
NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS
Numer. Linear Algebra Appl. 2009; 16:801–815
Published online 2 March 2009 in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/nla.642

A twisted factorization method for symmetric SVD of a complex
symmetric tridiagonal matrix

Wei Xu1 and Sanzheng Qiao2,∗,†

1School of Software Engineering, Fudan University, Shanghai, People’s Republic of China
2Department of Computing and Software, McMaster University, Hamilton, Ont., Canada L8S 4K1

SUMMARY

This paper presents an O(n2) method based on the twisted factorization for computing the Takagi vectors
of an n-by-n complex symmetric tridiagonal matrix with known singular values. Since the singular
values can be obtained in O(n2) flops, the total cost of symmetric singular value decomposition or
the Takagi factorization is O(n2) flops. An analysis shows the accuracy and orthogonality of Takagi
vectors. Also, techniques for a practical implementation of our method are proposed. Our preliminary
numerical experiments have verified our analysis and demonstrated that the twisted factorization method
is much more efficient than the implicit QR method, divide-and-conquer method and Matlab singular
value decomposition subroutine with comparable accuracy. Copyright q 2009 John Wiley & Sons, Ltd.
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1. INTRODUCTION

For any complex symmetric matrix A, there exist a diagonal singular value matrix � and a unitary
matrix U , such that

A=U�UT

This special form of the singular value decomposition (SVD) [1] of A is called symmetric SVD
(SSVD) or Takagi factorization [2, 3]. One obvious advantage of this form is that it reflects the
symmetry of A and thus saves the storage and computation by about half.
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The SSVD of a complex symmetric matrix has applications in, for instance, the Grunsky
inequalities [4], the computation of the near-best uniform polynomial or rational approximation
of a high degree polynomial on a disk [5], and the complex independent component analysis
problems [6]. However, Matlab and LAPACK [7] do not support complex symmetric struc-
ture and treat it as general complex. To compute the SVD of a complex symmetric matrix in
LAPACK, the matrix is first reduced to a bidiagonal matrix, in which the symmetric structure
is lost.

The algorithm proposed in this paper leads to an efficient method for computing the SSVD
of a complex square Hankel matrix. A complex Hankel matrix is symmetric and can be reduced
to a symmetric tridiagonal matrix in O(n2 log n) [8]. Then, by applying the twisted factorization
method, the symmetric SVD of the symmetric tridiagonal matrix can be efficiently obtained in
O(n2). Thus, it leads to an O(n2 log n) algorithm for computing the symmetric SVD of a complex
square Hankel matrix [9]. Since a Toeplitz matrix can be transformed into a Hankel matrix by
reversing its rows or columns, this method can be straightforwardly modified into a fast SVD
algorithm for square Toeplitz matrices.

As in the case of a general matrix, computing the Takagi factorization of a complex
symmetric matrix consists of two stages: tridiagonalization and diagonalization. In the first
stage, a complex symmetric matrix A is reduced to a complex symmetric tridiagonal T using
two-side Householder transformations or Lanczos method [8, 10]. In the second stage, the Takagi
factorization

T =V�V T

of the complex symmetric tridiagonal T resulted from the first stage is computed. The methods for
the second stage include the implicit QR method [3, 11] and the divide-and-conquer method [12].
The QR method requires O(n2) flops for computing all singular values, but additional O(n3) flops
for all the Takagi vectors. The divide-and-conquer method [12] integrates the computation of the
singular values and the computation of the Takagi vectors and in practice requires much less than
O(n3) flops. Thus, the main cost of the second stage is the computation of the Takagi vector
matrix V .

This paper presents a method for computing V given T and its computed singular values
in � using O(n2) flops and n2+O(n) storage space. In Section 2, we describe the twisted
factorization, based on which, an efficient and stable method for computing the Takagi vectors
is presented in Section 3. The accuracy and orthogonality of the computed vectors are analyzed
in Section 4. Then, in Section 5, we address the issue of multiple and clustered singular values.
Our numerical experiment results presented in Section 6 show that our method is efficient and
accurate.

2. TWISTED FACTORIZATION

Let T be an n-by-n complex symmetric tridiagonal matrix, then P=T TH is Hermitian pentadi-
agonal. In this section, we first present two decompositions of the shifted matrix:

P−�I = LDL L
H=UDUU

H (1)
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where

L=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
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, DL =diag(�1, . . . ,�n), �i ∈R

and

U =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 u1 v1

. . .
. . .

