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Abstract. This paper presents a divide-and-conquer method for computing the symmetric sin-
gular value decomposition, or Takagi factorization, of a complex symmetric and tridiagonal matrix.
An analysis of accuracy shows that our method produces accurate Takagi values and orthogonal Tak-
agi vectors. Our preliminary numerical experiments have confirmed our analysis and demonstrated
that our divide-and-conquer method is much more efficient than the implicit QR method even for
moderately large matrices.
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1. Introduction. The Takagi factorization of a complex symmetric matrix A
can be written as [7]

A = V ΣV T ,

where V is a unitary matrix, V T is the transpose of V , and Σ is a nonnegative diagonal
matrix. The columns of V are called the Takagi vectors of A and the diagonal elements
of Σ are its Takagi values. Since V T = V̄ H , where V̄ denotes the complex conjugate
of V , the Takagi factorization is a symmetric form of the singular value decomposition
(SVD); but there are differences. A pair of left-right singular vectors are unique up to
a complex scaling factor with unit modulus, while the Takagi vectors are unique up to
a sign change. Therefore, if vi is a Takagi vector, then (vi, v̄i) is a pair of left-right
singular vectors, but a left singular vector is not necessarily a Takagi vector; see an
example below.

Similar to the computation of the SVD, a standard algorithm for computing
the Takagi factorization consists of two stages. The first stage reduces a complex
symmetric matrix A of order n to a complex symmetric tridiagonal matrix:

(1) A = PTPT ≡ P

⎡
⎢⎢⎢⎢⎣

a1 b1 0

b1
. . .

. . .

. . .
. . . bn−1

0 bn−1 an

⎤
⎥⎥⎥⎥⎦PT ,

where P is a unitary matrix of order n and T is tridiagonal. For example, the Lanczos
tridiagonalization method with partial orthogonalization [9, 12] can be used. The
second stage computes the Takagi factorization T = QΣQT of the complex symmetric
tridiagonal T . Combining the two stages, we have

A = P (QΣQT )PT = V ΣV T ,
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where V = PQ.
In this paper, we focus on the computation of the Takagi factorization of the com-

plex symmetric tridiagonal T using the divide-and-conquer method based on rank-one
tearing of TTH . It is known that the divide-and-conquer method is one of the most
efficient methods for computing the eigenvalues and eigenvectors of a large, normally
of order larger than dozens, Hermitian tridiagonal matrix [3]. Apparently, the Takagi
vectors of T—that is, the columns of Q—are the eigenvectors of the positive semidef-
inite Hermitian matrix TTH , since TTH = QΣQT Q̄ΣQH = QΣ2QH . However, an
eigenvector of TTH may not be a Takagi vector of T . For example, let

T =

[
1 i
i −1

]
, where i =

√
−1;

then

TTH =

[ √
2

4 +
√

6
4 i −

√
2

2

−
√

6
4 +

√
2

4 i
√

2
2 i

] [
4 0
0 0

][ √
2

4 −
√

6
4 i −

√
6

4 −
√

2
4 i

−
√

2
2 −

√
2

2 i

]

is an eigenvalue decomposition of TTH . Using the algorithm in [10], we can obtain
the Takagi factorization

T = QΣQT =

[
−

√
2

2
1
2 + 1

2 i

−
√

2
2 i 1

2 − 1
2 i

] [
2 0
0 0

] [
−

√
2

2 −
√

2
2 i

1
2 + 1

2 i
1
2 − 1

2 i

]
.

In fact, it is shown in [7, Corollary 4.4.5] that if A is complex symmetric and the
eigenvalues of AAH are distinct, and if AAH = UΣ2UH , then there exists a diagonal
matrix D = diag(eiθ1 , . . . , eiθn) with real θi such that A = V ΣV T with V = UD.
The diagonal entries of D are determined by the relation AŪ = UΣD2. In the above
example, eiθ1 = −1/2 +

√
3 i/2 and eiθ2 = −

√
2/2 −

√
2 i/2. However, if σ2

i is a
multiple eigenvalue of AAH , then, following the proof of Theorem 4.4.3 in [7], we can
construct the Takagi vector vi corresponding to the singular value σi of A from the
eigenvector ui corresponding to σ2

i using

vi = αi(Aūi + σiui),

where αi = 1/‖Aūi + σiui‖2 is the normalization factor. The details of the transfor-
mation will be described in section 3.

