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HKZ and Minkowski Reduction Algorithms for
Lattice-Reduction-Aided MIMO Detection

Wen Zhang, Sanzheng Qiao, and Yimin Wei

Abstract—Recently, lattice reduction has been widely used for
signal detection in multiinput multioutput (MIMO) communi-
cations. In this paper, we present three novel lattice reduction
algorithms. First, using a unimodular transformation, a significant
improvement on an existing Hermite-Korkine-Zolotareff-reduc-
tion algorithm is proposed. Then, we present two practical
algorithms for constructing Minkowski-reduced bases. To assess
the output quality, we compare the orthogonality defect of the re-
duced bases produced by LLL algorithm and our new algorithms,
and find that in practice Minkowski-reduced basis vectors are the
closest to being orthogonal. An error-rate analysis of suboptimal
decoding algorithms aided by different reduction notions is also
presented. To this aim, the proximity factor is employed as a
measurement. We improve some existing results and derive upper
bounds for the proximity factors of Minkowski-reduction-aided
decoding (MRAD) to show that MRAD can achieve the same
diversity order with infinite lattice decoding (ILD).

Index Terms—HKZ, lattice reduction, LLL, MIMO detection,
Minkowski, proximity factors.

I. INTRODUCTION

L ATTICE reduction plays an important role in numerous
fields of mathematics, computer science [1]–[4], and

cryptology [5], [6]. Recently, lattice reduction turned out to be
extremely useful for detection and precoding in wireless mul-
tiple-input multiple-output (MIMO) systems. For lattice type
modulation, the optimal maximum-likelihood (ML) decoding
can be modeled as the closest vector problem (CVP), which
can be solved by the sphere decoding algorithms [7]–[11].
However, the complexity of the sphere decoding algorithms
increases exponentially with the number of transmit antennas
[7], [8], [12]. It has been found that lattice reduction, used as
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an efficient preprocessor, has the potential to achieve high per-
formance for low-complexity sub-optimal decoding algorithms
such as zero-forcing (ZF) decoding and successive interference
cancellation (SIC) decoding [13]–[17]. The basic idea is to
view the channel matrix as a lattice basis (generator) matrix,
and lattice reduction can improve the orthogonality defect
of the basis matrix. Then the detection/precoding problem is
solved based on the reduced basis to improve performance
and complexity of a low-complexity decoding algorithm. See
[18] for an introduction to lattice reduction and a survey of its
applications in wireless communications.
There are several definitions of reduction. In 1850, Hermite

introduced the first notion of reduction [19], In 1873, Korkine
and Zolotareff [20] strengthened the definition of Hermite-re-
duction. Their proposed notion is referred to as HKZ-reduction
[2]. In 1983, using induction, Kannan [21] presented the first
algorithm for constructing HKZ-reduced bases. Helfrich [22],
Kannan [23], and Banihashemi and Khandani [24] further
refined Kannan’s algorithm and improved the complexity
analysis. In 1891, Minkowski [25] defined a very strong re-
duction notion, which is now known as Minkowski-reduction.
In 1982, Lenstra, Lenstra and Lovász relaxed the definition
of Hermite-reduction [19] to obtain a new reduction criterion
known as LLL-reduction [26]. The corresponding algorithm is
the first polynomial-time lattice reduction algorithm and has
been widely used in public-key cryptanalysis [2], [27] and
MIMO detection/precoding [14], [18]. Further improvements
of LLL algorithm have been developed. While some improve
the output quality [28]–[30], others improve the efficiency [16],
[31]–[33]. It has been shown that the LLL-reduction-aided
decoding can achieve the full diversity of a MIMO fading
channel [14], [34]–[37].
Due to the high computational complexity of their algo-

rithms, the HKZ and Minkowski reductions have not been
seriously considered in MIMO detection/precoding. In this
paper, we propose three practical algorithms, one for HKZ-re-
duction and two for Minkowski-reduction. Our complexity
analysis shows that our algorithms significantly reduce the
computational costs of their existing counterparts. More-
over, we prove that the Minkowski-reduction-aided decoding
(MRAD), such as ZF decoding and SIC decoding, can achieve
the same receive diversity with infinite lattice decoding (ILD),
where ILD is the lattice decoding ignoring boundary [8], [17].
This makes our reduction algorithms potentially viable for
MIMO detection. In addition, we improve the upper bounds for
the proximity factors of LLL-reduction-aided ZF decoding and
SIC decoding given in [15], [17].
Our HKZ-reduction algorithm differs from the one in [7] in

that a novel unimodular transformation technique [38], instead
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of the Kannan’s strategy [21], is used for the expansion of a
shortest vector into a new lattice basis. Also note that Kannan’s
basis expansion method only works for rational lattices, while
our unimodular transformation technique works for any real lat-
tice and is much more efficient than Kannan’s method.
In the other two algorithms, we model the Minkowski-re-

duction problem as a constrained integer least squares problem,
modify the Schnorr-Euchner (SE) search strategy [9], and use
the unimodular transformation technique [38] for basis expan-
sion. Our second Minkowski-reduction algorithm improves
upon the first one by dynamically monitoring the basis expan-
sion condition during the search process. Simulation results
show that the second algorithm is much faster than the first
one, and both of them can significantly outperform the existing
algorithms [22], [39].
Note that in many communication applications, the lattice

needed for decoding changes slowly, while the observed re-
ceived vectors change frequently. That is, the preprocessing of
the lattice generator matrix needs to be performed only infre-
quently, while the reduced basis is typically used many times.
So it is worthy to invoke a good preprocessing procedure, even it
requires a relatively high complexity. Since the vectors of HKZ
and Minkowski-reduced bases are shorter and have smaller or-
thogonality defect than those of LLL-reduced bases, the bit-
error-rate (BER) performance of sub-optimal MIMO detectors
is expected to be further improved by applying our new algo-
rithms.
The rest of the paper is organized as follows. In Section II,

we introduce the MIMO system model and review several
concepts in lattice theory. The new algorithm for constructing
HKZ-reduced bases is given in Section III. Section IV presents
the first algorithm for constructing Minkowski-reduced bases.
The second Minkowski-reduction algorithm and the partial
lattice reduction preprocessor are presented in Section V.
In Section VI, we discuss the performance of ZF decoding
and SIC decoding aided by different reduction techniques. In
Section VII, we present our experimental results.
Notations: Matrices and column vectors are denoted by

upper and lowercase boldface letters, the determinant and
transpose of a square matrix by and , respec-
tively, and the Euclidean norm of a vector by .
denotes the identity matrix, the -dim all-zeros
vector, an empty set, a submatrix of with
elements from rows to and from columns to , where :
denotes a complete row or column.