. . .

. . .
. . . vn−2

. . . un−1

1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, DU =diag(�1, . . . ,�n), �i ∈R

Then, by combining the above two decompositions of the shifted P−�I , we construct the twisted
factorization

P−�I =NkDkN
H
k

It is called twisted factorization because Nk consists of part of the lower triangular L and part
of the upper triangular U in (1). In the next section, based on the twisted factorization, we will
show how to efficiently compute the eigenvectors of P , which are the left singular vectors of T
but need not be the Takagi vectors. The transformation presented in [12] is then applied to convert
the eigenvectors into the Takagi vectors.

To obtain the decomposition P−�I = LDL LH, we compare the entries on the both sides
of P−�I = LDL LH. Specifically, the (i+2, i)-entry of P−�I is Pi+2,i and the corresponding
entry of LDL LH is mi�i . Thus, we have mi = Pi+2,i/�i . The (i+2, i+1)-entries of the both
sides are Pi+2,i+1 and mil∗i �i +li+1�i+1, where x∗ denotes the complex conjugate of x . The
(i+2, i+2)-entries are Pi+2,i+2−� and |mi |2�i +|li+1|2�i+1+�i+2. In summary, we have the
following algorithm for the LDLH decomposition: P−�I = LDL LH.

Algorithm 2.1
Given the Hermitian pentadiagonal P=T TH, this algorithm computes the LDLH decomposition
of the shifted P−�I = LDL LH.

�1= P11−�; % (1,1)-entry
l1= P21/�1; % (2,1)-entry
�2= P22−�−|l1|2�1; % (2,2)-entry
for i=1 :n−2
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mi = Pi+2,i/�i ; % (i+2, i)-entry
li+1=(Pi+2,i+1−mil∗i �i )/�i+1; % (i+2, i+1)-entry
�i+2= Pi+2,i+2−�−|mi |2�i −|li+1|2�i+1;

% (i+2, i+2)-entry
end

The computational cost of the LDLH decomposition is 22n−37 floating-point multiplications
(real) and 11n−16 floating-point additions (real), a total of 33n−53 floating-point operations
(multiplications or additions).

Similarly, we can compute the UDUH decomposition of P−�I as follows.

Algorithm 2.2
Given the Hermitian pentadiagonal P , this algorithm computes the UDUH decomposition of the
shifted P−�I =UDUUH.
Let �n+2=�n+1=vn =vn−1=un =0.

for i=n−2 :−1 :1
�i+2= Pi+2,i+2−�−|ui+2|2�i+3−|vi+2|2�i+4; % (i+2, i+2)-entry
ui+1=(Pi+1,i+2−vi+1u∗

i+2�i+3)/�i+2; % (i+1, i+2)-entry
vi = Pi,i+2/�i+2; % (i, i+2)-entry

end
�2= P22−�−|u2|2�3−|v2|2�4; % (2,2)-entry
u1=(P12−v1u∗

2�3)/�2; % (1,2)-entry
�1= P11−�−|u1|2�2−|v1|2�3; % (1,1)-entry

The computational cost of the UDUH decomposition is 22n−16 floating-point multiplications
and 11n−4 floating-point additions, a total of 33n−20 floating-point operations. Now, given the
LDLH and UDUH decompositions (1), we consider the twisted factorization of the shifted matrix

P−�I =NkDkN
H
k (2)

where Dk =diag(�1, . . . ,�k−2,�k,�k,�k+1, . . . ,�n), �k,�k ∈R and

Nk =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
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. . . lk−2 1 vk−1

mk−2 �k 1 uk
. . .
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. . . vn−2

0
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1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(3)
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is a twisted combination of the partial lower triangular L and the partial upper triangular U . Note
that for each index k, 1�k�n, there is a corresponding twisted factorization. However, given the
LDLH and UDUH decompositions (1), there are only three unknowns �k,�k ∈R and �k ∈C in a
twisted factorization. The following theorem shows a computation of the three unknowns and a
relation between �−1

k and a Rayleigh quotient of (P−�I )−1 when P−�I is invertible.

