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Abstract

In this paper, we investigate the condition numbers for the generalized matrix inver-
sion and the rank deficient linear least squares problem: min, ||Az — b||2, where A is an
m-by-n (m > n) rank deficient matrix. We first derive an explicit expression for the con-
dition number in the weighted Frobenius norm || [AT, 8b] ||r of the data A and b, where
T is a positive diagonal matrix and f is a positive scalar. We then discuss the sensitivity
of the standard 2-norm condition numbers for the generalized matrix inversion and rank
deficient least squares and establish relations between the condition numbers and their
condition numbers called level-2 condition numbers.

AMS Subject Classifications: 15A12, 65F20.
Keywords: Moore-Penrose inverse, condition number, linear least squares.

1 Introduction

In this paper, we consider a condition number for the linear least squares (LLS) problem

min [ Az — b},
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Science and Engineering Research Council of Canada.



where A € R™*™ (m > n) is a rank deficient matrix. The condition number for the LLS
problem with full rank is well studied [3]. In the standard 2-norm analysis, the condition
number is defined as

cond(A4,b) = lim sup

e—0t

{ I(A+ E)'(b+ f) — ATb]

Els <€l|lA <€||b
<Al v B2 < el All2, [[£ll2 < el ||2},

where Af is the Moore-Penrose inverse of A defined as the unique matrix X satisfying
AXA=A, XAX=X, (AX)T=AX, and (XA)"=XA4,

where AT is the transpose of A [7].

The condition number discussed in this section is based on a general theory of condition
introduced by Rice [6]. In the context of the LLS, the problem is viewed as a mapping from
a pair (4,b) to the LLS solution zrs = ATh. The norm of a pair (4,b) in the domain of the
mapping is defined by the weighted Frobenius norm:

ITAT Bb]|lr, (1.1)

where T is positive and diagonal and 8 > 0. The weights T' and 8 provide flexibility. Later,
we will show that a large diagonal of T' allows perturbation on b only and a large 5 allows
perturbation on A only. The norm of a solution z in the image of the mapping is chosen as
the Euclidean norm ||z||2.

In Rice’s theory of condition, an absolute §-condition is first defined by:

ps = nf{o | [[BT Bfllle < 3= [(A+B) b+ f) — ATblls < 03}. (L2)

This definition says the image of a d-neighborhood of a pair (A,b) is contained in a od-
neighborhood of the solution Afb. So, ¢ is an upper bound for the magnification of the
mapping and pg is the least upper bound. Then, the asymptotic absolute condition number
for the weighted LLS problem in the norms chosen above is

_ AT sl
[ATH]l

As explained above, similar to the standard condition number, the é-condition in (1.2)
measures the enlargement of the mapping from (A,b) to A'h. What is different from the
standard condition number is that the weighted Frobenius norm is used in the domain space
of pairs (4, b).

Gratton [4] considered the case when T' = af (a > 0), and A is of full column rank and
showed that

i =AMy /B=2 + a=2(lmes|3 + 1 ATIBIIr3) (1.3)
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where r = b — Az g is the residual, and when a = 8 = 1, the relative condition number

At Ab
p = LA e e At + 1.

[P

It is also shown in [4] that a large « allows perturbation on b only and a large (3 allows
perturbation on A only.

In this paper, we consider the case when A is rank deficient under the condition that the
perturbation F on A satisfies

range(E) C range(A) and range(ET) C range(AT), (1.4)

where range(E) denotes the column space of E.

The rest of the paper is organized as follows. The absolute and relative condition numbers
in the weighted Frobenius norm are given in Section 2. Then, in Section 3, we analyze the
sensitivity of the generalized matrix inversion condition number and the rank deficient LLS
condition number, called level-2 condition numbers introduced by Higham [5].

2 Condition Numbers

In this section, we present explicit expressions for the absolute and relative condition numbers
for the rank deficient LLS problem in the weighted Frobenius norm described in the previous
section.

Theorem 2.1 Suppose the perturbation E in A satisfies the conditions (1.4), the absolute
condition number of the rank deficient LLS problem in the weighted Frobenius norm (1.1)
on the data A and b and the Euclidean norm on the solution x.s is

= Ao/ B2 + 1T Lo 3 (2.1)

Proof. From [1], when E is small (||Af||2]|E|ls < 1) and satisfies the conditions (1.4), we
have
(A+E) =1+ ATE) 1A (2.2)

Thus, for small E and f, the linear term in (A + E)f (b4 f) — Afb is
~AYEAT + ATf = —AN(Bays - f) = —ANET(T ' 2.s) - B7(B1)),
which implies that
1A (Bzrs — £ = AT (Baws — N)IF < IATBUETIRIT sl + B7216113).