II. PRELIMINARIES

In this section, we briefly introduce the model of MIMO de-
tection and some basic concepts of lattice theory. Details can be
found in [18].

A. System Model and Detection Methods

Consider a MIMO system consisting of transmit antennas
and receive antennas. The relationship between the
transmitted signal vector and the received signal vector
is given by

(1)

where , , represent the channel matrix, the received and
additive noise signals, respectively. The channel matrix is
assumed randomly drawn from some distribution. The noise
is assumed to be white Gaussian noise. The signal-to-noise ratio
(SNR) at the receiver is defined as

(2)

where the transmitted signals are assumed to be uniformly
distributed in the finite set of modulation alphabet . For sim-
plicity, we assume that the entries of both and are real. Our
discussion of real case can be readily generalized to the com-
plex case.
Given a MIMO system modeled as (1), the optimum ML de-

coding selects that is a solution for the following mini-
mization problem as the transmit signal:

(3)

Assume that the constellation is of lattice type, such as PAM
or QAM, then upon scaling and shifting the problem (3) can be
transformed into an integer least squares problem. For solving
such problem exactly, several algorithms such as Kannan’s
method [21] as well as the sphere decoding algorithms [7], [9],
[10] are proposed. However, the complexity of these algorithms
increase exponentially with the number of transmit antennas
[7], [8], [12]. So ML decoding is not feasible for large number
of transmit antennas or real-time systems where the received
signal changes rapidly.
To reduce the detection cost, many sub-optimal algorithms

with low-complexity have been proposed, such as ZF decoding
and SIC decoding [13], [14], [40]. The performance of sub-op-
timal detectors is highly related to the structure of . It is well
known that the closer to being orthogonal the column vectors of
are, the lower BER the sub-optimal detectors have [14], [17],

[34]. Especially, ZF decoding and SIC decoding are identical to
ML decoding when the columns of are orthogonal. Lattice
reduction can improve the orthogonality defect of , resulting
in large performance gains.

B. Some Basic Concepts of Lattice Theory

1) Lattices and Bases: Suppose that is an -by- , ,
real matrix of full column rank, then the lattice generated by
is defined by the set:

where denotes the set of integer -vectors. The columns of
form a basis for the lattice , and the value of is called

the dimension of . When , the lattice can have
infinitely many different bases other than .
An integer matrix is called unimodular if

. In general, the columns of any matrix can
form a basis for if and only if can be factorized as

, where is a unimodular matrix. Given , a lattice
reduction algorithm finds a unimodular matrix such that
is reduced.
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2) Lattice Volume and Orthogonality Defect: Let
, then the volume of

is defined as . From the definition
of unimodular matrix, we have
for any unimodular . Hence the volume of a lat-
tice is independent of the choice of basis. The orthogonality
defect of a basis for is defined as

. The concept of orthogonality defect is
used to measure the degree of orthogonality for a given matrix.
From Hardamard’s Inequality, is always larger than or
equal to 1, with equality if and only if the columns of are
orthogonal to each other.
3) Gram-Schmidt Orthogonalization and QR Decompo-

sition: Let be of full column rank. Then
Gram-Schmidt orthogonalization (GSO) are de-
fined as follows: for any , is the component of
that is orthogonal to the subspace spanned by the vectors

. Initializing , the vectors can
be calculated successively by

(4)

where . Another orthogonalization approach is the
QR decomposition, obtained by applying a sequence of orthog-
onal transformations such as Householder transformations [41]:

(5)

where consists of orthonormal columns, and is an upper
triangular matrix with positive diagonal. Instead of GSO, many
recent lattice reduction algorithms [18], [29], [34], [35], [42],
[43] adopt the QR decomposition approach, since the QR de-
composition can be performed efficiently and numerically more
stable than GSO.
4) Minkowski’s Successive Minima and Hermite’s Constant:

Let be an -dim lattice in . For , the -th
Minkowski’s successive minima is the radius of the
smallest closed ball centered at the origin containing at least
linearly independent lattice vectors. In particular, is
the Euclidean length of a shortest nonzero lattice vector of .
There always exist independent lattice vectors ’s such that

for all . Note that for , such vectors do
not necessarily form a basis for . It is a classical result that

can be upper bounded over all -dim lattices , and

Hermite’s constant is defined as the supremum of
over all -dim lattices. Finding the exact value of is a very
difficult problem, which plays a central role in the theory of
geometry of numbers. The exact value of is only known
for and [2, Page33]. An upper bound of
Hermite’s constant is given in [2, Page35]:

(6)

Fig. 1. Procedure SIZE-REDUCE.