The basic idea behind our method is to apply the divide-and-conquer method to
TTH to compute its eigenvectors and eigenvalues. The square roots of the eigenvalues
of TTH are the Takagi values of T . Since an eigenvector of TTH may not be a Takagi
vector of T , we then transform the eigenvectors of TTH into the Takagi vectors of T .
However, explicitly computing TTH is too expensive and also destroys the tridiagonal
structure of T . We will introduce an implicit method for computing the eigenvalue
decomposition of TTH .

The rest of this paper is organized as follows. Section 2 describes a divide-and-
conquer method for computing the eigenvalue decomposition of TTH without explic-
itly forming TTH . In section 3, we propose a method for transforming the eigenvectors
of TTH into the Takagi vectors of T . We analyze the sensitivity of the Takagi vectors
of T in section 4. Finally, our preliminary numerical experiments are demonstrated
in section 5 to show the stability, accuracy, and efficiency of our algorithm.
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2. Divide-and-conquer scheme. Let the Takagi factorization of the complex
symmetric tridiagonal matrix T in (1) be

QHTQ̄ = Σ = diag(σ1, . . . , σn) or T = QΣQT .

In the first step, we tear the tridiagonal matrix T into two tridiagonal submatrices of
half size. For simplicity, we assume that n is a power of 2 and m = n/2; then

(2) T =

[
T1 bmemeT1

bme1e
T
m T2

]
,

where

T1 =

⎡
⎢⎢⎢⎢⎣

a1 b1 0

b1
. . .

. . .

. . .
. . . bm−1

0 bm−1 am

⎤
⎥⎥⎥⎥⎦ , T2 =

⎡
⎢⎢⎢⎢⎣

am+1 bm+1 0

bm+1
. . .

. . .

. . .
. . . bn−1

0 bn−1 an

⎤
⎥⎥⎥⎥⎦ ,

and e1 and em are unit vectors, [1, 0, . . . , 0]T and [0, . . . , 0, 1]T , respectively. In this
section, we present a divide-and-conquer method for computing the eigenvalue de-
composition of TTH given the eigenvalue decompositions of T1T

H
1 and T2T

H
2 . Our

method is based on the rank-one modification of symmetric eigenvalue decomposition.

2.1. Dividing the matrix. We first establish the relations between the eigen-
values and eigenvectors of TiT

H
i , i = 1, 2, and those of TTH as follows. From (2), we

get

TTH =

[
T1 bmemeT1

bme1e
T
m T2

] [
TH

1 b̄memeT1
b̄me1e

T
m TH

2

]

=

[
T1T

H
1 + |bm|2emeTm bmemeT1 T

H
2 + b̄mT1emeT1

b̄mT2e1e
T
m + bme1e

T
mTH

1 T2T
H
2 + |bm|2e1e

T
1

]

=

[
T1T

H
1 0

0 T2T
H
2

]
+

[
|bm|2emeTm bmemeT1 T

H
2

b̄mT2e1e
T
m 0

]

+

[
0 b̄mT1emeT1

bme1e
T
mTH

1 |bm|2e1e
T
1

]

=

[
T1T

H
1 0

0 T2(Im − e1e
T
1 )TH

2

]
+

[
bmem
T2e1

] [
b̄meTm eT1 T

H
2

]

+

[
0 b̄mT1emeT1

bme1e
T
mTH

1 |bm|2e1e
T
1

]

=

[
T1(Im − emeTm)TH

1 0
0 T2(Im − e1e

T
1 )TH

2

]
+

[
bmem
T2e1

] [
b̄meTm eT1 T

H
2

]
+

[
T1em
bme1

] [
eTmTH

1 b̄meT1
]

=

[
T1(Im − emeTm)TH

1 0
0 T2(Im − e1e

T
1 )TH

2

]
+ z1z

H
1 + z2z

H
2 ,(3)
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where

z1 =

[
bmem
T2e1

]
and z2 =

[
T1em
bme1

]
.

