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A Diagonal Lattice Reduction Algorithm
for MIMO Detection
Wen Zhang, Sanzheng Qiao, and Yimin Wei

Abstract—Recently, an efficient lattice reduction method, called
the effective LLL (ELLL) algorithm, was presented for the detec-
tion of multiinput multioutput (MIMO) systems. In this letter, a
novel lattice reduction criterion, called diagonal reduction, is pro-
posed. The diagonal reduction is weaker than the ELLL reduc-
tion, however, like the ELLL reduction, it has identical perfor-
mance with the LLL reduction when applied for the sphere de-
coding and successive interference cancelation (SIC) decoding. It
improves the efficiency of the ELLL algorithm by significantly re-
ducing the size-reduction operations. Furthermore, we present a
greedy column traverse strategy, which reduces the column swap
operations in addition to the size-reduction operations.

Index Terms—Effective LLL algorithm, lattice reduction, LLL
algorithm, MIMO systems.

I. INTRODUCTION

L ATTICE reduction has recently become a powerful tool
for the detection of multiinput multioutput (MIMO) sys-

tems. For lattice-type modulation, the optimum maximum-like-
lihood (ML) decoding can be viewed as a closest vector problem
(CVP) [1], [2], which can be solved exactly by the sphere de-
coding algorithm [3]. Also, there are many low-complexity ap-
proximate solvers, such as zero-forcing (ZF) decoding and suc-
cessive interference cancelation (SIC) decoding [1], [4]. It is
well known that lattice reduction can significantly improve the
efficiency of the sphere decoding algorithm as well as the per-
formance of approximate decoding algorithms [1], [2], [5]. Note
that in some cases, such as the sphere decoding and SIC, it is suf-
ficient to know only the information of the diagonal, rather than
the whole matrix, of the upper triangular factor in the QR de-
composition of the channel matrix. In [6], [7], a new reduction
notion called effective LLL (ELLL) reduction, which is weaker
than the LLL reduction but is sufficient for such applications, is
presented.
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In this letter, we propose a new lattice reduction criterion
called diagonal reduction. The new reduction notion is even
weaker than the ELLL reduction. Since it only imposes one
single constraint on diagonal elements, it reduces the com-
putational complexity. However, like the ELLL reduction, it
achieves identical performance to the LLL reduction when
applied to the sphere decoding and SIC. We present three
algorithms based on the diagonal reduction. They differ mainly
in the traverse of column exchanges. The first two algorithms
adopt the traditional column traverse strategy [8], [9], and the
fixed-structure column traverse strategy [10], respectively. The
third algorithm uses a novel greedy column traverse strategy,
which, in each iteration, firstly determines the urgency degree
of column swap for all possible columns by applying a decline
rate function, then selects the most urgent column to perform
swap operations. Our simulation results show that the proposed
three algorithms are more efficient than the ELLL algorithm
[6], [7], since all of them reduce the number of size-reduction
operations by about 50%. Moreover, the greedy column tra-
verse strategy performs better than the previous two column
traverse strategies, since it also reduces the number of column
swap operations.
The rest of the letter is organized as follows. In Section II,

we briefly introduce some background in lattice theory and the
ELLL reduction. The new reduction criterion and its first two
implementations are given in Section III. Section IV presents the
greedy column traverse strategy. In Section V, we demonstrate
our simulation results.
Notations: and denote the Hermitian conjugate

transpose and the determinant of a matrix and the
real and imaginary parts of a complex number the integer
nearest to , and the modulus of .

II. LATTICE BASIS REDUCTION

A. Some Basic Concepts

Given a matrix of full column rank,
then a lattice generated by is defined by

, where is the set of complex integer -vectors
. The columns of form a basis for the lattice .

A matrix is called unimodular if .
The columns of any matrix can form a basis for if
and only if there exists a unimodular matrix such that

. A lattice reduction algorithm finds a unimodular matrix
such that the columns of are reasonably short in the

sense of Euclidean length. Lattice reduction has now become a
powerful tool for improving the performance of decoding algo-
rithms, since it can significantly reduce the orthogonality defect
and the condition number of the channel matrix [2]. It is proved
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in [5], [11] that LLL-reduction-aided decoding can achieve the
full diversity order of a MIMO fading channel.