5) Size-Reduction and HKZ-Reduction: A lattice generator
matrix is called size-reduced if the upper triangular
factor of its QR decomposition satisfies:

(7)

By calling the procedure in Fig. 1, the condition (7) can be en-
forced. A generator matrix is called HKZ-reduced if it is
size-reduced and its R-factor satisfies: for all ,

, where is
the lattice generated by . It is proved in [44] that
the length of each HKZ-reduced basis vector can approximate
Minkowski’s successive minima within a polynomial factor:

(8)

(9)

6) Minkowski-Reduction: A lattice generator matrix
is called Minkowski-reduced if for all ,

the vector has theminimum norm among all lattice vectors
such that can be extended to a basis for [25].
Intuitively, Minkowski-reduction requires each basis vector as
short as possible. From [45], the length of each Minkowski-
reduced basis vector can be bounded by

(10)

(11)

(12)

From (10), for lattices of dimension , the norms of
Minkowski-reduced basis vectors simultaneously achieve
Minkowski’s successive minima. In high dimensions, however,
there need not exist a Minkowski-reduced basis whose vector
norms simultaneously reach Minkowski’s successive minima.
7) LLL-Reduction: A lattice generator matrix is

called LLL-reduced if it is size-reduced and its R-factor
satisfies:

(13)
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where is a parameter which influences the quality
of the reduced basis. Obviously, an HKZ-reduced basis is LLL-
reduced for any . To justify that an LLL-reduced
basis consists of vectors reasonably short, it is shown in [26]
that

(14)

(15)

where . Like Minkowski-reduction, the upper
bound in the right hand side of (14) grows exponentially with
the dimension of lattice. However, Minkowski-reduction is
stronger than LLL-reduction, since the exponential factor in
(10) is smaller than that of LLL-reduction for any .

III. A NEW ALGORITHM FOR CONSTRUCTING HKZ-REDUCED
BASES

From the definition of HKZ-reduction, the key to the con-
struction of an HKZ-reduced basis is to recursively find a
shortest nonzero lattice vector in a projected lattice and then
extend this vector to a basis for the lattice. In this section,
we shall present a new efficient algorithm for constructing
HKZ-reduced bases for general lattices.

A. Algorithms for Solving SVP

The construction of HKZ-reduced bases consists of a se-
quence of shortest vector problems (SVP) in projected lattices.
As a fundamental problem in lattice theory, SVP has attracted
much attention. Although this problem has been proved to
be NP-hard for randomized reductions [46], there are many
practical algorithms for solving it exactly, and the choice
of methods depends on the structure of the lattice generator
matrix. For many classical lattices, efficient search algorithms
exploiting the special structure of the lattice generator matrix
are known [47], [48]. For general SVP, that is, the lattice gener-
ator matrix has no exploitable structure, related algorithms can
be classified in three categories: algorithms based on Kannan’s
strategy [21]–[24], the sphere decoding algorithms [7], [9],
[10], [49], [50] and the randomized sieve algorithms [51]–[53].
The efficiencies of the three strategies were compared in [52],
[54], and simulation results in [52], [53] suggest that for lattices
of dimension less than 40, the sphere decoding algorithm using
the SE enumeration is the most efficient algorithm.

B. A New Basis Expansion Method

As pointed out previously, the sphere decoding algorithm
using the SE enumeration is currently the most efficient method
for solving general SVP with small dimensions. Therefore,
to calculate an HKZ-reduced basis efficiently, it is natural
to combine SE enumeration and Kannan’s basis expansion
method [21]. Indeed, this is the method presented in [7]. Like
the algorithm in [7], we also adopt the SE enumeration to solve
SVP. However, instead of Kannan’s basis expansion method,
we use a novel unimodular transformation basis expansion
method.
Firstly, we briefly analyze the complexity of Kannan’s basis

expansion method [23]. The algorithm recursively selects basis

vectors. In the , , recursion, it first solves two
-dim systems of linear equations to determine linear

dependency (require operations), and performs
a Gram-Schmidt like procedure involving vectors
to obtain a projected lattice of dimension , then selects
a basis for the resulted lattice followed by lifting the
basis vectors (require operations). Thus, the
complexity of Kannan’s basis expansion method is at least

. On the other hand, numerical
results in [52] show that for lattice of relative small dimen-
sions, the SE enumeration can be very practical. Hence, from
a practical point of view, the computational cost required by
Kannan’s basis expansion method is not negligible. Moreover,
note that Kannan’s basis expansion method only works for
rational lattices, not general real-valued lattices.
Secondly, based on the unimodular transformation presented

in [38], we propose a new basis expansion method, which is ap-
plicable to lattices of any type, provided that the coordinates of
a shortest nonzero lattice point is available. Specifically, let

be a generator matrix for an -dim lattice . Suppose that
is a shortest nonzero point in , where . Then

the problem of expanding to a basis for is equivalent to the
problem of constructing an -by- unimodular matrix whose
first column is . In other words, , which says that

, also unimodular, transforms into the first unit vector .
For the special case when , such a unimodular matrix

is easy to construct. Suppose that , and let
. Using the extended Euclidean algorithm, one

can find integers and such that . Construct

(16)

It is obvious that is a unimodular matrix with

(17)

Thus, can be applied to to annihilate its second entry. In
particular, if , then can be transformed into the
first unit vector.
Now we consider the general case when . Since is

a shortest nonzero lattice point, we have . Thus,
can be transformed into the first unit vector by applying a

sequence of the plane unimodular transformations of the form
(16) to annihilate the last entries of , for example, bottom
up. Putting all things together, we present our new algorithm
for constructing an HKZ reduced basis in Fig. 2, where basis
expansion is performed by Procedure TRANSFORM in Fig. 3.
Now we analyze the complexity of Procedure TRANSFORM.

For each iteration of the for-loop, the computations from line 5
to line 8 require fp operations. Then we consider the cost
of line 2. Given two integers and , it is shown in [55] that
the complexity of Euclidean algorithm is , where

. Thus, the cost of the gcd computation called in the
first iteration of the for-loop can be obtained if an upper bound of

is found. Suppose now that is LLL-re-
duced with a parameter . It follows from [26] that

, which implies that in the -th iteration of Algorithm
HKZ-RED, the initial radius of the SE enumeration called in line
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Fig. 2. Algorithm HKZ-RED.

Fig. 3. Procedure TRANSFORM.