Theorem 2.3
Given the LDLH and UDUH decompositions (1) of P−�I , defining m−1=m0=�0= l0=v0=
vn−1=�n+1=0, then the three unknowns in the twisted factorization (2) are given by

�k = �k−1−|vk−1|2�k+1, k=1, . . . ,n

�k =

⎧⎪⎪⎨⎪⎪⎩
0, k=1

(lk−1�k−1−ukv
∗
k−1�k+1)/�k, k=2, . . . ,n−1

ln−1, k=n

�k =
{

�k−|mk−2|2�k−2−�k |�k |2, k=1, . . . ,n−1

�n, k=n

Also, when P−�I is invertible,

�−1
k =eTk (P−�I )−1ek (4)

where ek is the kth unit vector.

Proof
The (k−1,k−1)-entry of NkDkNH

k is |mk−3|2�k−3+|lk−2|2�k−2+�k+|vk−1|2�k+1 and the corre-
sponding entry in LDL LH is |mk−3|2�k−3+|lk−2|2�k−2+�k−1. Equating the two entries, we
have �k =�k−1−|vk−1|2�k+1. Equating the (k,k−1)-entries in NkDkNH

k and LDL LH leads to
�k�k = lk−1�k−1−ukv∗

k−1�k+1. While comparing the (k,k)-entries of NkDkNH
k andUDUUH gives

|mk−2|2�k−2+�k |�k |2+�k =�k . The trivial cases when k=1,2,3,n can be verified similarly.
Since the kth column of Nk is the kth unit vector, Nkek =ek . It then follows that N−1

k ek =ek
and the Rayleigh quotient

eTk (P−�I )−1ek =eTk (NH
k )−1D−1

k N−1
k ek =eTk D

−1
k ek =�−1

k

when P−�I is nonsingular. �

The cost of computing �k , �k and �k is 11 floating-point multiplications and 7 floating-point
additions, a total of 18 floating-point operations, without counting the operations for ukv∗

k−1�k+1,
whose complex conjugate is computed in Algorithm 2.2.

3. COMPUTING TAKAGI VECTORS

Using the twisted factorization described in the previous section, we now present an efficient
method for computing the eigenvectors of P , which are the left singular vectors of T .
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Suppose that P=Q�QH is an eigendecomposition of P , where �=diag(�1, . . . ,�n) is the
eigenvalue matrix and Q=[q1, . . . ,qn]=[qi, j ] is the unitary eigenvector matrix. As we know, if
we have a good approximation � of an eigenvalue �i , one of effective ways of computing the
corresponding eigenvector qi is the shifted inverse power method. For each index k of the twisted
factorization (2), the solution zk for

(P−�I )zk =�kek (5)

is the result of one inverse power iteration with shift � and initial vector �kek . How accurate is the
approximation zk of the eigenvector qi? After normalizing zk in (5), we have∥∥∥∥P zk

‖zk‖2 −�i
zk

‖zk‖2
∥∥∥∥
2
=
∥∥∥∥(�−�i )

zk
‖zk‖2 + �k

‖zk‖2 ek
∥∥∥∥
2
�|�i −�|+ |�k |

‖zk‖2
This shows that the error in zk as the eigenvector corresponding to �i is bounded by the error in �
as an approximation of �i plus |�k |/‖zk‖2. The following theorem [13] gives an upper bound for
the term |�k |/‖zk‖2.
Theorem 3.1 (Dhillon [13])
Suppose that P−�I is invertible and

(P−�I )zk =ek�k for k=1, . . . ,n

Then, if the kth entry qk,i of qi is nonzero,

|�k |
‖zk‖2 = |�i −�|

|qk,i | (1+(|qk,i |−2−1)A)−1/2

� |�i −�|
|qk,i |

�
√
n|�i −�|

for at least one k. Here A is a weighted arithmetic mean of [|�i −�|/|� j −�|]2, j �= i , and 0<

A<(|�i −�|/gap(�))2, where gap(�)=min j �=i |� j −�|.
The above theorem implies that if � is a good approximation of �i , then there exists at least one

index k so that zk is a good approximation of the eigenvector qi associated with the eigenvalue
�i of P . The accuracy can be as good as |�i −�| by a factor of at most

√
n+1. Since the term

|�k |/‖zk‖2 is dependent of the index k, to get good accuracy, we find the smallest |�k | by computing
the twisted factorization (2) for k=1, . . . ,n. Note that ‖zk‖2�1 since, from (5) and (4), the kth
entry of zk :

eTk zk =�ke
T
k (P−�I )−1ek =1

implying that |�k |/‖zk‖2�|�k |. Once the index k for the smallest |�k | is found, we solve for zk
in (5).

