decoding is the determination of the radius
of search sphere. We propose a deterministic method for
finding a radius of search sphere. Also, we investigate the
impact of the LLL algorithm on the computational complex-
ity of the sphere decoding method.

Categories and Subject Descriptors
G.1.6 [NUMERICAL ANALYSIS]: Optimization—Least
squares methods

General Terms
Performance
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1. INTRODUCTION
Given a real n-by-m, n ≥ m, matrix A and a real n-vector

y, the linear least squares problem is to find a minimizer, a
real m-vector in general, of the problem:

min
x

‖Ax − y‖2

2. (1)

One of standard methods for solving the problem when A is
of full column rank is as follows [2]. The matrix A is first
reduced to upper triangular by orthogonal transformations
using the QR decomposition

A = Q

[
R
0

]
,
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where Q is orthogonal of order n and R is upper triangular
of order m. Partitioning Q = [Q1 Q2], where Q1 is n-by-m
and Q2 is n-by-(n − m), we have

‖Ax − y‖2

2

=

∥∥∥∥

[
R
0

]
x − QT

y

∥∥∥∥
2

2

= ‖Rx − QT

1 y‖2

2 + ‖QT

2 y‖2

2.

Then the least squares problem (1) is reduced to the trian-
gular least squares problem:

min
x

‖Rx − ŷ‖2

2,

where ŷ denotes QT

1 y. Under the assumption that A has
full column rank, R is nonsingular and the solution, a real
vector in general, of the triangular system

Rx = ŷ

is the least squares solution for (1). In this paper, we con-
sider the problem (1) with the constraint that the solution
is an integer m-vector, that is, its entries are integers, thus
called integer least squares problem:

min
x∈Zm

‖Ax − y‖2

2. (2)

Following the above discussion, this problem can be reduced
to the triangular integer least squares problem:

min
x∈Zm

‖Rx − ŷ‖2

2 (3)

by applying the QR decomposition. Equivalently, it is to
find a lattice point closest to ŷ, in 2-norm sense, where the
lattice points are under the basis formed by the columns of
R.

The integer least squares problem arises from many ap-
plications: communications [4], cryptography [1], GPS [3],
to name a few, where the solution x to be found is a code
vector consisting of integer entries.

A seemingly obvious way of solving the triangular integer
least squares problem (3) would first solve the triangular sys-
tem Rx = ŷ for a real least squares solution x, then round
the entries of the solution vector to their nearest integers,
that is, the integer vector closest to the real least squares
solution. The following example shows that this simple ap-
proach fails to produce the integer least squares solution.

Example 1. Let

A =




1 4
2 5
3 6



 and y =




1
1
1



 ,



then after the QR decomposition, we get

R =

[
3.7417 8.5524

0 1.9640

]
,

and the real least squares solution

x =

[
−0.3333

0.3333

]
.

Rounding its entries to their nearest integers, we get

⌈x⌋ =

[
0
0

]
,

which gives the residual norm ‖A ⌈x⌋−y‖2 = 1.7321. How-
ever, the integer least squares solution is

z =

[
−2

1

]
,

which produces a smaller residual norm ‖Az−y‖2 = 1.4142.

As pointed out, the problem of integer least squares is
equivalent to that of finding the closest, in the 2-norm sense,
lattice point to a given point, which is known to be NP-hard.
Hassibi and Vikalo [4], considering the application of sphere
decoding in communications, gave a statistical method and
showed that its expected complexity is polynomial, often
roughly cubic in practice. In this paper, we also consider
the application of sphere decoding in communications and
propose a practical deterministic method. This is presented
in Section 2. Then, in Section 3, we show how the LLL algo-
rithm can be used to reduce the computational complexity.
Finally, we demonstrate our experiments in Section 4.

2. SPHERE DECODING
The complexity of searching for the integer least squares

solution in the entire lattice space is nonpolynomial. So, to
reduce the complexity, we limit the search region to a sphere
containing the integer least squares solution.