It then follows that if

BT B1llr =/ IETIE + 165113 < 6,



then

AT (Bars — f)ll2 < 6] At oy/IIT~ 253 + B2

Since —Af(Ez.s — f) is the linear term in (A + E)f(b + f) — A'b, the absolute condition
number is bounded above by

p=lim 5 < [ AMflo\/I T ars]3 + 52 (2.3)
6—0

In the following we will show that this upper bound is reachable. We will first con-
struct perturbations Ey and fy, then show that the linear term ||AT(Eyz.s — fo)|l2 equals
(SHATHZ\/HT_I-TLSH% + ~2. This proves the theorem since (1.2) says that us is the min-
imal upper bound for all perturbations £ and f and pg = lims_,opus. In particular, let
rank(A) = r < n and u and v be respectively the left and right singular vectors correspond-
ing to the smallest positive singular value o, of A, then o, ' = ||Af||, and

Afu = || AT||p 0.

Constructing

0 0
Ey = ——u(T_QxLS)T and fo = ——u,

U B*n
where 1 = \/||T_1xLS||% + 72, we have

range(Ey) C range(u) C range(4), range(Ef) C range(z;s) C range(A') = range(AT),

and
BT BAlI2 = Iu@ o)™ 2wl
¥ n pn ¥
52 —1 T —11112
= O (T )T B
= O

Now, for Ey and fy, the linear term

— A Eyz.s + AT fy

= §ATu(T_2xLS)T:vLS + iATu
n B*n

— SAtu(IT sl + 572

= on||Af|lav,



which implies that

14" Bowis — At folla = 81| AT o/ T wisllf + B2
This completes the proof of the theorem. O

Corollary 2.1 Taking T = I and B = 1 in the condition number u of Theorem 2.1 gives
the case where both A and b are equally perturbed. By letting T = ol, where a > 0, and
a— 00 (B — o0), no perturbation on the matriz A (on the right-hand side b) is permitted.

Proof. The perturbations E and f must satisfy ||[[ET Sf]|lr < 0. Therefore, T = ol
and o — oo imply E = 0, that is no perturbation on A. Similarly, 8 — oo implies no
perturbation on b. O

Using the definition of the relative condition number v we can get the following formula.

Corollary 2.2 When the perturbation E in A satisfies the conditions (1.4), the relative
condition number with equal perturbations on A and b (T =1 and B =1) is

Af A,b
v = —” ||||2:L|'|L[S||2 Il \/1+ ||$L5||%

Note that comparing (2.1) with (1.3) in the full rank case, the residual term ||Af||2||r(|3 is
missing in our g in (2.1). The reason is that when the perturbation F satisfies the condition
(1.4), ETr = 0.

3 Condition Number Sensitivity

In practice, the computed condition number is the exact condition number for a perturbed
problem. How sensitive is the condition number to the perturbation on the data? Demmel
[2] introduced the concept of condition numbers of the condition numbers, called level-2
condition numbers by Higham [5]. Demmel [2] showed that for certain problems, the level-2
condition number is the condition number up to a constant factor. In this section, we show
that the level-2 condition numbers for the generalized matrix inversion and rank deficient
least squares are in the same magnitude order of their corresponding condition numbers.

We begin with the definitions of the standard condition numbers. The condition number
for the generalized matrix inversion is defined by

I(A + E)T — A[ls
el At

cond(A4) = lim sup

e—0t

Bl < e||A||2}, (3.1)

where E satisfies the conditions (1.4). The standard condition number for the least squares
is

d(4,b) = li
cond(A4,b) Jim sup

{ I(A+ E)'(b+ f) — ATo]

, Els < €||A]l2, < e€llb ,
o) 1Bl < . 111 < .|

(3.2)



where E satisfies the conditions (1.4).
Wei and Wang [8, Corollaries 2.1, 3.1] derived

Af|l5]|o
cond(A) = ||AT||2||A]l2, and cond(A,b) = || AT||2]|All2 + H ||Jf2b”||2“2'

(3.3)

The computed condition number cond(A) can be regarded as the exact condition number
cond(A + E) for some small perturbation E. Thus, we define the level-2 condition number
for the generalized matrix inversion:

|cond(A + E) — cond(A)|
econd(A)

cond?(4) = lim sup{

e—0t

Bl <elAl}, )

where E satisfies the conditions (1.4).
Similarly, we define the level-2 condition number for the least squares:

cond®?l(A4, b)
) |cond(A + E,b+ f) — cond(A4,b)| }

= 1 E|, <¢||lA < .
Jim sup { ) Bl < €l Alls, 171l < e} (3.5

where E satisfies the conditions (1.4) and b € range(A).