4 of Algorithm HKZ-RED is bounded by . Conse-

quently, we have . Thus, the gcd compu-
tation called in the first iteration of Procedure TRANSFORM re-
quires a complexity of operations. After the first iter-
ation, is updated as . It is easy to
verify that the complexity of the gcd computation called in the
second iteration is also upper bounded by , since the
updated . By induction, the complexity
of each gcd computation called in the following iterations is

. Therefore, the total cost of Procedure TRANSFORM
is of operations. In particular, when the size of
is , the complexity is . Hence, Procedure TRANSFORM
is much more efficient than Kannan’s basis expansion method,
whose complexity is at least .

C. Complexity Analysis

In this subsection, we derive an upper bound for the expected
asymptotic complexity of Algorithm HKZ-RED, where the
expectation is taken over matrices with its elements being
i.i.d. Gaussian random variables . From the analysis
in Section III-B, the overall complexity of the algorithm shall
be dominated by the SE enumeration as the dimension in-
creases, since the complexity of other parts of the algorithm are
polynomial. In the following, we analyze the complexity of the
SE enumeration. In [8], the search process of sphere decoding
is modeled as a tree with depth . Specifically, suppose that the
initial radius is , then it can be seen from [8] that the expected
number of lattice points visited by the sphere decoding in the

th level of the tree is proportional to the volume
of the -dimensional sphere of radius , which is given by

(18)

where

if

if

(19)
Thus, the expected complexity of the SE enumeration is given

by

(20)

where the coefficient is the number of elementary
operations (additions/subtractions/multiplications) that the SE
enumeration performs per each visited points in dimension
. Therefore, the complexity of Algorithm HKZ-RED can be
estimated if the upper bound for the initial radius of the SE
enumeration, which is called in each for-loop of Fig. 2, can be
found.
Suppose that is a Gaussian ma-

trix, then it is obvious that the expectation of the Euclidean
length of , satisfies

It then follows that . On the other hand, let
be an HKZ-reduced basis of , and let be the

upper triangular factor of , then it can be seen from [44] that
for , thus

which implies that the initial radius of the SE enumeration called
in each iteration of Algorithm HKZ-RED can be upper bounded
by . Thus, the expected asymptotic complexity of this algo-
rithm is given by

(21)

To obtain a more explicit expression of , we recall Stir-
ling’s formula [56]:

(22)

Combining (18), (19), (21), and (22), it is not difficult to derive
that

(23)

Thus, the expected complexity of Algorithm HKZ-RED is expo-
nential with the lattice dimension , provided that is of the
same order of magnitude as .
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From (23), AlgorithmHKZ-RED is expected to be muchmore
time-consuming than the LLL algorithm, whose average com-
plexity is [16]. Therefore, the proposed new algo-
rithm is not feasible for fast fading case where the channel ma-
trix changes rapidly. However, this algorithm is still promising
for the general case where the channel matrix keeps constant
during a frame of data, since the cost of lattice reduction can be
shared by the decoding algorithms [7], [17].

IV. CONSTRUCTIONS OF MINKOWSKI-REDUCED BASES: I

Among all reduction notions, Minkowski-reduction is per-
haps the most intuitive and strongest one, and up to dimension
four, Minkowski-reduction is better than any other known re-
duction, because it can exactly reach Minkowski’s successive
minima.

A. Existing Algorithms

In 1773, Lagrange [57] presented the first algorithm for con-
structing Minkowski-reduced bases for lattices of dimension
two. Recently, this algorithm was extended to dimensions three
and four by Semaev [58] and Nguyen and Stehlé [59], respec-
tively. More generally, Helfrich [22] and Afflerbach and Grothe
[39] presented algorithms for constructing Minkowski-reduced
bases for lattices of arbitrary dimension.
Given an -dim lattice , suppose that is a generator

matrix of such that the first columns of can be
extended to a Minkowski-reduced basis for . Then it follows
from [22], [39] that the -th Minkowski-reduced basis vector
, which can be extended to a Minkowski-reduced basis with

the first columns of , must satisfy

(24)

Obviously, the minimization problem (24) can be viewed as
an SVP with the constraint . Therefore,
(24) can be solved by incorporating such gcd constraint into the
SVP solvers introduced in Section III-A. Effort in this direction
was firstly taken by Helfrich [22]. Briefly speaking, a variant
of Kannan’s strategy [21] was proposed in [22] to solve (24).
Unfortunately, this variant is more complicated and time-con-
suming than the original Kannan’s strategy, since it associates

with solving roughly -dim CVPs. Hence, like
Kannan’s algorithm [21], [23], Helfrich’s algorithm is also in-
tended as a theoretical result rather than a practical tool.
The algorithm presented in [39] constructs a Minkowski-re-

duced basis in a quite different way. Starting from , this al-
gorithm first performs Phost enumeration [10], [49], and during
the search process, whenever an intermediate lattice point
inside the search region satisfying
or is found, the -th column of is then re-
placed by and the algorithm is restarted from . On
the other hand, if the -th column of is already the shortest
lattice point satisfying the corresponding gcd constraint, we set

and repeat the above process. The algorithm termi-
nates when . Note that the number of lattice points
enumerated by Phost’s strategy grows exponentially with the
dimension . Therefore, in practice the algorithm in [39] is

Fig. 4. Procedure M-DECODE-1.

restarted many times, and the complexity quickly becomes pro-
hibitive as the dimension increases.