From (3), if the eigenvalue decompositions

(4) T1T
H
1 = U1Σ

2
1U

H
1 and T2T

H
2 = U2Σ

2
2U

H
2

of the positive semidefinite Hermitian matrices T1T
H
1 and T2T

H
2 are available, then

we can find the eigenvalue decomposition of TTH by four rank-one modifications.
Thus, if the Takagi factorizations of T1 and T2 are available, then we can compute
the Takagi values of T and the eigenvectors of TTH by four rank-one modifications.
Later in section 3, we will show how to transform the eigenvectors into the Takagi
vectors.

Now, we discuss the rank-one modification. Cuppen [2, Theorem 2.1] character-
izes the eigenvalues and eigenvectors of the real symmetric rank-one modification. We
generalize it to the complex case. The proof is analogous to the one in [2], so it is
omitted.

Theorem 2.1. Suppose D2 is a real diagonal matrix diag(d2
1, . . . , d

2
n), where

d2
1 > d2

2 > · · · > d2
n, z ∈ Cn is a vector with no zero entries, and ρ > 0 a real scalar;

then the eigenvalues of the matrix D2 + ρzzH are the n roots δ2
1 > δ2

2 > · · · > δ2
n of

the rational function

(5) w(δ2) = 1 + ρzH(D2 − δ2I)−1z = 1 + ρ

n∑
j=1

|zj |2
d2
j − δ2

.

The corresponding normalized eigenvectors, g1, g2, . . . , gn of D2 + ρzzH are given
by

(6) gj = (D2 − δ2
j I)

−1z/‖(D2 − δ2
j I)

−1z‖2,

and d2
j strictly separate the eigenvalues δ2

j :

d2
n < δ2

n < d2
n−1 < δ2

n−1 < · · · < d2
1 < δ2

1 < d2
1 + ρzHz.

Applying the above theorem, we can compute the eigenvalue decomposition of
TTH from those in (4) via four rank-one modifications. Specifically, suppose that the
eigenvalue decomposition T1T

H
1 = U1Σ

2
1U

H
1 in (4) is available; then

T1(Im − emeTm)TH
1 = T1T

H
1 − T1emeTmTH

1

= U1(Σ
2
1 − (UH

1 T1em)(UH
1 T1em)H)UH

1 .

Applying Theorem 2.1 to −Σ2
1 + (UH

1 T1em)(UH
1 T1em)H , we obtain the eigenvalue

decomposition of T1T
H
1 − T1emeTmTH

1 . Similarly, the eigenvalue decomposition of
T2T

H
2 −T2e1e

T
1 T

H
2 can be obtained from T2T

H
2 = U2Σ

2
2U

H
2 by applying Theorem 2.1.

Thus, we suppose

(7) T1T
H
1 − T1emeTmTH

1 = Û1Σ̂
2
1Û

H
1 and T2T

H
2 − T2e1e

T
1 T

H
2 = Û2Σ̂

2
2Û

H
2 .

Applying the above decompositions to (3), we have

TTH =[
Û1

Û2

]([
Σ̂2

1

Σ̂2
2

]
+

[
û1

û2

] [
û1

û2

]H
+

[
v̂1

v̂2

] [
v̂1

v̂2

]H)[
Û1

Û2

]H
,(8)
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where û1 = bmÛH
1 em, û2 = ÛH

2 T2e1, v̂1 = Û1
H
T1em, and v̂2 = bmÛH

2 e1. This
shows that the eigenvalue decomposition of TTH can be obtained by two more rank-
one modifications.

The numerical computation of the rank-one modification, i.e., the roots of the
rational function (5) and the eigenvectors (6) will be treated in section 4.

2.2. Deflation. In this subsection, we remove the assumptions of distinctiveness
of the diagonal entries di and no zero entries in the modification vector z by applying
the deflation technique given in [14]. We first consider the case when z has zero
entries. It can be easily verified that (d2

i , ei) is an eigenpair of D2 + ρzzH if zi = 0.
In this case, the problem can be deflated by one for each zero entry in z. Next, we
consider the case when there are two equal diagonal elements in D2, say d2

i = d2
j . Let

P be a Givens rotation such that

P

[
zi
zj

]
=

[
∗
0

]
;

then

P

([
d2
i 0
0 d2

j

]
+

[
zi
zj

] [
zi
zj

]H)
PH =

[
d2
i 0
0 d2

j

]
+

[
∗
0

] [
∗
0

]H
.