Consider the the triangular integer least squares problem
(3) constrained in a sphere S centered at ŷ:

min
x∈S

‖Rx − ŷ‖2

2, S = {x, x ∈ Zm and ‖Rx − ŷ‖2 ≤ ρ},
(4)

given a radius of a sphere S. Partition the upper triangular

R =

[
R1 r1:m−1,m

0 rm,m

]
,

where R1 is the order m−1 leading principal submatrix of R,
r1:m−1,m is the subvector of the last column of R consisting
of its first m − 1 entries, and rm,m the last entry of the last
column of R. Accordingly, partition

x =

[
x1

xm

]
and ŷ =

[
y1

ym

]
,

where x1 and y1 are the (m − 1)-subvectors of x and ŷ

respectively and xm and ym the last entries of x and ŷ re-
spectively. Then we get

‖Rx − ŷ‖2

2

= ‖R1x1 − (y1 − xmr1:m−1,m)‖2

2 + (rm,mxm − ym)2.

Denote ŷ1 = y1−xmr1:m−1,m and ρ̂2 = ρ2−(rm,mxm−ym)2.
In order for ‖Rx − ŷ‖2

2 ≤ ρ2, it is necessary that

|rm,mxm − ym| ≤ ρ (5)

and

‖R1x1 − ŷ1‖2

2 ≤ ρ̂2. (6)

The inequality (6) is the problem of finding the lattice points
inside the sphere of radius ρ̂ in dimension m − 1. The solu-
tions for (5) are the integers between (−ρ + ym)/rm,m and
(ρ + ym)/rm,m, that is, assuming rm,m > 0, the integers

⌈(−ρ + ym)/rm,m⌉, ..., ⌊(ρ + ym)/rm,m⌋, (7)

where ⌈x⌉ denotes the smallest integer that is greater than
or equal to x and ⌊x⌋ the largest integer that is less than or
equal to x. Thus, for each integer xm in (7), we compute
a new search radius ρ̂: ρ̂2 = ρ2 − (rm,mxm − ym)2, and
ŷ1 = y1 − xmr1:m−1,m, then solve the (m − 1)-dimensional
problem (6).

We summarize the above procedure of solving the trian-
gular integer least squares problem in the following recursive
algorithm.

Algorithm 1. Using the notations above, given an m-
by-m upper triangular R with positive diagonal, an m-vector
ŷ, and the radius ρ of a search sphere, this algorithm finds
the lattice points inside the sphere S = {x, ‖Rx−ŷ‖2 ≤ ρ}.

µ = ⌊(ρ + ŷm)/rm,m⌋;
λ = ⌈(−ρ + ŷm)/rm,m⌉;
if m = 1

return the integers in [λ, µ];
else

for each integer xm ∈ [λ, µ]
ŷ1 = ŷ1:m−1 − xmr1:m−1,m;
ρ2

1 = ρ2 − (ŷm − xmrm,m)2;
apply this algorithm to R1:m−1,1:m−1, ŷ1,
and ρ1;
append xm to each of the solutions of
dimension m − 1;

end
end

As shown above, this algorithm is a depth-first search
method. The solution for (4), if it exists, can then be found
by searching all the lattice points inside the sphere for the
one that minimizes ‖Rx − ŷ‖2

2. Apparently, the above al-
gorithm shows that the number of lattice points inside the
sphere can grow rapidly as the search radius increases. Thus
the key issue is the choice of the radius. Obviously, as ρ → ∞
in the extreme case, we search the entire lattice space, which
is computationally prohibitive. On the other hand, if ρ is
too small, the sphere may contain no lattice points. How to
determine an appropriate radius? Instead of the general case
and worst case complexity, which lead to an NP-hard prob-
lem, we consider an important application: Sphere decoding
in communications. In this application, A in (2) is a matrix
representing a communication channel and n = m + k − 1,
where k is the order of the channel, x the original code vec-
tor, and y the received signal vector. Hassibi and Vikalo [4]
consider the statistical characteristics of the noise included
in y, propose a statistical method for choosing the radius ρ,
and show that the expected complexity is polynomial, often
roughly cubic. Specifically, in this application, y = Ax + v,
where v is white noise, whose entries are random variables
normally distributed with zero mean and variance σ2. The
following algorithm describes their method for choosing ρ.



