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A Fast Singular Value Algorithm for Hankel Matrices

Franklin T. Luk and Sanzheng Qiao

ABSTRACT. We present an O(n?logn) algorithm for finding all the singular
values of an n-by-n complex Hankel matrix. We take advantage of complex
symmetry and the Hankel structure. Our method is based on a modified
Lanczos process and the Fast Fourier Transform.

1. Introduction

Structured matrices play an important role in signal processing. A common
occurring structure is the Hankel form:

h1 hz o hn—l hn
h2 h3 s hn hn+1
H=| @
hn—l hn Tt h2n—3 h2n—2
hn hn+1 Tt h2n—2 h2n—1

where all elements along the same anti-diagonal are identical. There is an extensive
literature on inverting Hankel matrices or solving linear equations with a Hankel
structure; for a good list of references, see Golub-Van Loan[4]. The work is more
limited on efficient eigenvalue computation for Hankel matrices; some examples are
Cybenko-Van Loan[2] Luk-Qiao[6] and Trench[7]

In this paper, we present an O(n?logn) algorithm for finding all the singular
values of an n-by-n complex Hankel matrix H. Specifically, we present an algorithm
for computing the Takagi decomposition (Horn-Johnson[5]):

(1) H=Q%Q",

where @ is unitary and ¥ is diagonal with the singular values of H on its diagonal.
An O(n?) algorithm for computing the Takagi decomposition of a general complex-
symmetric matrix is given by Bunse-Gerstner and Gragg [1]. Their algorithm
consists of two stages. First, a complex-symmetric matrix is reduced to a tridiagonal
form using Householder transformations. Second, a complex-symmetric tridiagonal
matrix is diagonalized by the QR method. They state [1, page 42]:
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In many applications the symmetric matrix is a Hankel matrix
and it is an open question whether there is a method for the
symmetric SVD computation which can exploit this by far more
special structure to reduce the number of operations and the
storage requirement.

Nonetheless, it is remarked [1, page 51] that an n-by-n Hankel matrix H “can in
principle be tridiagonalized by a Takagi-Lanczos process in O(n? log, n) operations,
using FFT’s to compute Hx.” However, no further details are presented. We use
the Lanczos and FFT procedures in this paper, before we became aware of the work
by Bunse-Gerstner and Gragg [1].

Our paper is organized as follows. A Lanczos tridiagonalization of a Hankel
matrix is described in Section 2, and a two-by-two Takagi decomposition in Section
3. A QR method for the diagonalization of a tridiagonal complex-symmetric matrix
is given in Section 4, followed by an overall algorithm and an illustrative numerical
example in Section 5.

Notations. We use the “bar” symbol to denote a complex conjugate; for
example, M, v and & denote the complex conjugates of a matrix M, a vector v
and a scalar «, respectively.

2. Lanczos Tridiagonalization

As in the standard SVD computation, we first reduce the Hankel matrix to a
simpler form, specifically a complex-symmetric tridiagonal matrix.
Consider a Lanczos-like algorithm to reduce H to an upper Hessenberg form:

(2) HQ = QK,
where the matrix @ is unitary and the matrix K is upper Hessenberg. Let
Q@=(a, q2,---, qn )
and
K= (Klij).

Writing out equation (2) in column form, we obtain a recurrence formula to compute
Q and K:
(3) Kip1,Qe1 = Hq — R — Ki—1091—-1 — - — K1,191-
Since

K =Q"HQ,
the matrix K is complex-symmetric. From symmetry, we deduce that K is tridi-
agonal:

o B 0
Br az B
B a3 PBs

(4) K=

Bn—2 On—1 /Bn—l
0 ﬂn—l (70}

The relation (3) thus reduces to a three term recursion:

(5) Bidi+1 = Hy —oqqp — Bi—1qu—1-
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As gflq; = 4;, we get from (5) that oy = qf' Hg;. Let
r=Hqy - oq — Bi-19-1-

Then (5) shows that §; is the 2-norm of r; and q;y; is the normalized ry, i.e.,
B =1/ ri'r,

qQi+1 =11/
The triangularization procedure is summarized in the following algorithm.