Thus, when d2
i = d2

j for some i �= j, we can assume zi = 0 or zj = 0. So, the case of
equal diagonal elements in D is changed to the case of zero entries in z.

Due to the rounding errors, we regard two elements d2
i and d2

j equal if the differ-
ence between them is less than a predetermined tolerance tol. How do we determine
the tolerance? In our deflation procedure, when d2

i and d2
j are numerically equal, we

find a Givens rotation to transform [zi, zj ]
T into [∗, 0]T . Let c = z̄i/

√
|zi|2 + |zj |2 and

s = −z̄j/
√
|zi|2 + |zj |2; then[

c −s
s̄ c̄

] [
d2
i

d2
j

] [
c̄ s

−s̄ c

]
=

[
d2
i

d2
j

]
+ E,

where

E = (d2
i − d2

j )

[
−|s|2 cs
c̄s̄ |s|2

]
.

We set the tolerance tol so that ‖E‖F ≤ ε ‖diag(d2
i , d

2
j )‖F when |d2

i −d2
j | ≤ tol, where

ε is the machine precision. Taking the Frobenius norm on E and diag(d2
i , d

2
j ), we get

‖E‖F =
√

2 |s| |d2
i − d2

j | and ‖diag(d2
i , d

2
j )‖F ≤

√
2 d2

max,

where dmax = max(di, dj). Thus, we set the tolerance

tol =
d2
max

|s| ε.

3. Takagi factorization. As described in the previous section, given the Takagi
factorizations of T1 and T2 in (2), we can compute the eigenvalue decomposition
TTH = UΣ2UH through four rank-one modifications. Let T = QΣQT be the Takagi
factorization of T . It is obvious that the Takagi values of T are the square roots of
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the eigenvalues of TTH . It then remains to convert the eigenvectors of TTH into the
Takagi vectors of T . Specifically, given an eigenvector ui of TTH , we want to convert
it into a vector qi satisfying T q̄i = σiqi. First, in the case when the eigenvalues are
distinct, the eigenvectors of TTH are uniquely defined up to a scaling factor with
unit modulus, which implies that the Takagi vector qi is a scalar multiple of the
corresponding eigenvector ui. Let T ūi = ξσiui for some scalar ξ such that |ξ| = 1,
denote ξ = e2iφ and define

(9) qi ≡ eiφui.

Then

T q̄i = e−iφT ūi = e−iφe2iφσiui = eiφσie
−iφqi = σiqi

as desired. Specifically, ξ can be obtained by ξ = (uH
i T ūi)/σi if σi �= 0; otherwise

ξ = 1.
Next, in the case of multiple eigenvalues, T ūi may not equal ξσiui. We construct

(10) qi = αi(T ūi + σiui),

where αi = 1/‖T ūi + σiui‖2 is the normalization factor. Then

T q̄i = αiT (T ūi + σiui) = αi(T T̄ui + σiT ūi) = αi(σ
2
i ui + σiT ūi) = σiqi.

Finally, we check the orthogonality of the Takagi vectors of T converted from
the eigenvectors of TTH . It is obvious that the orthogonality is maintained among
the Takagi vectors corresponding to distinct Takagi values because of the orthogo-
nality of the eigenvectors corresponding to distinct eigenvalues. Now, assume that
qi, . . . ,qi+k−1 are the Takagi vectors corresponding to a multiple Takagi value σi

of multiplicity k > 1. The construction of qi shows that the subspace spanned by
qi, . . . ,qi+k−1 is the same as the one spanned by ui, . . . ,ui+k−1, since qi, . . . ,qi+k−1

are the eigenvectors associated with σ2
i . Thus, qi+t (t = 0, . . . , k − 1) are orthogonal

to qj , the Takagi vector corresponding to σj , if σj �= σi. However, the Takagi vec-
tors corresponding to the equal Takagi values may lose their orthogonality. So, the
modified Gram–Schmidt orthogonalization is applied to these vectors to restore the
orthogonality. Suppose that qi+t is one of the Takagi vectors corresponding to σi com-
puted from (10), then we orthogonalize it against the previous t vectors qi, . . . ,qi+t−1

using the modified Gram–Schmidt method.
Now, we give the divide-and-conquer algorithm for computing the Takagi factor-

ization of a complex symmetric tridiagonal matrix.
Algorithm 3.1. Given a complex symmetric and tridiagonal matrix T , this

algorithm computes the Takagi factorization T = QΣQT . There are two stages in this
algorithm. The first stage computes the eigenvalue decomposition TTH = UΣ2UH ;
the second stage computes the Takagi vectors qi of T from the eigenvectors ui of TTH .