Algorithm 2. Given a variance σ2 of the random noise
and a probability p, this algorithm computes a radius ρ of
the search sphere S in dimension n such that the solution
for (2) can be found in the sphere with probability p.

1. Find α satisfying

p =

∫ αn/2

0

λn/2−1

Γ(n/2)
e−λdλ;

2. ρ2 = αnσ2.

As pointed out in [4], the above method only considers
the statistical characteristics of the noise, not the channel
matrix. It solely depends on the probability p, the noise
variance σ2, and the dimension n.

In this paper, we take the properties of the channel matrix
into account as well and propose a deterministic method for
finding the radius. In this application, because of the power
constraint of the channel, the norm of Ax is capped. In
other words, the norm of A is not too large, which means
that when A is applied to a vector, it does not magnify
the vector length very much. Based on this property, we
propose the following procedure of determining the radius
of the search sphere.

Algorithm 3. Given R and ŷ in (4), this algorithm finds
a radius ρ so the the search sphere in (4) contains at least
one lattice point.

1. Solve Rx = ŷ for x, the least squares solution, a real
vector;

2. Round the entries of x to their nearest integers, x̂ =
⌈x⌋;

3. Set ρ = ‖Rx̂ − ŷ‖2.

Obviously, the sphere ‖Rx− ŷ‖2 ≤ ρ contains at least one
lattice point, namely x̂, the integer vector closest to the real
least squares solution x. Now, we examine the size of ρ. Let
d = x̂ − x, then

Rx̂ − ŷ = R(x + d) − ŷ = Rd.

Since d = ⌈x⌋ − x, ‖d‖2 ≤ √
m/2. Thus

ρ = ‖Rd‖2 ≤
√

m

2
‖R‖2 =

√
m

2
‖A‖2.

As pointed out previously, in this application, due to the
channel power constraint, ‖A‖2 is not large. Consequently,
the radius of the search sphere is not large. Moreover, since
x̂, the integer vector closest to the real least squares so-
lution, is on the surface of the sphere, we expect that the
radius given by the above method is tight when the variance
σ2 of the noise is moderate. We must emphasize that this
method for finding a search radius is for applications like
communications where the signal to noise ratio is relatively
high, that is, the noise variance is relatively small.

3. THE LLL ALGORITHM
In this section, we will show how the LLL algorithm [5]

can be used to reduce the computational complexity in two
ways. First, it can be used to reduce the radius of the search
sphere by reducing the norm of R. Second, as shown in

Algorithm 1, the sphere decoding is a depth-first search for
the lattice points inside a sphere, the LLL algorithm can be
used to reduce the total number of search paths.

The famous LLL algorithm is originated from Lenstra,
Lenstra, and Lovász [5]. In applications like cryptography,
where the data matrix A is an integer matrix, the LLL al-
gorithm computes the decomposition

A = BM,

where B is also an integer matrix and M is unimodular,
a nonsingular integer matrix whose determinant equals ±1.
Thus the LLL algorithm transforms a basis formed by the
columns of A into a basis formed by the columns of B. The
lengths of the columns of B are shorter than those of A. In
this case, the LLL algorithm can be performed in integer
arithmetic. In our case, however, A in (2) is a real matrix.
Thus the LLL algorithm has to be performed in floating-
point arithmetic. Since the integer least squares problem
(2) is reduced to the triangular integer least squares problem
(3), the LLL algorithm is applied to the upper triangular R.
It decomposes R into

R = Q̂R̂M−1, (8)

where Q̂ is orthogonal, R̂ upper triangular, and M unimod-

ular, so that the columns of R̂ form a reduced basis for the
lattice space defined by

Definition 1. The columns of an upper triangular R =
[ri,j ] form a reduced basis if

1. |ri,j | ≤ |ri,i|/2, j > i;

2. r2

i,i ≥ |ωr2

i−1,i−1 − r2

i−1,i|, where 0.25 < ω < 1.