B. A New Algorithm

In this subsection, we shall present a practical algorithm for
constructing Minkowski-reduced bases for general lattices. Dif-
fering from the algorithm in [39], the proposed new algorithm
is based on the SE enumeration.
Apparently, the first Minkowski-reduced basis vector is

a shortest nonzero lattice vector in , which can be obtained
by applying SE enumeration [7], [9]. We can extend to a
basis for by calling Procedure TRANSFORM. Now, suppose
that a basis , , has been
obtained, to extend to anMinkowski-reduced
basis for , we have to solve the following two problems:
• Constructing the -th Minkowski-reduced basis vector

.
• Extending to a basis for .
From (24), can be obtained by incorporating the con-

straint into SE enumeration. Instead of
the Euclidean norm of the first column of the basis matrix, we
use the Euclidean length of the -th column as the initial size
of search region, so that at least one lattice point satisfying such
gcd constraint lies inside the search region. To further accel-
erate the search process, LLL algorithm can be applied as a pre-
processor. Putting all things together, we present the algorithm
for calculating in Fig. 4.
As shown in Fig. 4, Procedure M-DECODE-1 is a wrapper

function. It calls procedure M-SEARCH-1, which finds a solu-
tion for a more general problem: an SVP with the constraint

. Thus M-SEARCH-1 is a modified SE enu-
meration. Specifically, M-SEARCH-1 applies the SE enumera-
tion on the LLL-reducedmatrix obtained in line 5. During
the search process, whenever a shorter lattice point with coordi-
nate is found, it then tests the constraint
on . If the gcd constraint is satisfied, it then adjusts the
search radius as and save as a candidate, or it will
drop and continue the SE enumeration without adjusting the
search radius. Due to the additional gcd constraint, the search
space of Procedure M-SEARCH-1 is expected to be larger than
that of the original SE enumeration. A MATLAB implementa-
tion of M-SEARCH-1 can be found in [54].
Once the -th Minkowski-reduced basis vector

is found, the second problem is to extend to a
basis for . In terms of matrices, it is to find a unimodular matrix
such that

(25)
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Fig. 5. Algorithm M-RED-1.

which implies that the first columns of are the first
unit vectors , and the -th column

of is the integer vector found by Procedure M-DECODE-1,
so that the first columns of equal the first
columns of and the -th column of
is as desired. Since , from the
discussion in Section III, one can construct an

unimodular matrix whose first column is .
Now consider the two unimodular matrices

...

. . .

(26)
We claim that the product is a unimodular matrix satis-
fying (25). Indeed, is unimodular since both and
are unimodular. From (26), the first columns of
are the first unit vectors and the -th column of is

.
The application of can be performed by Procedure

TRANSFORM and the application of is the calculation of a
linear combination of the first columns. Putting all things to-
gether, the new algorithm for constructing Minkowski-reduced
bases for general lattices is presented in Fig. 5.

C. Complexity Analysis

In this subsection, we shall analyze the expected asymptotic
complexity of Algorithm M-RED-1. Also, the expectation is
taken over matrices with its elements being i.i.d. Gaussian
random variables . Like Algorithm HKZ-RED, the
overall complexity of M-RED-1 shall be dominated by Pro-
cedure M-DECODE-1 as the dimension increases, since the
complexity of other parts of the algorithm are polynomial. From
the analysis in Section IV-B, the computation of M-DECODE-1
mainly includes two parts: the modified SE enumeration and
the gcd conditions checking. Following [8] and the analysis
presented in Section III-C, it is not difficult to see that the
complexity of the modified SE enumeration is bounded above
by (20). Therefore, an upper bound for the initial radius of the
modified SE enumeration, which is called in each for-loop of
M-RED-1, is required.

Suppose that is a Gaussian matrix, and let
be a Minkowski-reduced basis for . Then

from (10),

(27)
Thus, for , we have

(28)

which implies that the initial radius of the modified SE enumer-
ation called in each iteration of Algorithm M-RED-1 is bounded
above by

(29)

Combining (20) and (29), the overall complexity of the enumer-
ation part of M-RED-1 is given by

(30)
Now, we consider the complexity of the gcd conditions

checking part. It is easy to verify that during the process of
each SE enumeration, the number of lattice points for which
the gcd conditions are checked is proportional to the volume of
the -dim sphere of radius (29). On the other hand, from the
analysis in Section III-B, the elementary operations performed
by the gcd condition checking per lattice point is . Thus,
the overall complexity of the gcd conditions checking part is

(31)

Combining (30) and (31), the expected asymptotic complexity
of Algorithm M-RED-1 is given by

(32)

Comparing (23) and (32), Algorithm M-RED-1 is expected to
be much more time-consuming than Algorithm HKZ-RED, and
this shall be confirmed by the simulation results presented in
Section VII.

V. CONSTRUCTIONS OF MINKOWSKI-REDUCED BASES: II

From the discussion in Section IV, the search space of proce-
dure M-SEARCH-1 is larger than that of the original SE enumer-
ation. This motivates us to design a more efficient way to calcu-
late eachMinkowski-reduced basis vector. Our idea is to impose
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the constraint as early as possible to reduce the number of points
to be searched. Clearly, can be calculated as
soon as are available. Note that during the process
of SE enumeration, a solution is built bottom-up, from to
, thus the gcd condition can be checked at level , instead of

level 1 as in M-SEARCH-1. We call this procedure M-SEARCH-2.
A MATLAB implementation can be found in [54]. Since in
M-SEARCH-2, the -dim subproblems indexed by those
not satisfying are excluded from the search
process, the search space of M-SEARCH-2 is expected to be dras-
tically reduced from the original SE enumeration.
However, one drawback of procedure M-SEARCH-2 is: LLL

algorithm cannot be used as its preprocessor to accelerate the
search process. Specifically, if LLL algorithm were applied, the
unimodular matrix obtained from LLL algorithm would have
to be applied to the solution vector before checking the gcd
condition. Unfortunately, the application of the unimodular ma-
trix requires a complete -vector, whereas at level , where

is calculated in procedure M-SEARCH-2, only
a subvector is available. To alleviate the problem,
we propose a new lattice reduction technique to accelerate M-
SEARCH-2.
Consider an unimodular matrix with the following

structure:

(33)

where , , and have proper dimensions. Then both
and are unimodular. If an integer vector satisfies