B. Effective LLL Reduction

Given a lattice generator matrix and its QR decomposition
, where has orthonormal columns and is an

upper triangular matrix with positive diagonal. Then from [5],
[12] the efficiency of sphere decoding and the performance of
SIC decoding is determined by the arrangement of the diagonal
elements of . Based on this fact, a notion of effective LLL
(ELLL) reduction, which is weaker than the LLL reduction, was
proposed in [6] and generalized to the complex case in [7] to
improve efficiency.
Definition 1 (Effective LLL Reduction [7]): A basis

is effective LLL reduced with parameter
, if the upper triangular factor in its QR decompo-

sition satisfies

(1)

and

(2)

for all .
The conditions in (1) and (2) are said to be size-reduced

and Lovász-reduced, respectively. They loosely impose an
ascending order on the diagonal elements of . The larger the
parameter is, the better quality the reduced basis has. The
ELLL algorithm, which adopts the traditional column traverse
strategy [8], can be found in [6], [7].

III. DIAGONAL REDUCTION

A. Diagonal Reduction

From Definition 1, the ELLL reduction weakens the LLL re-
duction by removing requirement for the size-reduction of all
off-diagonal elements. However, note that for sphere decoding
and SIC, the size-reduction constraint (1) on all sub-diagonal
elements is also unnecessary. Based on this fact, we pro-
pose an even weaker reduction criterion, which only requires
the reduction of diagonal elements, to further improve the effi-
ciency.
Definition 2 (Diagonal reduction): A basis is

diagonal reduced with parameter , if the upper
triangular factor in its QR decomposition satisfies

(3)

for all , where [13].
It is easy to verify that if is ELLL reduced, then it must be

diagonal reduced, while the converse is not true. For the quality
of the diagonal reduction, we can derive from (3) that

(4)

Fig. 1. Diagonal reduction algorithm.

for all . By induction, we obtain

(5)

where . Note that (5) also holds for the ELLL
and is used to show that ELLL has the same performance as LLL
in SIC decoding [5], [12]. It then follows that diagonal-reduc-
tion-aided SIC decoding has the same performance as LLL-re-
duction-aided SIC decoding.

B. Two Implementations

The proposed weaker reduction criterion provides a possible
implementation with potentially lower computational cost than
the ELLL algorithm. Using the traditional column traverse
strategy [6], [8], a generic implementation of diagonal reduc-
tion can be found in Fig. 1. In each iteration of the while-loop,
the diagonal reduction (DR) algorithm firstly tests the diagonal
reduction condition (3) in line 5, and then performs a selective
size-reduction step (lines 6–9) followed by a column swap step
(lines 10-13) in order to fulfill (3). In the case of a column
swap, the algorithm backtracks one step . It iterates
until satisfies the diagonal reduction criterion. In comparison
to the ELLL algorithm, the DR algorithm reduces the number
of size-reduction operations. Specifically, in each iteration,
the ELLL algorithm performs a size-reduction whenever the
size-reduction condition (1) is not fulfilled, whereas, in the DR
algorithm, size-reduction is not performed unless the diagonal
reduction condition (3) (line 5 of Fig. 1) and the size-reduction
condition (1) (line 6 of Fig. 1) are not satisfied simultaneously.
In [7], [10], a fixed-structure column traverse strategy is pro-

posed for the ELLL algorithm, resulting the parallel effective
LLL (PELLL) algorithm. Analogously, by employing the fixed-
structure column traverse strategy, a modified diagonal reduc-
tion (MDR) algorithm is shown in Fig. 2.
Let be the upper triangular factor of the QR decomposi-

tion of , and denote and the minimum and maximum
squared diagonal elements of . Then following [6], we can
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Fig. 2. Modified diagonal reduction algorithm.

prove that both the DR algorithm and the MDR algorithm ter-
minate in at most iterations of the while-
loop. For completeness, we recall the main steps of the proof.
Consider the products

and denote

(6)

Then each time when a column swap is performed, the cor-
responding will be reduced by a factor smaller than ,
while the other products remain
unchanged. Consequently, will be reduced by a factor smaller
than . On the other hand, following [6], we can prove that the
squared diagonal elements of remain in the range
throughout the execution of the algorithms. Thus, the lower
and upper bounds of are and respec-
tively, which implies that the number of column swaps is at most

and the proof is completed.