In the following, we will show that under certain conditions on the perturbations £ and
f, cond?(A) and cond!?(4,b) are the same as cond(A) and cond(A4,b) respectively up to
constant factors.

Before deriving the level-2 condition numbers, we present a useful bound for ||(A+E)*|J.

Lemma 3.1 Under the conditions (1.4),
1A + B)'||> = sup {||A"[>(1 + e cond(4)) + O(e?),  [|E]l2 < €| A2}
for small € > 0.
Proof. From (2.2), under the conditions (1.4) and ||E||2 < €||A]|2,
I(A+ E)t|l2 = | AT — ATBAY|; + O(e?)

for small € > 0.
On the one hand, since ||E||2 < €|| 4|2,

|AT = ATEAT|, <||AT2(1 + €| All2]| ATl]2) = [|AT]|2(1 + € cond(A)).

On the other hand, we construct an Ey such that ||AT — ATEyAf||y > ||At||2(1 + econd(A)).
Let u be the rth left singular vector of A, where r = rank(A), then

1A ull> = o7t = || A



Defining
v=—AMu/|| AT,

we have ||v|2 = 1, v € range(A") = range(AT), and
v Aty = — || Atul3/[| ATz = ~[|ATl2.
Now, we construct
Ey = €||Al|quv™,
then EgAtu = —¢||A||2||Af||au. Also, it can be verified that ||Ey||2 = €||A||2, and Ej satisfies
the conditions (1.4), since range(Ep) C range(u) C range(A) and range(E]) C range(v) C
range(AT). Finally, applying EgAfu = —¢||A||o||At||ou and ||ATuls = ||AT||2, we get
AT — ATEp ATy > |[(AT — AT EyAT)ull,
= [|ATu+ ¢l All2| ATl2 Al
= JJAT(1 + econd(4)),
which completes the proof. O

The following theorem shows that the level-2 condition number for the generalized matrix
inversion is about the same as the condition number.

Theorem 3.1 Under the conditions (1.4), the difference between the level-2 condition num-
ber cond®(A) and the condition number cond(A) is bounded by:

‘cond[Q}(A) - cond(A)‘ <1
Proof. Following the first equation in (3.3), we consider
cond(4 + E) = || A + E|2[ (A + E)1l2.
The inequality ||E||2 < €||A||2 implies that ||A + E||2 < (1 + ¢€)||A]|2. Using Lemma 3.1, we

have
cond(A+E) = |4+ El2[|(A+ E)|
< (14| All2(]|AT2(1 4 econd(A)) + O(e?))
= cond(A)(1 4 econd(A) + €) + O(€?). (3.6)
It then follows that

cond(A + E) — cond(A)
econd(A)

On the other hand, ||E|j2 < €||A||2 also implies that ||A + Ell2 > (1 — €)||4]|2- Again,
from Lemma 3.1, there exists an Fj such that

< cond(A4) + 1+ O(e). (3.7)

cond(A+ Ey) = ||A+ Eol2](A+ Eo)tlls
> (1- o)l All2(lAT2(1 + e cond(A)) + O(€*)) (3.8)
= cond(A4)(1 4 econd(A) — €) + O(€?),



which implies
cond(A + Ep) — cond(A)
econd(A)
Combining (3.7) and (3.9) proves the theorem. O

Next, we present the relations between the level-2 condition number cond!? (4, b) for the
least squares and the condition number cond (A4, b).

> cond(A4) — 1+ O(e). (3.9)

Theorem 3.2 Under the conditions (1.4), the level-2 condition number cond?! (A,b) for the
least squares defined in (3.5) is bounded by:
cond(4,b) 1
I+ 149

< cond?(4,b) < 2cond(A4,b),

where y = ||bl|2/||AATb||2, the secant of the angle between b and the projection AATD.