, then the integer vector
also satisfies the condition , since

and is unimodular. Thus, if an
appropriate unimodular matrix with the form (33) is chosen
as a preprocessor for M-SEARCH-2, the information of the
subvector obtained at level is sufficient to check the
gcd condition of the solution .
Suppose now that the first columns of

the current basis matrix can be extended to a Minkowski-
reduced basis. Let be the R-factor of . Then it is obvious
that the first columns of is Minkowski-reduced. Thus
the submatrix in (33) can be chosen as . In other words,
we only need to reduce the submatrix of consisting of its last

columns. A natural approach is to use the partial
reduction technique [60]. That is, we select the submatrices
and appropriately such that after preprocessing,
is LLL-reduced and all off-diagonal entries of belonging

to the last columns are size-reduced. Fig. 6 shows an
implementation of this idea.
Combining Procedure PARTIAL-LR and Procedure

M-SEARCH-2, we present the algorithm for calculating
in Fig. 7. Finally, the second algorithm M-RED-2 for con-
structing a Minkowski-reduced basis can be obtained by simply
replacing Procedure M-DECODE-1 in Algorithm M-RED-1 with
Procedure M-DECODE-2.
For the complexity of Algorithm M-RED-2, we shall not go

to detailed discussions. Following the analysis presented in
Section IV-C, it is not difficult to prove that the complexity of
M-RED-2 is also upper bounded by (32).

Fig. 6. Procedure PARTIAL-LR[60].

Fig. 7. Procedure M-DECODE-2.

VI. PERFORMANCE ANALYSIS

In this section, we firstly compare the theoretical upper
bounds on the orthogonality defect of LLL, HKZ, and
Minkowski-reduced bases. Then after presenting existing
results on the proximity factors of sub-optimal lattice de-
coding [15]–[17], we give new improved upper bounds for
the proximity factors of LLL-reduction-aided SIC decoding
and LLL-reduction-aided ZF decoding. Also, we derive upper
bounds for the proximity factors of both Minkowski-reduc-
tion-aided SIC decoding and Minkowski-reduction-aided
ZF decoding. Thus, like LLL-reduction and HKZ-reduction,
sub-optimal decoding algorithms aided by Minkowski-reduc-
tion can also achieve the same diversity order with ILD.

A. Orthogonality Defect

As pointed out previously, the orthogonality defect is a
commonly used indicator to reveal the degree of orthogonality
for a given lattice basis. Denote , , and the upper
bounds of the orthogonality defect over all HKZ, LLL
(with ) and Minkowski-reduced bases, respectively.
Then from (9), (15), (12) and (6), one can immediately obtain

(34)

(35)

(36)
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TABLE I
UPPER BOUNDS OF ORTHOGONALITY DEFECT OF HKZ, LLL , AND MINKOWSKI-REDUCED BASES.

Thus, in the worst case, the HKZ-reduced basis is expected to be
more orthogonal than LLL or Minkowski-reduced basis for lat-
tices of high dimension. Note that the values of are known
for and [2, Page33]. Thus for lattices of
these dimensions, relatively tight upper bounds on the orthogo-
nality defect can be calculated. From Table I, one can see that
for lattices of dimension , the upper bound of the orthog-
onality defect of Minkowski-reduced bases is slightly smaller
than that of HKZ-reduced bases, and the LLL-reduction has the
worst performance, especially for and . However,
for lattices of a little higher dimensions such as , the
upper bound associated with the HKZ-reduced performs better
than the Minkowski-reduction, and the gap between HKZ-re-
duction and LLL-reduction gets larger quickly as dimension in-
creases. Note that the upper bounds given in this subsection only
represent the theoretical results in the worst case. The average
orthogonality defect of these reduction notions in simulations
shall be shown in Section VII.

B. Proximity Factors and Error Probability

The commonly used SIC decoding and ZF decoding were
proposed by Babai [13] in 1986. Both theoretical results [36],
[37] and computer simulation [14], [34], [35] show that LLL-re-
duction-aided decoding can always achieve the full receive di-
versity of a MIMO fading channel. To characterize the perfor-
mance gap between sub-optimal decoding and ILD in a more
precise way, a novel proximity factor was defined in [15] and
further discussed in [16], [17].
Given a lattice generator matrix , denote
the acute angle between and the linear space spanned by

the previous basis vectors, and denote the acute angle
between and the linear space spanned by the rest basis
vectors, then the proximity factors [15] of SIC and ZF decoding
are defined as:

(37)

respectively, where the supremum is taken over the set of
bases satisfying a certain reduction notion for any -dim lat-
tice . We further define and

. From [17], the average error probability of ZF
decoding can be bounded as

for arbitrary SNR. A similar bound exists for SIC decoding.

C. Proximity Factors of SIC Decoding

1) LLL-Reduction: Let , , be an LLL-
reduced matrix and let be the R-factor of . From [26], we
have

(38)

where . Based on (38), an upper bound of

was presented in [17]:

(39)

Now we present an improvement of the above bound. Suppose
that , , is the submatrix of consisting of the first
columns of . Then it is obvious that ,

. From the definition of Hermite’s constant, we have

(40)

Substituting (6) and (38) into (40), we obtain

(41)

It follows from (41) that

(42)

Although the new upper bound (41) is still exponential with re-
spect to the dimension , it significantly improves the currently
best known estimation (39).
The proximity factor for HKZ-reduction was given in [17]:

(43)

Comparing (42) and (43), the HKZ-reduction is expected to per-
form better than the LLL-reduction, since (43) grows sub-expo-
nentially with the dimension .
2) Minkowski-Reduction: We first present a result which will

be used later.
Proposition 1: If the columns of form

a Minkowski-reduced basis for , then for each submatrix
, , the columns of form a

Minkowski-reduced basis for .
Proof: For , is a shortest nonzero vector in both
and . For , let and suppose

that form a basis for , then it is easy to verify
that can form a basis for , which
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implies that . Thus form aMinkowski-
reduced basis for . Similarly, we can prove that for

. Thus, the proof is completed.
Let be a Minkowski-reduced matrix and let

be the R-factor of . Denote , , the submatrix
which consists of the first columns of . Then it follows from
Proposition 1, (11), and (12) that for ,

(44)

while for ,

(45)

Hence, we have

(46)

In particular, when , we have , which
agrees with Gaussian reduction. Certainly, the proximity factor
(46) may not be tight since it grows super-exponentially with the
dimension . However, this upper bound is sufficient to prove
that Minkowski-reduction-aided SIC decoding can achieve the
same diversity order with ILD.