In the following, we show that zk can be solved efficiently and stably in O(n) operations by
exploiting the structure of Nk in the twisted factorization (2).

Copyright q 2009 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2009; 16:801–815
DOI: 10.1002/nla



TWISTED FACTORIZATION METHOD FOR SSVD 807

As we know that when � is a good approximation of an eigenvalue �i of P , the system (5)
is ill-conditioned. However, using the twisted factorization P−�I =NkDkNH

k and noting that the
kth column of the twisted factor Nk is ek , we can reformulate the system (5) into an equivalent
but simpler one:

NH
k zk =�k D

−1
k N−1

k ek =ek

Solving NH
k zk =ek is not only more efficient than solving (5) but also more stable because the

ill-conditioning of (5) caused by the small |�k | in Dk is avoided. From the structure of NH
k (3),

the entries z j of the solution zk are given by

zk = 1

zk−1 = −�∗
k , k>1

z j = −l∗j z j+1−m∗
j z j+2, j =k−2,k−3, . . . ,1

zk+1 = v∗
k−1�

∗
k −u∗

k , v0=0

z j = −v∗
j−2z j−2−u∗

j−1z j−1, j =k+2,k+3, . . . ,n

(6)

The computation of zk requires 8n floating-point multiplications and 6n floating-point additions,
a total of 14n operations.

The following algorithm summarizes the procedure of computing the eigenvector given a
computed eigenvalue �̂i of P . The last step in the following algorithm requires 5n floating-point
operations. Adding the costs of all steps, we obtain the total cost of 85n−55 for computing an
eigenvector.

Algorithm 3.2 (Computing eigenvector)
Given the Hermitian pentadiagonal matrix P=T TH and �= �̂i , a computed eigenvalue of P , this
algorithm computes an approximation q̂i of the eigenvector qi corresponding to �i .

1. Compute the LDLH and UDUH decompositions (1) of P−�I using Algorithms 2.1 and 2.2.
2. Applying Theorem 2.3, for i=1, . . . ,n, compute the twisted factorizations P−�I =Ni Di NH

i
and find k such that |�k |=mini |�i |.

3. Solve for zk in NH
k zk =ek using (6).

4. Set q̂i =zk/‖zk‖2.
Remark
A refinement technique can be integrated into Algorithm 3.2. We first compute an eigenvector
q̃i corresponding to � via Algorithm 3.2. Then, � is refined by q̃H

i Pq̃i . Finally, we compute q̂i
through Algorithm 3.2 again with the refined �. In fact, our refinement is equivalent to reiterate
the inverse power method, for each eigenvector corresponding to a simple eigenvalue. Obviously,
the cost of computation is almost doubled. However, our experiments show that the orthogonality
of eigenvectors is improved through the refinement.

The computed eigenvectors q̂i are the left singular vectors of T , but they need not be the Takagi
vectors [12]. The transformations in [12] can be used to transform the eigenvectors of P to Takagi
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vectors of T . The cost for each Takagi vector transformation is O(n), thus the total cost of the
transformations to the Takagi vectors of T is at most O(n2).

4. ACCURACY AND ORTHOGONALITY

Now that we have an efficient algorithm for computing the eigenvectors of P , in this section
we investigate the accuracy and orthogonality of the computed eigenvectors. The accuracy of a
computed eigenvector q̂i is measured by the sine of the angle between the computed q̂i and the
exact eigenvector qi corresponding to the eigenvalue �i of P . The orthogonality of two computed
eigenvectors q̂i and q̂ j is measured by the cosine of the angle between them.

Replacing zk in (5) with ‖zk‖2q̂i , we get

(P−�I )q̂i = �k
‖zk‖2 ek

Since eTk q̂i =1/‖zk‖2, the above equation can be written as

(P+E)q̂i =�q̂i

where E=−�keke
T
k , which indicates that the computed eigenvector q̂i is the exact eigenvector

corresponding to the eigenvalue � of P+E . In other words, (�, q̂i ) is an eigenpair of the perturbed
P+E , whereas (�i ,qi ) is an eigenpair of P . This formulation allows us to apply the following
Second sin	 Theorem of eigenspaces by Davis and Kahan [14] to study the accuracy of the
computed q̂i .