1. Partition T as (2). If T1 and T2 are small enough, then directly compute the
eigenvalue decompositions

T1T
H
1 = U1Σ1U

H
1 and T2T

H
2 = U2Σ2U

H
2 .

If T1 and T2 are large, apply this algorithm to T1 and T2.
2. Apply the deflation and the rank-one modification Theorem 2.1 to T1T

H
1 −

T1emeTmTH
1 and T2T

H
2 −T2e1e

T
1 T

H
2 to obtain their eigenvalue decompositions

(7). Thus, TTH has the form (8).
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3. Compute the eigenvalue decomposition of TTH via two rank-one modifica-
tions using the deflation and Theorem 2.1.

4. The Takagi values of T are the square roots of the eigenvalues of TTH .
5. For a single Takagi value, its corresponding Takagi vector qi is computed

using (9); for a multiple Takagi value, its Takagi vector qi is computed using
(10) and then orthogonalized against the previously computed Takagi vec-
tors corresponding to the same Takagi value by the modified Gram–Schmidt
orthogonalization.

Finally, we present a complexity comparison between the divide-and-conquer
method and the implicit QR method. Let t(n) be the number of flops required by the
divide-and-conquer method, then

t(n) = 2t(n/2) for the two small submatrices T1 and T2

+ O(n2) find the eignevalues and eigenvectors of D + ρzzH

+ 2.25cn3 update U.

Thus, updating U is the major cost in our divide-and-conquer method. Ignoring the
O(n2) terms, we get t(n) ≈ 3cn3. The constant c represents the deflation and is
much smaller than one in practice [3]. In comparison, the implicit QR method in
[10] requires about 6n3 flops. Hence, our divide-and-conquer method is more efficient
than the implicit QR method.

4. Orthogonality of Takagi vectors. In the previous section, we presented
a divide-and-conquer algorithm for computing the Takagi factorization of T . It is
based on the rank-one update of the symmetric eigenvalue decomposition. Due to the
rounding errors, the orthogonality of the eigenvectors computed by Theorem 2.1 may
be lost. In this section, we present an analysis of the orthogonality of the computed
eigenvectors and propose techniques for assuring good orthogonality. For simplicity,
we assume that the given matrix in the rank-one modification is already deflated.

First, we derive a formula for the eigenvectors gj in Theorem 2.1. Differentiating
both sides of the function w(t) in (5) with respect to t, we get

‖(D2 − δ2I)−1z‖2
2 =

n∑
j=1

|zj |2
(d2

j − δ2)2
= ρ−1|w′(δ2)|.

Then (6) can be rewritten as

(11) gj =

[
z1

d2
1 − δ2

j

,
z2

d2
2 − δ2

j

, . . . ,
zn

d2
n − δ2

j

] √
ρ√

w′(δ2
j )
.

Let δ̂2
i be a computed root of w in (5). In the following, by extending the results

in [8], we show that if the relative error in d2
j − δ̂2

i is small for all i and j, then the
computed eigenvectors gi have good orthogonality.

Theorem 4.1. Denote δ̂2
i and δ̂2

k as the computed roots of w in (5). Let the

relative errors in d2
j − δ̂2

i and d2
j − δ̂2

k be θi and θk, respectively, that is,

d2
j − δ̂2

i = (d2
j − δ2

i )(1 + θi) and d2
j − δ̂2

k = (d2
j − δ2

k)(1 + θk),

and |θi|, |θk| ≤ τ 
 1 for all j, then

|ĝH
i ĝk| = |gH

i Egk| ≤ τ(2 + τ)

(
1 + τ

1 − τ

)2

,
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where ĝi and ĝk are computed eigenvectors using (11) and E is a diagonal matrix
whose ith diagonal entry is

(12) Eii =
θi + θk + θiθk

(1 + θi)(1 + θk)

(
w′(δ2

i )w
′(δ2

k)

w′(δ̂2
i )w

′(δ̂2
k)

)1/2

.