D. Proximity Factors of ZF Decoding

The upper bounds of for LLL and HKZ-reduction were
given in [15], [17]. In this subsection, we shall improve existing
result on for LLL-reduction, and derive an upper bound of

for Minkowski-reduction.
The derivation for needs a lower bound of . Let

be the R-factor of , and set
. Then it is proved in [17] that

(47)

So an upper bound of can be immediately determined
if the upper bound of is found.
1) LLL-Reduction: In [17], using an estimation for

, an upper bound of for the LLL-reduction
was given as

(48)

Now we present an improvement of the above bound. To this
aim, we first recall the following result.
Lemma 2 ([17]): Let be the R-factor of a size-

reduced lattice generator matrix . Then

(49)

From (47) and (49),

(50)

Substituting (41) into (50), we obtain

(51)

Thus,

(52)

It is easy to verify that the new bound (52) is better than the
previous bound (48).
In [17], an upper bound of for HKZ-reduction is also

given:

(53)

Comparing (52) and (53), the proximity factor of HKZ-reduc-
tion is smaller than that of LLL-reduction. This is in accor-
dance with the fact that HKZ-reduction is a stronger notion than
LLL-reduction.
2) Minkowski-Reduction: To derive the upper bound of

for Minkowski-reduction, we give a technical lemma.
The proof is given in Appendix A.
Lemma 3: Given aMinkowski-reduced basis and

its R-factor . If , then

(54)

else

(55)
It follows from (47), (54) and (11) that if ,

(56)

Similarly, for the case , we can deduce

(57)

Thus, we have

(58)
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In particular, when , we have , which
agrees with Gaussian reduction. Comparing (46) with (58), the
proximity factor of SIC decoding is much smaller than ZF de-
coding for Minkowski-reduction.

VII. SIMULATION RESULTS

In this section, we compare the efficiency of the proposed
new algorithms by means of computer simulation. The prox-
imity factors as well as the BER performance of sub-optimal
decoding algorithms aided by LLL, HKZ and Minkowski-re-
duced bases are also compared. All experiments were performed
on complex matrices with random entries, drawn from i.i.d.
zero-mean, unit variance Gaussian distributions.1 Firstly, we
compare the running times of Algorithm HKZ-RED, Algorithm
M-RED-1 and Algorithm M-RED-2 with the HKZ-reduction al-
gorithm presented in [7], the Minkowski-reduction algorithm
presented in [39], and the LLL algorithm [26]. To assess the ef-
ficiency of these algorithms, the median of the average running
times for 1000 random matrices are computed. Occasionally, a
random matrix with very long running time is drawn. Using the
median rather than the mean guarantees that these rare matrices
do not dominate the average running times. Fig. 8 depicts our
results, where each point is given in average time (in seconds)
of dimension , using a DELL computer with a 2.0-GHz Pen-
tium Dual processor, with MATLAB running under Windows
XP. Note that for each dimension, the running times for all the
algorithms are averaged using the same matrices. Fig. 8 shows
that Algorithm HKZ-RED is more efficient, about one magni-
tude order, than the HKZ-reduction algorithm presented in [7]
(with the legend HKZ02). This illustrates that the new basis ex-
pansion strategy Procedure TRANSFORM is more efficient than
Kannan’s basis expansion method. Also, our second improved
Minkowski-reduction algorithmM-RED-2 is more efficient than
the first algorithmM-RED-1, and the gap between them becomes
larger quickly as the dimension increases. Both M-RED-1 and
M-RED-2 are much more efficient than the algorithm presented
in [39] (with the legend M85). Apparently, the LLL algorithm
is always the fastest, due to its polynomial complexity.
Secondly, during the process of algorithms HKZ-RED,

M-RED-1, M-RED-2, the computational cost in each iteration
is dominated by SE enumeration, Procedure M-DECODE-1
and Procedure M-DECODE-2, respectively. Then, to further
investigate the efficiency of the three reduction algorithms,
we compare the average complexity of the three procedures
called in each iteration, by using the cardinality of the search
space and the number of gcd computations as a measurement.
We show our results in Table II. Again, each entry in the table
is the average of 1000 random matrices of order 20, and the
index of iterations is denoted by . Table II shows that as the
iteration continues, more basis vectors are produced, the search
space of SE enumeration (called in HKZ-RED) decreases, the
search space of Procedure M-DECODE-1 (called in M-RED-1)
increases, while the search space of Procedure M-DECODE-2

1The proposed algorithms were not applied to the complex matrices directly.
Following [18], a complex system can be easily transformed into an equivalent
real system with doubled size by separating the real part apart from the imagi-
nary part.

Fig. 8. Comparison of the average running times among algorithms
HKZ-RED, M-RED-1, M-RED-2, the HKZ-reduction algorithm in [7] (HKZ02),
the minkowski-reduction algorithm in [39] (M85), and the LLL algorithm

for gaussian random matrices.