We call the decomposition (8) the QRM decomposition.
Since M is unimodular, M−1 is an integer matrix.

For the LLL algorithm in floating-point, Luk and Tracy [6]
present a Givens reflection based LLL algorithm. In [7], Luk
and Qiao show that the Givens reflection based LLL algo-
rithm is numerically more robust than the original LLL algo-
rithm. However, the Givens reflection based LLL algorithm
must be performed in floating-point arithmetic, whereas the
original LLL algorithm can be performed in integer arith-
metic when the original A is an integer matrix. Here is an
outline of the Givens reflection based LLL algorithm, see [6,
7] for details.

Algorithm 4. Given an upper triangular R = [ri,j ] of
order n and a parameter ω, 0.25 ≤ ω ≤ 1.0, this algorithm
computes an orthogonal Q and an integer unimodular M
and overwrites R, so that the new upper triangular R equals
QTRM and its columns form a reduced basis.

k = 2;
while k ≤ n

if |rk−1,k−1| < 2|rk−1,k|
postmultiply R with an integer elementary
unimodular Mk−1,k to reduce |rk−1,k|;

end
if r2

k,k < |ωr2

k−1,k−1 − r2

k−1,k|
swap columns k − 1 and k of R;
premultiply R with a Givens reflection Jk

to restore the upper triangular structure;
k = max(k − 1, 2);



else
for i = k − 2 down to 1

if |ri,i| < 2|ri,k|
postmultiply R with an integer
elementary unimodular Mi,k

to reduce |ri,k|;
end

end
k = k + 1;

end
end

In the above algorithm, an order n elementary unimodular
matrix has the form:

Mi,j = In − γeie
T

j , j > i,

where In is the identity matrix of order n, γ an integer, and
ei the ith unit vector, that is, the ith column of In. Similar
to Gaussian elimination, by setting

γ = ⌈ri,j/ri,i⌋
and postmultiplying R in (3) with Mi,j , we can reduce |ri,j |
to satisfy the first condition in Definition 1.

An order n Givens reflection has the form:

Jk =





Ik−2

c s
s −c

In−k



 , c2 + s2 = 1.

Let Πk be the permutation matrix:

Πk =





Ik−2

0 1
1 0

In−k



 ,

then RΠk is the matrix obtained by swapping the columns
k − 1 and k of R. By setting

c =
rk−1,k√

r2

k−1,k + r2

k,k

and s =
rk,k√

r2

k−1,k + r2

k,k

,

JkRΠk is upper triangular and the new rk−1,k−1, rk−1,k,
and rk,k satisfy the second condition in Definition 1.

The first condition in Definition 1 implies that the off

diagonal entries of the reduced R̂ are small relative to the
ones on the diagonal. Also, from the algorithm, the diagonal

of the reduced R̂ is not much larger than that of R. Thus, we

expect that ‖R̂‖1 (or ‖R̂‖∞) is smaller than ‖R‖1 (or ‖R‖∞).

It is then likely that ‖R̂‖2 is smaller than ‖R‖2. Thus the
radius is reduced. The following example illustrates this
effect of the first condition.

Example 2. Let A and y be the same as in Example 1.
After the QR decomposition of A, we have

R =

[
3.7417 8.5524

0 1.9640

]
and ŷ =

[
1.6036
0.6547

]
.

The solution of Rx = ŷ is

x =

[
−0.3333

0.3333

]
and ⌈x⌋ =

[
0
0

]
,

which, using Algorithm 3, gives the radius ρ = ‖ŷ‖2 =
1.7321.

Figure 1: The bottom lattice grid is obtained by

applying the LLL algorithm to the top lattice grid

in Example 2.

Applying the LLL algorithm to R with ω = 0.75, we get

R̂ =

[
2.2361 −0.4472

0 3.2864

]
,

Q̂ =

[
0.4781 0.8783
0.8783 −0.4781

]
,

M =

[
−2 3

1 −1

]

and the updated

Q̂T
ŷ =

[
1.3416
1.0955

]
.