Proof. From (11), we have

−ĝH
i ĝk

= −

⎛
⎝ n∑

j=1

|zj |2
(d2

j − δ2
k)(d

2
j − δ2

i )(1 + θi)(1 + θk)

⎞
⎠ ρ

(w′(δ̂2
i )w

′(δ̂2
k))

1/2

=

⎛
⎝ n∑

j=1

|zj |2
(d2

j − δ2
k)(d

2
j − δ2

i )
−

n∑
j=1

|zj |2
(d2

j − δ2
k)(d

2
j − δ2

i )(1 + θi)(1 + θk)

⎞
⎠

ρ

(w′(δ̂2
i )w

′(δ̂2
k))

1/2

since gH
i gk = 0. Thus, we have

|ĝH
i ĝk|

=

∣∣∣∣∣∣
n∑

j=1

(
|zj |2

(d2
j − δ2

k)(d
2
j − δ2

i )

)(
1 − 1

(1 + θi)(1 + θk)

)
ρ

(w′(δ̂2
i )w

′(δ̂2
k))

1/2

∣∣∣∣∣∣
=

∣∣∣∣∣
n∑

j=1

(
|zj |2

(d2
j − δ2

k)(d
2
j − δ2

i )

)(
θi + θk + θiθk

(1 + θi)(1 + θk)

)(
w′(δ2

i )w
′(δ2

k)

w′(δ̂2
i )w

′(δ̂2
k)

)1/2

ρ

(w′(δ2
i )w

′(δ2
k))

1/2

∣∣∣∣∣
= |gH

i Egk| ≤ ‖E‖2,

where E is a diagonal matrix, whose diagonal elements are given by (12).
On the other hand, it is easy to show that

(13)
w′(δ2

i )

w′(δ̂2
i )

=

∑n
j=1

|zj |2
(d2

j−δ2
i )2∑n

j=1
|zj |2

(d2
j−δ2

i )2(1+θi)2

≤ (1 + τ)2.

Substituting w′(δ2
i )/w

′(δ̂2
i ) in (12) with (13), we have

max(|Eii|) ≤
τ + τ + τ2

(1 − τ)2
(1 + τ)2 = τ(2 + τ)

(
1 + τ

1 − τ

)2

.

This completes the proof.
Apparently, if the roots δ2

i of w are computed in high accuracy, then the rela-

tive errors in d2
j − δ̂2

i are small, provided that the eigenvalues δ2
i are not clustered.

Consequently, from the above theorem, the computed eigenvectors ĝi have good or-
thogonality.
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We adopt the stable method in [5] for computing the roots δi of w(δ2) in (5). It is
well known that if two quantities x and y are close, then in finite-precision arithmetic
it is more accurate to compute x2 − y2 via the formula (x + y)(x − y) [6]. To avoid
explicitly calculating the differences between squared quantities, we reformulate w(δ2)
in (5) as

w(δ2) = 1 + ψi(μ) + ϕi(μ) ≡ fi(μ),

where

ψ1(μ) = 0, ϕ1(μ) =

n∑
j=1

|zj |2
(ζj − μ)(dj + di + ρμ)

,

and

ψi(μ) =

i−1∑
j=1

|zj |2
(ζj − μ)(dj + di−1 + ρμ)

, ϕi(μ) =

n∑
j=i

|zj |2
(ζj − μ)(dj + di−1 + ρμ)

,

for i > 1, and

ζj = (dj − di)/ρ, μ = (δ − di)/ρ, when δ2 ∈ (d2
i , (d2

i−1 + d2
i )/2),

ζj = (dj − di−1)/ρ, μ = (δ − di−1)/ρ, when δ2 ∈ [(d2
i−1 + d2

i )/2, d2
i−1).