(called in M-RED-2) stays about the same. This can be ex-
plained as follows. In HKZ-reduction, after each iteration, the
dimension of the sublattice to be searched is reduced by one,
thus the search space of SE enumeration decreases rapidly as
increases. However, for Minkowski-reduction, the dimension
of the sublattice to be searched stays the same as the iteration
continues. Note that in Procedure M-DECODE-2, the constraint

is imposed as soon as are
available. Thus the complexity of Procedure M-DECODE-2 do
not vary much for different . But for Procedure M-DECODE-1,
the gcd constraint can not be checked until the whole integer
vector is available. Therefore Procedure M-DECODE-1 always
costs more than Procedure M-DECODE-2. Moreover, as the it-
eration continues, the search space of Procedure M-DECODE-1
increases rapidly, since the constraint gets
more severe as increases. We can also obtain from Table II
that for each iteration, the average numbers of gcd operations
performed in both of the two procedures are roughly 1/10 of
the cardinality of the search space. Thus, checking the gcd
constraint does not costs much when compared with the total
complexity.
Thirdly, we compare the average orthogonality defect of

LLL, HKZ and Minkowski-reduced bases produced by our
new algorithms in Fig. 9. As shown in the figure, the orthog-
onality defect of Minkowski-reduction is always the best, and
the LLL-reduction has the worst performance. This suggests
that sub-optimal decoding algorithms aided by Minkowski
and HKZ-reductions are expected to perform better than those
aided by LLL-reduction.
Fourthly, we compare the proximity factors of ZF decoding

and SIC decoding with LLL, HKZ, and Minkowski-reduced
bases. Fig. 10 shows the theoretical upper bounds. For all the
bounds, we have applied the bounds (6) on Hermite’s constants
when the exact values are unknown. As described in Section VI,
for each reduction, the proximity factor of SIC decoding is much
smaller than that of ZF decoding. For both SIC decoding and ZF
decoding, the proximity factor of LLL-reduction is larger than
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TABLE II
THE AVERAGE CARDINALITY OF THE SEARCH SPACE AND THE NUMBER OF GCD OPERATIONS COSTED IN EACH ITERATION OF ALGORITHMS HKZ-RED, M-RED-1

AND M-RED-2, OVER RANDOM MATRICES OF ORDER 20

Fig. 9. Comparison of the average orthogonality defect among the LLL, HKZ,
and minkowski-reduced bases for Gaussian random matrices.

Fig. 10. Comparison of the theoretical upper bounds on the proximity factors
for ZF decoding and SIC decoding with LLL, HKZ, and minkowski-reduced
bases.

that of HKZ-reduction, and Minkowski-reduction is the largest.

To obtain a practical view of the proximity factors, we sim-
ulated them by means of numerical experimentation. For each
value of , we generate 1000 random matrices and apply LLL
algorithm and our new algorithms to obtain LLL, HKZ, and
Minkowski-reduced bases. Then the proximity factors can be
taken as the maximum over these reduced bases. Although the
maximum may not reach the bounds in the worst case, they can

Fig. 11. Comparison of the simulated results on the proximity factors for ZF
decoding and SIC decoding with LLL, HKZ, and minkowski-reduced bases.

serve as an experimental lower bound on the theoretical prox-
imity factors [17]. Fig. 11 shows the numerical results. We can
learn from this figure that for ZF decoding, the proximity factor
ofMinkowski-reduction is the smallest, while for SIC decoding,
the proximity factor of HKZ-reduction is the smallest. For both
ZF decoding and SIC decoding, the proximity factor of LLL-re-
duction is the largest. Comparing Fig. 10 with Fig. 11, we can
find that the theoretical upper bounds for Minkowski-reduction
are not tight. Especially, the bound (46) is unlikely to be tight,
because we have applied the trivial bound in

(44). Since we know from (10) that ,

this is likely to loosen the bound by a factor of at the
worst.
Finally, we investigate the BER performance of both ZF and

SIC decoding with different reduction notions. In Fig. 12, we
simulated the BER of different decoding algorithms for an 8 8
MIMO system with a 64-QAM constellation. Also, the entries
of the channel matrix are i.i.d. complex Gaussian random vari-
ables with zero mean, unit variance. Both the ILD and ML de-
coding are based on the SE enumeration. This figure shows that
for ZF decoding, Minkowski-reduction has the lowest BER,
while for SIC decoding, HKZ-reduction has the lowest BER,
which is consistent with the simulation results on the proximity
factors depicted in Fig. 11.

VIII. CONCLUSIONS

In this paper, we present three new lattice reduction algo-
rithms: one for the HKZ-reduction, and two for the Minkowski-
reduction. The expected complexity of the three algorithms are
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Fig. 12. The BER performance of ILD, ML (sphere) decoding, ZF and SIC
decoding with LLL, HKZ, and minkowski-reduced bases in an uncoded 8 8
complex-valued MIMO system with a 64-QAM constellation.

also discussed. Numerical results in Fig. 8 show that they are
muchmore efficient than their existing counterparts. Tomeasure
the effects of the LLL, HKZ, and Minkowski-reduced bases on
the performance of sub-optimal MIMO detectors, the orthogo-
nality defect as well as the proximity factors are concerned. We
further improve some existing results on the proximity factors
associated with the LLL-reduction [17]. Moreover, the upper
bounds (46) and (58) for Minkowski-reduction are also given.
Although the two bounds are not tight, they are sufficient to
prove that MRAD can achieve the same diversity order with
ILD. Note that MRAD is seldomly considered in the previous
references, especially for lattices of dimension . In this
paper, we take the first step in this direction.
The proposed algorithms provide better BER performance at

the cost of higher complexity than the LLL algorithm. Thus,
they are applicable to slow varying channels. For future re-
search, we will improve the efficiency of our algorithms and
the theoretical proximity factors for various reduction notions,
especially for the Minkowski-reduction.

APPENDIX
PROOF OF LEMMA 3

From the definition of , is the squared Euclidean
length of the first row of . For , we
denote . Then it is easy to verify that

and

(59)

for .
From (11) and (12), one can derive that if ,

(60)

else,

(61)

It follows from (59), (60) that if

(62)

From (62), we can derive by induction that

(63)

Based on (59) and (61), the inequality (55) for the case
can be easily obtained by using an induction approach similar
to (62). Thus the proof is complete.
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