Theorem 4.1 (Second sin	 Theorem [14])
Suppose A, Â∈Cn×n are Hermitian and X =[X1X2] and X̂ =[X̂1 X̂2] are unitary, where X1, X̂1∈
Cn×l (1�l�n−1), such that

XHAX =
[
A11 0

0 A22

]
and X̂H Â X̂ =

[
Â11 0

0 Â22

]

where A11, Â11∈Cl×l . Let X=Range(X1), X̂=Range(X̂1),

R= AX̂1− X̂1 Â11

and


=min
i, j

{|�̂i −� j | : �̂i ∈�( Â11), � j ∈�(A22)}>0

Then, we have

‖sin	(X,X̂)‖F�‖R‖F



where 	(X,X̂) denotes the angle between the two subspaces X and X̂.

In the above theorem, setting

A= P, Â= P+E, X1=qi and X̂1= q̂i

Copyright q 2009 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2009; 16:801–815
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we have l=1, A11=�i , Â11=�,


=min
j �=i

|� j −�|=gap(�) and R= Pq̂i −�q̂i = �k
‖zk‖2 ek

Then, from Theorem 4.1, using the inequality |�k |/‖zk‖2�
√
n|�i −�| in Theorem 3.1, we obtain

the following theorem on an upper bound for the sine of the angle between qi and q̂i .

Theorem 4.2
Let (�i , qi ) be an eigenpair of P , �≈�i , and q̂i is computed by Algorithm 3.2, then

|sin	(q̂i ,qi )|�
√
n|�i −�|
gap(�)

where gap(�)=min j �=i |� j −�|.
This theorem shows that if � is a good approximation of �i , that is, |�i −�| is small, then

the computed eigenvector q̂i is a good approximation of the eigenvector qi corresponding to the
eigenvalue �i provided that �i is not clustered with the other eigenvalues.

Now we present a theorem on the orthogonality of the eigenvectors computed by Algorithm 3.2.
The orthogonality between two computed eigenvectors q̂i and q̂ j is measured by the cosine of the
angle between them. The following theorem gives an upper bound for the cosine.

Theorem 4.3
Let (�i ,qi ) and (� j ,q j ), i �= j , be two eigenpairs of P and q̂i and q̂ j be the eigenvectors computed

by Algorithm 3.2 using the computed eigenvalues �̂i ≈�i and �̂ j ≈� j , then

cos	(q̂i , q̂ j )�
√
n|�̂i −�i |
gap(�̂i )

+
√
n|�̂ j −� j |
gap(�̂ j )

(7)

Proof
Assuming 1�i�k< j�n and denoting V1 and V2 as the subspaces spanned by q1, . . . ,qk and
qk+1, . . . ,qn respectively, we have

|cos	(q̂i , q̂ j )| �
∣∣∣cos(�

2
−	(q̂i ,V1)−	(q̂ j ,V2)

)∣∣∣
� |sin	(q̂i ,V1)|+|sin	(q̂ j ,V2)|

since V1 and V2 are orthogonal to each other. Also, since qi ∈V1 and q j ∈V2, we have

	(q̂i ,V1)�	(q̂i ,qi ) and 	(q̂ j ,V2)�	(q̂ j ,q j )

The inequality (7) then follows from Theorem 4.2. �

This theorem shows that if �̂i and �̂ j are good approximations of �i and � j , respectively, and
both �i and � j are not clustered with the other eigenvalues, then the eigenvectors q̂i and q̂ j
computed by Algorithm 3.2 have good orthogonality.
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5. MULTIPLE AND CLUSTERED SINGULAR VALUES

In the previous discussion, we have assumed that the singular values of T , which are the square
roots of the eigenvalues of P=T TH, are simple. In this section, we consider the case of multiple
singular values of T .