In the above formulation, an important property of fi(μ) is that it can be eval-
uated accurately. Moreover, we have formulated the functions ψi(μ) and ϕi(μ) so
that explicit calculation of the differences of squares such as d2

j − d2
i and δ2 − d2

i are
avoided. There are many zero finding methods, for example, the rational interpolation
[1] and bisection and its variations [11, 13]. Following [5], our algorithm for finding
the zeros of fi(μ) is based on the rational interpolation strategy [1] and its LAPACK
implementation slasd4. Thus, from [5], the computed eigenvalues have high relative
accuracy. The eigenvectors are computed from the computed eigenvalues following
the method for computing the eigenvectors in [5], which guarantees numerical orthog-
onality. Thus, the computed Takagi vectors are numerically orthogonal since they are
obtained by converting the eigenvectors.

Finding a root of fi(μ) is an iterative process. The stopping criterion plays an
important role in the accuracy of the computed roots. Similar to [4], we propose the
stopping criterion:

(14) |fi(μ)| ≤ εn(|ψi(μ)| + |ϕi(μ)| + 1).

In the following, we show that by using this criterion, the computed roots δ̂2
i of w(δ2)

are accurate.
Since w(δ2

i ) = 0, we have

w(δ̂2
i ) = w(δ̂2

i ) − w(δ2
i ) = ρ

n∑
j=1

|zj |2

d2
j − δ̂2

i

− ρ

n∑
j=1

|zj |2
d2
j − δ2

i

= ρ(δ̂2
i − δ2

i )

n∑
j=1

|zj |2

(d2
j − δ̂2

i )(d
2
j − δ2

i )
.
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According to the stopping criterion (14), since fi(μ) can be evaluated accurately, we
have

|w(δ̂2
i )| ≤ εn

⎛
⎝1 + ρ

n∑
j=1

|zj |2

|d2
j − δ̂2

i |

⎞
⎠ ≤ ρεn

⎛
⎝ n∑

j=1

|zj |2

|d2
j − δ̂2

i |
+

n∑
j=1

|zj |2
|d2

j − δ2
i |

⎞
⎠

since 1 = −ρ
∑n

j=1
|zj |2
d2
j−δ2

i
. Without loss of generality, we assume δ2

i and δ̂2
i are in the

same interval, say (d2
i , d2

i−1). It follows that (d2
j − δ2

i )(d
2
j − δ̂2

i ) > 0. So,

|w(δ̂2
i )| = ρ|δ̂2

i − δ2
i |

n∑
j=1

|zj |2

|(d2
j − δ̂2

i )(d
2
j − δ2

i )|
≤ ρεn

⎛
⎝ n∑

j=1

|zj |2

|d2
j − δ̂2

i |
+

n∑
j=1

|zj |2
|d2

j − δ2
i |

⎞
⎠

≤ ρεn(4‖D2 + ρzzH‖2 + |δ̂2
i − δ2

i |)
n∑

j=1

|zj |2

|(d2
j − δ̂2

i )(d
2
j − δ2

i )|
,

since |d2
j − δ̂2

i |+ |d2
j − δ2

i | ≤ 2|d2
j − δ2

i |+ |δ̂2
i − δ2

i | ≤ 4‖D2 + ρzzH‖2 + |δ̂2
i − δ2

i |. From

the above equation, we can get the upper bound for |δ̂2
i − δ2

i |:

|δ̂2
i − δ2

i | ≤
4εn‖D2 + ρzzH‖2

1 − εn
.

In conclusion, we apply the rational interpolation zero finding method to fi(μ) using
the stopping criterion (14). We can then obtain accurate eigenvalues δ2

i . Provided
that the eigenvalues are not clustered, it results in the high relative accuracy of the
difference d2

i − δ̂2
i , which implies good orthogonality of the computed eigenvectors of

TTH .

5. Numerical examples. We programmed our divide-and-conquer Algorithm
3.1 in MATLAB and tested it on three types of complex symmetric and tridiagonal
matrices. Our experiments were carried out on a server with two 2.4 GHz Xeon
CPUs, 1GB RAM, and 80GB disk. The complex symmetric and tridiagonal matrices
with predetermined Takagi values were generated as follows. First, a random vector
uniformly distributed on (0, 1] was generated and sorted in descending order as a
Takagi value vector d. Then, a random unitary matrix was generated as a Takagi
vector matrix V . The product A = V ΣV T , where Σ = diag(d), was computed as
a complex symmetric matrix. Finally, a complex symmetric and tridiagonal T was
obtained by applying the Householder transformations to both sides of A. Denoting
Q̂ and d̂ as the computed Takagi vector matrix and Takagi value vector, respectively,
the error in the computed Takagi factorization was measured by

γt = ‖Q̂Σ̂Q̂T − T‖2, where Σ̂ = diag(d̂).