Apparently, both ‖R̂‖1 < ‖R‖1 and ‖R̂‖∞ < ‖R‖∞ . The

solution of R̂x = Q̂Tŷ is

x̂ =

[
0.6667
0.3333

]
and ⌈x̂⌋ =

[
1
0

]
,

which, from Algorithm 3, leads to a smaller radius

ρ̂ = ‖R̂ round(x̂) − Q̂T
ŷ‖2

=

∥∥∥∥

[
0.8944

−1.0955

]∥∥∥∥
2

= 1.4142.

Figure 1 depicts the effect of the LLL algorithm. The top
lattice grid is generated by the basis formed by the columns
of R in Example 2. The bottom lattice grid is generated

by the basis formed by the columns of R̂ in Example 2.
The figure shows that the LLL algorithm effectively makes
a lattice grid more orthogonal by reducing the off diagonal.

Now we consider the effect of the second condition in
Definition 1. The sphere decoding Algorithm 1 performs
a depth-first search for the lattice points inside a sphere.
The second condition roughly imposes an ascending order
on the diagonal elements of R. The parameter ω, usually
set to 0.75, controls the degree of the strictness of the as-
cending order. Thus we expect that the last entry r̂m,m in

the reduced R̂ be relatively large. Consequently, number of
the integers in (7) is reduced. Thus the number of start-
ing paths is reduced. Reducing the number of search paths
in the early steps of a depth first search can significantly
reduce the total number of search paths, thus the computa-
tional complexity.



0

1

10

−2

Figure 2: The search trees for R, on the left, and for

the reduced R̂, on the right, in Example 3.

Example 3. Continue Example 2 and apply Algorithm 1.
For R, the search bounds for x2 are
⌈
−1.7321 + 0.6547

1.9640

⌉
= 0 and

⌊
1.7321 + 0.6547

1.9640

⌋
= 1.

There are two integers 0, 1 to be searched for x2. For the

reduced R̂, the search bounds are
⌈
−1.4142 + 1.0954

3.2863

⌉
= 0 and

⌊
1.4142

3.2863

⌋
= 0.

There is only one integer 0 to be searched for x̂2. Figure 2
shows the two search trees.

Figure 2 shows the two search trees. The one on the left
corresponds to the search tree when Algorithm 1 is applied

to R. The one on the right corresponds to R̂, which shows
the solution [1 0]T. Applying the unimodular M computed
by the LLL algorithm in Example 2, we get

M

[
1
0

]
=

[
−2 3

1 −1

] [
1
0

]
=

[
−2

1

]
,

which is the integer least squares solution for the original R
and ŷ.

4. EXPERIMENTS
In this section, we present our preliminary experimental

results. We consider a setting in communications, where the
n-by-m matrix A in (2) is a channel matrix of the following
Toeplitz structure:

A =





a1 0

a2

. . .
...

. . . a1

ak

. . . a2

. . .
...

0 ak





,

where ai, i = 1, ..., k, are the parameters of the channel and
k is the order of the channel. Thus n = m + k − 1. In our
experiments we set k = 3. The entries of the original signal
vector x are randomly chosen from {±1,±3}. The length m
of the signal is set to 4. The received signal vector y = Ax+
v, where v is a white noise vector, whose entries are random
variables normally distributed with zero mean. The channel
matrix A is normalized according to power constraint and
the noise v is scaled based on the given signal to noise ratio
(snr) 20dB. We summarize the parameters:

radius ρ̂ running time failure rate
(sec.) (%)

without LLL 0.3834 1.155 1.155
with LLL 0.3834 1.117 1.155

Table 1: Comparison of the combination of Algo-

rithms 2 and 1 without and with the LLL algorithm.