We assume that T is irreducible, that is there are no zero entries on its subdiagonal. Otherwise,
T is block diagonal and can be deflated into smaller irreducible matrices. If T is irreducible, then
P=T TH is Hermitian pentadiagonal with nonzero entries on its second subdiagonal. It is well
known that if a Hermitian tridiagonal matrix of order n is irreducible, then its rank is at least
n−1. This can be extended to Hermitian pentadiagonal matrices. If a Hermitian pentadiagonal
matrix of order n has no zero entries on its second subdiagonal, then it is of rank at least n−2.
This implies that the multiplicity of any eigenvalue of an irreducible P is at most two, since
rank(P−�2 I )�n−2, for any �∈R.

In Sections 2 and 3, we have shown that if � is a good approximation of a simple eigenvalue
�i of P , then there exists an index k such that �k in the twisted factorization P−�I =NkDkNH

k is
small and the corresponding eigenvector can be obtained by solving for zk in NH

k zk =ek . In this
section, we will show that, in the case of a multiple eigenvalue �i =�i+1, there exist two indices
k1 and k2, k1 �=k2, so that �k1 and �k2 in the twisted factorizations indexed by k1 and k2 are small
and the associated eigenvectors can be obtained by solving NH

k1
zk1 =ek1 and NH

k2
zk2 =ek2 .

Theorem 5.1
Let P−�I =Q�QH be an eigendecomposition, where �=diag(�1, . . . ,�n) and Q=[qi, j ].
Suppose that �i =�i+1 is a multiple eigenvalue, then there exist k1 and k2, k1 �=k2, such that

max(|qk1,i |, |qk1,i+1|)�1/
√
2n and max(|qk2,i |, |qk2,i+1|)�1/

√
2n

that is, at least one of |qk1,i | and |qk1,i+1| is not smaller than 1/
√
2n and the same for |qk2,i | and|qk2,i+1|.

Proof
Since Q is unitary,

∑n
k=1 |qk,i |2=1, which implies that there exists k1: |qk1,i |2�1/n. Making use

of
∑n

j=1 |qk1, j |2=1, we immediately obtain

min(|qk1,i |2, |qk1,i+1|2)� 1
2

Without loss of generality, we assume |qk1,i+1|2=min(|qk1,i |2, |qk1,i+1|2)� 1
2 . It then follows

that
∑

k �=k1
|qk,i+1|2� 1

2 , showing that there exists k2 (k2 �=k1): |qk2,i+1|2>1/(2n). Therefore, we

have |qk1,i |�1/
√
n>1/

√
2n and |qk2,i+1|>1/

√
2n, k1 �=k2. �

Similar to Theorem 3.1, we show an upper bound for |�k |/‖zk‖2, k=k1,k2, for the case of
multiple eigenvalues �i =�i+1.

Theorem 5.2
Suppose that P−�I is invertible and

(P−�I )zk =�kek for k=1,2, . . . ,n
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Let �i =�i+1 be a multiple eigenvalue of P . If max(|qk,i |, |qk,i+1|)�1/
√
2n, then

|�k |
‖zk‖2�

√
2n|�i −�|

Proof
Since P−�I is invertible, zk =�k(P−�I )−1ek , implying

‖zk‖22 = |�k |2eTk Q(�∗−�I )−1(�−�I )−1QHek

= |�k |2
n∑
j=1

|qk, j |2
|� j −�|2

Without loss of generality, we assume that |qk,i |=max(|qk,i |, |qk,i+1|)�1/
√
2n. It then follows

that

‖zk‖22
|�k |2

= |qk,i |2
|�i −�|2 + |qk,i+1|2

|�i −�|2 + ∑
j �=i,i+1

|qk, j |2
|� j −�|2

= |qk,i |2
|�i −�|2

(
1+ |qk,i+1|2

|qk,i |2 + ∑
j �=i,i+1

|qk, j |2
|qk,i |2

∣∣∣∣ �i −�

� j −�

∣∣∣∣2
)

= |qk,i |2
|�i −�|2

(
1+ |qk,i+1|2

|qk,i |2 + 1−|qk,i |2−|qk,i+1|2
|qk,i |2 A2

)
(8)

where

A2= ∑
j �=i,i+1


 j

∣∣∣∣ �i −�

� j −�

∣∣∣∣2 ,
∑

j �=i,i+1

 j =1 and 
 j�0

is a weighted arithmetic mean of {|�i −�|2/|� j −�|2, j �= i, i+1}. Thus,

0<A2<

( |�i −�|
gap2(�)