The error in the computed Takagi values was measured by

γv = ‖d− d̂‖2,

and the orthogonality of the computed Takagi vector matrix Q̂ was measured by

γo = ‖Q̂Q̂H − I‖2.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

152 WEI XU AND SANZHENG QIAO

Table 1

The Takagi factorization of five 256 × 256 testing matrices with distinct Takagi values.

Example γo γv γt
1 1.3558E−14 3.1347E−14 4.1149E−12
2 2.1679E−14 1.0854E−14 4.3920E−12
3 9.7087E−14 8.4093E−15 1.1309E−12
4 1.1040E−14 1.2622E−14 5.5019E−12
5 3.0840E−14 1.1658E−14 1.1243E−12

Example 1. Five random complex symmetric and tridiagonal matrices of order
256 were generated as described above. In this example, the Takagi values of each
matrix were distinct. Table 1 shows that the computed Takagi values and Takagi
vectors are accurate.

Example 2. Five random complex symmetric and tridiagonal matrices of order
256 were generated. In this example, we set the five largest Takagi values equal and
the four smallest Takagi values equally. Table 2 shows the results.

Table 2

The Takagi factorization of five 256×256 testing matrices with multiple Takagi values of small
multiplicity.

Example γo γv γt
1 7.5222E−12 1.1331E−14 1.0564E−12
2 2.5397E−12 1.9208E−14 2.6242E−12
3 2.4214E−12 6.0150E−14 6.1179E−12
4 1.9582E−12 4.8421E−14 3.2142E−12
5 6.3841E−12 1.0580E−14 2.4453E−12

Table 3

The Takagi factorization of five 256× 256 testing matrices with multiple Takagi values of large
multiplicity.

Example γo γv γt
1 7.8816E−13 8.8186E−14 4.0040E−12
2 3.7709E−12 2.4154E−14 8.4231E−12
3 4.3532E−13 1.3427E−14 3.4808E−12
4 6.2713E−12 7.4803E−14 1.7887E−12
5 4.5237E−12 5.1166E−14 6.4702E−12

Example 3. Five random T of order 256 were generated. In this example, however,
we set the 31 largest Takagi values equal. Table 3 shows that the computed results
are accurate.

For performance, we tested our algorithm on random complex symmetric and
tridiagonal matrices of five different sizes. For each size, we generated five matrices
and ran our divide-and-conquer (DAC) method and the implicit QR (IQR) method
[10]. In our divide-and-conquer method, when the size of the submatrices Ti, for
i = 1, 2, in (2) is less than or equal to 10, its Takagi factorization is computed
directly by the implicit QR method. Table 4 shows the average running time and the
average factorization error γt of the five matrices of same size. The results in Table
4 demonstrate that our method is significantly more efficient than the implicit QR
method even for matrices of moderately large size.
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Table 4

The performance and accuracy comparison of the divide-and-conquer (DAC) method and the
implicit QR (IQR) method.

Running time (sec) γt
matrix size DAC method IQR method DAC method IQR method

100 1.14 1.16 1.3352E−14 2.4668E−14
200 3.01 5.47 2.0272E−12 2.9772E−14
400 9.51 26.05 1.7014E−12 6.4860E−14
800 46.88 187.05 1.1338E−11 9.0250E−14
1600 286.14 2091.12 4.2198E−11 2.1552E−13

6. Conclusion. We have proposed a divide-and-conquer method for computing
the Takagi factorization of a complex symmetric and tridiagonal matrix and presented
an analysis, which shows that our method computes accurate Takagi values and vec-
tors provided that the Takagi values are not clustered. Our preliminary experiments
have demonstrated that our method produces accurate results even for matrices with
multiple Takagi values and is much more efficient than the implicit QR method [10].
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