IV. A GREEDY DIAGONAL REDUCTION ALGORITHM

From the complexity analysis in Section III-B, the efficiency
of a diagonal reduction algorithm depends on the rate of decline
in the size of : the faster decline in the size of , the fewer
iterations are required and thus the more efficient the algorithm
is. Therefore, it is desirable to find an appropriate column tra-
verse strategy such that can be reduced as quickly as possible.
In the following, we propose a novel column traverse strategy,
which can achieve such a goal in a greedy manner. That is,
in each iteration, the new strategy selects a column from all
possible columns for performing selective size-reduction and
column swap, so that the decline in is maximized.
Specifically, we define the decline rate:

(7)

for each : . In each iteration, we find such that
. Suppose that , then we perform se-

lective size-reduction and swap the columns and . Ac-
cordingly, is reduced to , while the other products

remain unchanged. Thus, is re-
duced to , achieving the maximum decline in the size of

Fig. 3. Greedy diagonal reduction algorithm.

among all possible column swaps. After that, we need to update
the decline rates , which can be finished by just updating
(if ), , and (if ), since among the entries
modified by the column swap only ,
and are associated with the decline rates . The procedure
is repeated until , for all , which means that
the basis has been completely diagonal reduced. Based on such
column traverse strategy, the greedy diagonal reduction (GDR)
algorithm can be found in Fig. 3.
Note that the greedy column traverse strategy is also appli-

cable to the ELLL reduction, since any implementation of the
diagonal reduction can be easily extended to the ELLL reduc-
tion. The greedy effective LLL (GELLL) algorithm can be im-
mediately obtained by adding “size-reduce all the sub-diagonal
elements of ” in the end of Fig. 3.

V. SIMULATION RESULTS

In this section, we present our simulation results on com-
paring the efficiency of the proposed new reduction algorithms
with the ELLL algorithm. All experiments were performed on
matrices with random entries, drawn from an independently and
identically zero-mean, unit variance complex Gaussian distri-
bution. For each size, we generated 1000 random matrices and
took an average. The parameter in the reduction algorithms
was set to 0.99.
Fig. 4 depicts our results on the numbers of size-reduction

operations and column swap operations performed by the re-
duction algorithms. The curves at the bottom show that the DR,
MDR, and GDR algorithms performed about the same number
of size-reduction operations, which is about 50% of the size-re-
duction operations performed by the ELLL. The numbers of the
size-reduction operations performed by the PELLL and GELLL
algorithms are roughly 85% and 70%, respectively, of that per-
formed by the ELLL. For the column swap operations, since
ELLL and DR, same between PELLL and MDR or between
GELLL and GDR, use the same column traverse strategy, they
performed the same number of column swap operations. As
shown by the curves at the top of Fig. 4, the fixed-structure
column traverse strategy reduces the number of column swap
operations and the greedy strategy further reduces the column
swap operations.
Although the greedy strategy reduces the number of column

swap operations, it introduces overhead, such as the computa-
tion of the decline rates. To compare the overall complexity of
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TABLE I
THE AVERAGE COMPLEXITY (IN FLOPS) OF THE ELLL, PELLL, GELLL, DR, MDR, AND GDR ALGORITHMS

Fig. 4. Comparison of size-reduction and column swap operations performed
by the ELLL, PELLL, GELLL, DR, MDR, and GDR algorithms.

Fig. 5. Simulated BER of SIC aided by the LLL, ELLL, and diagonal reduction
for 64-QAM over an 8 8 MIMO fading channel.

the algorithms, we experimented on the floating-point opera-
tions (flops)1 carried out by the algorithms. Table I shows that in
both cases of ELLL andDR, the greedy column traverse strategy
improves the overall computation and the results are consistent
with Fig. 4. This implies that the overhead introduced by the
greedy strategy is insignificant.
We also investigated the quality of the reduced bases pro-

duced by our algorithms in terms of the bit-error-rate (BER)
performance of SIC decoding. Specifically, using a 64-QAM
constellation, Fig. 5 depicts the simulated BER curves of lat-
tice-reduction-aided SIC over an 8 8 uncoded MIMO fading

1Flop count: Complex multiplication, 6 flops; complex addition, 2 flops; com-
plex rounding, 2 flops; real addition/multiplication/division/max, 1 flop.

channel. We found that SIC aided by the six reduction algo-
rithms had identical BER performance with that aided by the
LLL algorithm. This is consistent with the quality analysis pre-
sented in Section III-A.

VI. CONCLUSION

In this letter, we propose a new lattice reduction criterion
called diagonal reduction. The new reduction notion is weaker
than the ELLL reduction, but has identical performance with the
LLL reduction when applied to SIC decoding. We also present a
a greedy column traverse strategy to enhance the performance.
Simulation results show that the diagonal reduction notion can
reduce the number of size-reduction operations by about 50%
when compared with the ELLL algorithm.Moreover, the greedy
column traverse strategy can reduce the number of column swap
operations.
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