)2

where gap2(�)=min j �=i,i+1 |� j −�|. It follows from (8) that

|�k |
‖zk‖2 = |�i −�|

|qk,i |
(
1+ |qk,i+1|2

|qk,i |2 + 1−|qk,i |2−|qk,i+1|2
|qk,i |2 A2

)−1/2

� |�i −�|
|qk,i |

�
√
2n|�i −�|
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since

1−|qk,i |2−|qk,i+1|2
|qk,i |2 A2�0 and

|qk,i+1|2
|qk,i |2 �0

which completes the proof. �

The above two theorems show that if we have a good approximation � of a multiple eigenvalue
�i =�i+1 of P , then there exist two indices k1 and k2, k1 �=k2, so that |�k1 |/‖zk1‖2 and |�k2 |/‖zk2‖2
produced by Theorem 5.2 are as small as |�i −�| up to a factor of at most

√
2n. It then follows

from Theorem 4.2 that the computed eigenvectors q̂i =zk1/‖zk1‖2 and q̂i+1=zk2/‖zk2‖2 satisfy

|sin	(q̂i ,qi )|, |sin	(q̂i+1,qi+1)|�
√
2n|�i −�|
gap2(�)

where gap2(�)=min j �=i,i+1 |� j −�|.
In summary, we present the following algorithm for multiple singular values in 146n−149

floating-point operations.

Algorithm 5.3
Given the Hermitian pentadiagonal matrix P=T TH and �= �̂i = �̂i+1, a computed multiple eigen-
value of P , this algorithm computes approximations of the eigenvectors corresponding to the
multiple eigenvalue �i =�i+1.

1. Compute the LDLH and UDUH decompositions (1) of P−�I using Algorithms 2.1 and 2.2.
2. Applying Theorem 2.3, for i=1, . . . ,n, compute the twisted factorizations P−�I =Ni Di NH

i
and find k1 and k2, k1 �=k2, such that |�k1 | and |�k2 | are the smallest among |�i |.

3. Solve for zk1 in NH
k1
zk1 =ek1 and zk2 in NH

k2
zk2 =ek2 using (6).

4. Set q̂i =zk1/‖zk1‖2 and q̂i+1=zk2/‖zk2‖2.
We have found that if the two indices k1 and k2 found in step 2 of Algorithm 5.3 are close,

for example k2=k1+1, the eigenvectors zk1 and zk2 can be almost parallel. If k1 and k2 are far
apart, then zk1 and zk2 are linearly independent, which is desirable. Thus, we propose the following
strategy of choosing k1 and k2. First, we find k1 such that |�k1 |=mini |�i |. Then, if there is only
one isolated second smallest |�k2 |, then we choose k2 as the second index. If there is a cluster of
several equally small |�i | next to |�k1 |, then among them we choose an index k2 which is far apart
from k1.

In practice, however, eigenvalues can be clustered instead of exactly equal. It is known that the
computed eigenvectors corresponding to clustered eigenvalues can lose orthogonality. In addition
to the deflation and the strategy of choosing the indices k1 and k2 described above, we propose
the following technique to deal with the issue of computing the Takagi vectors corresponding to
clustered singular values. If an irreducible symmetric tridiagonal matrix has more than two tightly
clustered singular values, we then group them in pairs. The left singular vectors corresponding to
each tightly clustered singular value pair are computed using the strategy of choosing the indices k1
and k2 to improve the linear independency between them. The left singular vectors corresponding
to all clustered singular values are orthogonalized by the modified Gram–Schmidt method when
they are converted into the Takagi vectors. Our empirical results presented in Section 6 show that
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this combination of deflation, index selection and orthogonalization works well in dealing with
clustered singular values.

6. NUMERICAL EXPERIMENTS

We implemented our twisted factorization Algorithms 3.2 and 5.3 incorporated with the refinement
technique in Matlab and tested their accuracy and efficiency. Our experiments were carried out
on a server with two 2.4GHz Xeon CPUs, 1GB RAM and an 80GB disk. Random complex
symmetric tridiagonal matrices with predetermined singular values were generated as follows. First,
a vector s of n singular values was initialized. Then, a random unitary matrix U was generated
by the QR decomposition of a random complex matrix. Finally, a complex symmetric tridiagonal
matrix T was obtained by tridiagonalizing the product U�UT, where �=diag(s) using two-
side Householder transformations. Thus, the complex symmetric tridiagonal T had predetermined
singular values in s.