• Original signal length m: 4

• Entries of signal vector: ±1,±3

• Channel order k: 3

• Signal to noise ratio (snr): 20dB

We programmed the algorithms in MATLAB. In our ex-
periments, 10 random channel matrices were constructed
by generating random entries ai uniformly distributed over
[−1, 1]. For each channel matrix, 200 random signal vec-
tors x and 200 white noise vectors v were generated. The
received signal vector y = Ax + v.
Case 1. Combination of the statistical Algorithm 2 for
choosing a radius of the search sphere and the triangular
sphere decoding Algorithm 1:

1. Calculate radius ρ using Algorithm 2 from the given
snr = 20 and the probability p = 0.99;

2. QR decomposition A = Q1R and update ŷ = QT

1 y;

3. Optional: Apply the LLL algorithm to reduce R, where
ω = 0.75;

4. Adjust the radius ρ̂2 = ρ2 − (‖y‖2

2 −‖ŷ‖2

2); (Note that
‖y‖2

2−‖ŷ‖2

2 is the least squares residual norm squared.)

5. Apply the triangular sphere decoding Algorithm 1 to
R, ŷ, and ρ̂.

The value of ω was set to 0.75. When ω is close to 1, the
LLL algorithm imposes a nearly strict ascending order on
the diagonal elements. However, the LLL algorithm requires
more computation as ω approaches 1, the computing cost of
the LLL algorithm increases rapidly. On the other hand,
when ω is close to 0.25, the LLL algorithm imposes a lose
ascending order on the diagonal elements. Consequently,
its impact on reducing the total number of search paths
diminishes. As a compromise, ω is commonly set to 0.75.

The values in Table 1 are the averages of the 10 channels
and 200 signals for each channel. Table 1 shows that the
LLL algorithm improved the performance by about 3.3%,
although the radius was not reduced in this application, be-
cause A has the Toeplitz structure and its entries are uni-
formly distributed over [−1, 1]. In other words, the norm of
A is small.
Case 2. Combination of our deterministic Algorithm 3 for
finding the radius of the search sphere and the triangular
sphere decoding Algorithm 1:

1. QR decomposition A = Q1R and update ŷ = QT

1 y;

2. Optional: Apply the LLL algorithm to reduce R, where
ω = 0.75;

3. Calculate radius ρ̂ using Algorithm 3;



radius ρ̂ running time failure rate
(sec.) (%)

without LLL 0.1891 0.605 0
with LLL 0.1891 0.584 0

Table 2: Comparison of the combination of Algo-

rithms 3 and 1 without and with the LLL algorithm.

4. Apply the triangular sphere decoding Algorithm 1 to
R, ŷ, and ρ̂.

Again, the values in Table 2 are the averages of the 10
channels and 200 signals for each channel. Table 2 shows
that the LLL algorithm improved the performance by about
3.5%, although the radius was not reduced, in this applica-
tion.

Since in this application, the LLL algorithm has no effect
on reducing the search radius due to the characteristics of
the channel matrix, the improvement caused by the LLL
algorithm is due to the reduction of the number of the search
paths. Note that in our experiments, the length m of the
original signal vector was set to 4, which was the depth of
the search trees. We expect that a larger m will show more
significant improvement.

Comparing Table 2 with Table 1 shows that our Algo-
rithm 3 chose a much smaller radius than the statistical
Algorithm 2. Consequently, the combination of the LLL al-
gorithm and our method for selecting search radius improved
the running time by almost 50%, while achieving zero failure
rate.

5. CONCLUSION
In this paper, we considered the integer least squares prob-

lem, the sphere decoding method in communications in par-
ticular. We addressed two key issues in sphere decoding
performance: Finding a radius of search sphere and reduc-
ing the total number of search paths. We proposed a de-
terministic method for finding a radius. We showed the im-
pact of the LLL algorithm on reducing the number of search
paths. Our preliminary experiments demonstrated that our
method found accurate search radii while achieving zero fail-
ure rate. The combination of our method for finding search
radius and the LLL algorithm can significantly improve the
performance of sphere decoding in communications. Our fu-
ture work includes extensive experiments and investigation
of numerical properties.
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