and

ALGORITHM 1 (Lanczos Tridiagonalization). Given an n-by-n Hankel matrix
H, this algorithm computes a unitary matriz Q such that H = QKQT, where K is
complez-symmetric and tridiagonal as shown in (4).
Initialize q; such that ||qi|]2 = 1;
Set ro =qi; fo =1, 90 =0; 1 = 0;
while (8; # 0)
Q1 =11/
l«1+1;
o = q Hay;
r=Hq —oqq — Bi—1qi-1;
B = [ri]|2;
end. d

If all B # 0, then Algorithm 1 runs until / = n. The dominant cost is the
Hankel matrix-vector product Hg;, for [ = 1,2,...,n. Using an O(nlogn) Hankel
matrix-vector multiplication scheme (cf. Luk-Qiao[6]), we obtain an O(n?logn)
tridiagonalization algorithm.

3. Two-by-Two Takagi Decomposition

In this section, we discuss the Takagi decomposition (1) of a 2-by-2 complex-
symmetric matrix.

Consider
6 A= P ) .
© (52
We look for a unitary matrix @) such that
(7 Q"AQ =7,
where

_ 0'10
== o)

and both o1 and o2 are nonnegative. Define

. z/|x ifx #0,
sign(z) = { 1/| | if z i 0.

If 8 =0, then we pick

®) Q= (VI e )
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which gives
H 4 la| 0 )
AQ = .
Qtae= (g )
So we assume 3 # 0 from here on. The product AA (= AAY) is Hermitian and
nonnegative definite. Indeed,
A= ( laf* + 18] B + By )
aB+By 1B+

We can find an eigenvalue decomposition:

9) VH(4A)V = D?,

where the matrix V' is unitary and the matrix D nonnegative diagonal. Let
V = (v1,v2)

and

(d 0
D_<0 d2>'

The Takagi decomposition implies that AQ = QX. So we look for a normalized
vector q such that

(10) Aq. =0iq, O0; 2 07
from which we get
AAq = 0;Aq = 0lq.
Hence q is an eigenvector of AA and o7 is the corresponding eigenvalue. Thus, o7
equals either d2 or d3. We have two cases depending on whether the eigenvalues d?
and d3 are distinct or identical. .
First, we assume that d; # da. Since the eigenvalues of AA are distinct, the

eigenvectors are uniquely defined up to a scalar. Thus, q is a scalar multiple of
either v; or vy and o; is either d; or d, respectively. Let

(].].) A\_fl = §d1v1

for some scalar £ such that |£| = 1. We define

(12) q= ( Z; ) = 4/sign(§) vy.
Then

Aq = y/sign(§) - AVy = 4/sign(§) - §divi = [€] diq = daq,
as desired. We can get & from (11):
(13) ¢ = sign(vilAvy).

Second, we assume that the eigenvalues are identical, i.e., d; = do. Then AA = d21
and any vector is an eigenvector. Pick v; = e;. Then Av; # nv; for any scalar 7,
since B # 0. We propose

U:Aé1+d161: ( a;dl )

Then
Aa = A/Iel + dlAél = dfel + dlAél = dlll.
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We choose q as a normalized u with ¢; > 0. Let

(14) qE(Z; )Z\/M—2+W(B|(Zi(cjlll|)/la+dll )

Given q in either (12) or (14), we can construct a unitary matrix @ by

a —¢
15 = z .
(15) @ (Q2 QI>
Thus, the product
Hun_ [ d1 X
QAQ—(O y

is upper triangular. As the matrix Q" AQ is symmetric, it is therefore diagonal. In
fact, we can readily show that

= d 0
H _ 1
QAQ—(O @),
assuming that the second column of ) has been scaled so that ds > 0.

ALGORITHM 2 (2-by-2 Takagi Decomposition). Given a 2-by-2 complex sym-
metric A in (6), this algorithm computes a 2-by-2 unitary matriz Q so that (7) is
satisfied.