We tested our algorithm on the following five matrices with various singular value clusters. Some
singular values are even identical to working precision. We applied the techniques for dealing with
clustered singular values described in the previous section. When an entry on the subdiagonal of
a tridiagonal matrix was smaller than the square root of the machine precision, it was set to zero
and the tridiagonal matrix was deflated. The singular values were computed using the implicit QR
method [11]. The error in the computed singular vector ŝ was measured by

�v =‖s− ŝ‖2
The error in the computed Takagi factorization was measured by

�t =‖V̂ �̂V̂ T−T ‖2 where �̂=diag(ŝ)

and V̂ was computed by Algorithms 3.2 and 5.3. The orthogonality of the computed Takagi vectors
was measured by

�o=‖V̂ V̂H− I‖2
Example 1 (Nested clusters, Dhillon and Parlett [15])
A 13×13 real symmetric tridiagonal matrix with spectrum, �, 1, 1±10−15, 1±10−12, 1±10−9,
1±10−6, 1±10−3 and 2, where � is the machine precision.

Example 2 (Wilkinson matrix, Dhillon and Parlett [15])
The 101×101 Wilkinson matrix that has various eigenvalue clusters of pairs. The rightmost cluster
is the tightest, with �100 and �101 identical to working accuracy.

Example 3 (Uniform distribution (
√

� apart))
A 400×400 random complex symmetric tridiagonal matrix with singular values:

�1=�, � j =1+( j−1)
√

�, j =2, . . . ,399 and �400=2

where � is the machine precision.
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Example 4 (Uniform distribution (� to 1))
A 400×400 random complex symmetric tridiagonal matrix with singular values evenly spaced
between � and 1:

� j =�+( j−1)�, j =1,2, . . . ,400

where �=(1−�)/399.

Example 5 (Clustered at 1)
Example 5A 400×400 random complex symmetric tridiagonal matrix with singular values:

�i =1+�� for i=1, . . . ,388 and �400=�

where � is normally distributed between −1 and 1.

Table I shows the errors in the computed SSVDs of the above five examples.
For performance, we tested our algorithm on random complex symmetric tridiagonal matrices

of five different sizes. For each size, we generated five complex symmetric tridiagonal matrices.
Their singular values were random numbers uniformly distributed between 0 and 1. We ran our
twisted factorization (Twist) method, divide-and-conquer (DAC) method [12] and the Matlab’s
svd function. In the divide-and-conquer method, when the size of a submatrix T is less than or
equal to 10, its Takagi factorization is computed directly by the implicit QR method [11]. For
fair comparison, we used Matlab’s svd function, instead of the implicit QR method used in the
previous experiment, to compute the singular values for our twisted factorization (Twist) method.
Table II shows the average running time and the average factorization error �t of the five matrices
of same size. The results in Table II demonstrate that our method is significantly more efficient

Table I. Errors in the computed SSVDs of the five testing matrices with clustered singular values.

Example �o �t �v

Nested 9.8586E−11 9.8586E−11 6.6400E−11
Wilkinson 1.0109E−10 9.0317E−10 9.8164E−13√

� apart 6.5221E−15 8.2247E−13 1.5264E−13
� to 1 1.7985E−12 8.1968E−13 8.0259E−14
Clustered at 1 4.6373E−16 1.5076E−14 5.4858E−14

Table II. The performance and accuracy comparison of the Twisted factorization (Twist) method,
divide-and-conquer (DAC) method and SVD subroutine in Matlab (SVD).

Running time (s) �t

Matrix size Twist DAC SVD Twist DAC SVD

100 0.41 0.65 0.06 5.3425E−13 9.5324E−14 5.6786E−15
200 1.29 2.62 0.90 6.2342E−12 4.1002E−13 1.5234E−14
400 4.67 9.32 6.73 1.0123E−11 1.1023E−11 3.2111E−14
800 18.08 44.12 79.99 3.2123E−11 3.9821E−11 3.7456E−14
1600 70.07 253.62 1210.20 5.2398E−11 5.3252E−11 5.3421E−14
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than both the divide-and-conquer method and the Matlab’s svd function even for matrices of
moderately large size.
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