If B = 0 then pick @Q as in (8)

else
Find an eigenvalue decomposition of AA: VHEAAV = D?;
If dy # dy then set q using (12) (£ from (13)) else set q using (14);
Construct unitary matrix @ as in (15)

end. d

4. Diagonalization
This section concerns the Takagi decomposition of an n-by-n tridiagonal matrix
K of (4):
K =QxQ",
where @ is unitary and ¥ is nonnegative diagonal. We apply an implicit QR
algorithm; that is, instead of an explicit formation of K™ K, we apply Householder

transformations directly to K.
Consider the trailing 3-by-3 submatrix A of of K®K. It is given by

(16) A =

B )\11 dn7218n72 + O‘n71/Bn72 Bn72ﬂnfl B
Qn—20n—2 + Gn-18n—2 Az An-1Bn-1+anfn-1 |,
Bn—len—Z an—l/Bn—l + dnﬁn—l )\33

where
A1 = [Bnsl” + lan2* + Bn 2l
A2z = |ﬂn—2|2 + |O/'n—1|2 + |ﬂn—1|27

(17) A3z = |Bn1]? + |anl”.
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Let A denote the eigenvalue of A of that is the closest to Asz, and let J; be the
Householder matrix such that

J]?wx = (X707 0)T7

where
la1? + B = A
(18) X = a1 + axf
B152

We note that the vector x consists of the top three elements from the first column
of KHK — M. Let us apply

- (JT 0

J1 = ( 0 1 )

to a block in K directly:

ar B oM & o By
Br o P2 7 st| B oax B ¥
19 J, Ji.
(19) v P2 az Bs = B2 asz P !
0 v2 Ps aa Bz oy

We follow with Householder transformations Js, Js, ..., J,_2 to restore the tridiag-
onal structure of K, while maintaining symmetry at the same time. To illustrate,
we determine a Householder matrix J; such that

Jg(ﬂkfla'kal;(skfl)T = (X7070)T'

Let
/1 0 0
Je=| o0 JT o
0 0 1
Then
ap—1 Pr_1
Br-1 Bk Vi g
(20) Br  kt1 Bry1r Yerr | &
MY Br+1 Qg2 Brie
O e+t Bryz Qrys
ar-1 Bre1 M1 k1
Br-1  ar Bk Yk _
JE| m-1 B aknr Brn J-
k-1 Y Br+1 k2 Brye
Brt+2  Qkts

Consider the new matrix K®*) « fkr - j;rfHKflfg .- jk, where j, denotes the
appropriate n X n Householder matrix that contains the lower-dimension jz as a
submatrix. The resultant matrix is symmetric and the bulge is chased down by
one row and one column. Eventually, the bulge is chased out of the matrix and the
final new matrix

1) K=KO-D 0 JETK TG Fas

is symmetric and tridiagonal. As in the standard implicit QR method, the new
K is closer to diagonal. Thus, we have derived an algorithm for one step of a
complex-symmetric SVD.
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ALGORITHM 3 (One Step of Complex-Symmetric SVD). Given diagonal vector

a= (al,ag,...,an)T

and subdiagonal vector

b= (ﬂl;ﬂ% ERE 7/anl)T

of a tridiagonal matriz K of (4), this algorithm overwrites a and b so that the new
matriz K formed by the new a and b is the same as the matriz obtained by applying
one step of an implicit QR algorithm.
If n = 2, apply Algorithm 2 and return;
Compute A, the eigenvalue of A of (16) that is closest to Ass of (17);
fork=1:n-2
if kK = 1 then set x using (18) else set X = (Br_1, Yrh—1, Ok_1)";
Determine a Householder matrix J; such that Jfx = (x,0,0)T;
if k = 1 then update block as in (19) else update block as in (20);
end
end
Determine a Householder matrix J,_1 s.t. JI_;(Bn_2,7m-2)T = (x,0)7T;
Update the last block:

On_2 /Bn—2 0
57»—2 Qp—1 ,Bn—l —
0 ﬂn—l (70}

Qp—2 /Bn—2 Yn—2
1 0 1 0
( 0 J;f_1 ) Bn-2 ap-1 Pn-1 ( 0 Jo1 ) . O

Yn—2 ,Bn—l Qp

The one-step algorithm requires O(n) flops. Accumulating J; requires O(n?)
flops. The method is used in the singular value computation. Let ¢ be the largest
integer such that

bn—q:n =0,
i.e., the subvector b,,_., is the null vector. (Initially, we have ¢ =0 and 8, = 0.)
Also, let p denote the smallest integer such that the subvector bp;1.n,—q—1 has no
zero entries. Then the principal submatrix

ap1 Ppyr 0
Bpr1 opr2 Bpio
B . .
,anqfl
0 anqfl On g

has no zeros on its subdiagonal. We apply Algorithm 3 to B. When some f5;
becomes sufficiently small:

(22) 1Bl < c(lai| + [aip1|)u,

where ¢ denotes a small constant and » the unit roundoff, then we set §; to zero
and update p and q. When ¢ reaches n — 1, K becomes diagonal with the singular
values on the diagonal.
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ALGORITHM 4 (Complex-symmetric SVD). Given the diagonal a and subdi-
agonal b of the tridiagonal matriz K of (4), this algorithm computes the Takagi
decomposition K = QEXQT. The diagonal a is overwritten by the singular values.

Initialize ¢ = 0, 8, = 0, and Q = I;
while g <n —1
Set all §; satisfying (22) to zero;
Update g so that by_g., =0 and fBrp—_q—1 # 0;
Find the smallest p so that by 1., 41 has no zero entries;
Ifg<n—-1
Apply Algorithm 3 to the complex-symmetric and
tridiagonal matrix whose diagonal and subdiagonal
are api1:p—q and bpiq:n—g—1, respectively;
Update Q;
end
end. O

As stated before, Algorithm 3 requires O(n) flops without accumulating the
Householder transformations. Thus, Algorithm 4 uses O(n?) flops without explicitly
forming Q.

5. Overall Procedure

We conclude our paper with an overall singular value procedure and an illus-
trative numerical example.

ALGORITHM 5 (Fast Hankel Singular Value Algorithm). Given a complex Han-
kel matriz H, this algorithm computes all its singular values.

1. Apply Algorithm 1 to H to obtain a symmetric and tridiagonal K;
2. Apply Algorithm 4 to calculate the singular values of K. O

The major cost of this algorithm is the tridiagonalization procedure and the
dominant cost of the Lanczos tridiagonalization is matrix-vector multiplication.
The O(nlogn) Hankel matrix-vector multiplication scheme is faster than general
O(n?) matrix-vector multiplication when n > 16 (cf. Luk-Qiao [6]). We expect our
proposed Hankel SVD algorithm to be faster than a general SVD algorithm for a
very small value of n.

We know that, in a straightforward implementation of Lanczos procedure, the
orthogonality of the vectors q; in Algorithm 1 deteriorates as the size of H in-
creases. Reorthogonalization is necessary for a practical Lanczos method. Efficient
and practical reorthogonalization techniques are available, see [3, §7.5] and ref-
erences there. They achieve the orthogonality of q; nearly as good as complete
reorthogonalization with just a little extra work.

Example. Suppose that the first column and the last row of H are respectively

0.9501 + 0.76214 0.8913 + 0.4447:
0.2311 + 0.45654 0.7919 + 0.9355¢
0.6068 + 0.0185: and 0.9218 + 0.9169¢
0.4860 + 0.82144 0.7382 + 0.4103¢

0.8913 + 0.44474 0.1763 + 0.89374
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After tridiagonalization, the diagonal and subdiagonal of K are respectively
3.4438 4 3.0893:¢

0.1558 + 0.1970i 8-2‘5122
0.1729 + 0.0537i and 02850
0.3771 4 0.0265i 0080

—0.7437 4 0.4832¢

The following table presents the four subdiagonal elements of K during the execu-
tion of Algorithm 4.

Iter. B P2 Bs Ba
1 —0.017 4+ 0.0007 | 0.491 — 0.087¢ | —0.531 + 0.115¢ | —0.233 — 0.041¢
2 10~4 0.389 — 0.0714 0.215 — 0.050z 1073
3 1075 0.318 — 0.058¢ | —0.072+ 0.017¢ 108
4 106 0.253 — 0.046: 0.024 — 0.0061 converged
5 1078 0.209 — 0.0383 converged
6 10~9 10~18
7 10-4 converged
8 converged

The computed singular values are { 4.6899, 1.1819, 1.0673, 0.62109, 0.37028 }.
Assuming that the MATLAB function svd() is fully accurate, we find the errors in
the singular values computed by Algorithm 5 to be 1071°,
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