Proof. Following the second equation in (3.3), we first consider

(A + E)Yla][b+ fl2
1A+ E)I(b+ f)ll2

Applying ||b+ fll2 < (1 + €)]|b||2 and Lemma 3.1, we have

cond(A+ E,b+ f) = cond(A + E) +

1A+ B Izl + fll2 < I AT[l2lIbll2(1 + € cond(4) + €) + O(e?).

Using the definition (3.2), we get

1 1
<
I(A+E) b+ fll2 — [JATbll2 —[I(A+ E)I(b+ f) — ATb|
1
_iata=t
= ||ATH|; 1 — LA+E)T (o+/) ~ATo»
[[ATH]]2
1 (A + E)(b+ f) — ATb||2 2
= —— |1 +0
AT, ( 475l )
1 2
< — .
< ||ATb||2(1 + econd(A4,b)) + O(¢?)
Consequently,
(A +B)allb+ fllz _ [1AT[l2b]l2 2
< 1+ econd(A,b) + econd(A4) + €) + O(€?).
[A+EN G+ Dl = Al (A0 + coond( )+ + O

Thus, from (3.6),

cond(A+ E,b+ f) < cond(A4)(1+ econd(A) +¢)
AT [l2[6]]2

AT, (14 econd(A,b) + econd(A) + €) + O(€?).



It then follows from the second equation in (3.3) that

cond(A + E,b+ f) — cond(A, b)

AT 126112
|| ATD]|

< econd(A4,b)(cond(A,b) 4 cond(A) + 1) 4+ O(€?).

< econd(A)(cond(A) +1) + e(cond (A, b) 4+ cond(A) + 1) + O(€?)

Thus, we get

cond(A+ E,b+ f) — cond(A4,b)
econd(A4,b)

< cond(A,b) + cond(A) + 1+ O(e). (3.10)
Now, we derive a lower bound for cond(A+ E, b+ f). The condition || f||2 < €||b||2 implies
lb+ fll2 > (1 —€)||bl|2. Moreover,
I(A+ Bl ll2 > [T — e cond(A)|A[ + O(é?), (3.11)
since, from (2.2),

|AT|l, = ||AT - ATEAT + ATEAT||,

< T+ ATE) Ao + €| AT|3]|All2 + O(€?)
= (A + E)f||2 + econd(A)|| At ||z + O(e?).

Thus,

(A+E)Yollb+ flla > (A"l — econd(A)[|AT||2 + O(e*)) (1 — ¢)[b]2
= [ ATl2]1bll2(1 — econd(4) — €) + O(€?).

Applying the definition (3.2), we get
N 1
[(A+E)I B+ )l = ||ATbll2 + (A + E)I(b+ f) — ATb|2
1 [(A+ E)I(b+ f) — ATb|| 2
1-— + O(e
A8 ( 1ATE] ()

1
m (]. — CCODd(A, b)) + 0(62).

Vv

We then have

I(A+ B)Fllallb + fll2  [|AT[l2[Bll2
A+ B b+ Hllz — Al

From (3.11) and ||[A + E|ls > (1 — ¢)[| 4],

(1 — econd(A) — econd(A4,b) — €) + O(€?).

I(A+BE)' 2| A+ Ells > (||AT|l2 — e cond(4)[|AT]|2)(1 — €)[|4]l2 + O(e?)
= cond(4)(1 — econd(A4) — €) + O(€?).
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We then get a lower bound for cond(A + E, b+ f):
cond(A+ E,b+ f)

| AT]|2][B]|2

| 2
> cond(A)(1 —econd(A) —€) + TAT[ (1 — econd(A) — econd(A4,b) —€) + O(e),

which leads to

cond(A + E,b+ f) — cond(A4,b)

_ IAT[l21B]]2
= cond(A+ E,b+ f) —cond(A) — AT,
i
> —€ (cond(A) + %) (cond(A) + cond(4,b) + 1) + e cond(A)cond(4, b) + O(?)
2

= —econd(A,b)(cond(A) + cond(A,b) + 1) + e cond(A)cond(A, b) + O(e?)
> —econd(A4,b)(cond(A) + cond(4,b) + 1) + O(?).
Therefore,

cond(A + E,b+ f) — cond(A,b)
econd(A,b)

> —(cond(A) + cond(A4,b) + 1) + O(e). (3.12)

Combining (3.10) and (3.12), we get

|cond(A + E,b+ f) — cond(A4,b)|
econd(A4,b)

< cond(A) + cond(4,b) + 1+ O(e).

Finally,
cond!?(A, b) < cond(A) + cond(4,b) + 1 < 2cond(4, b),

since

|AT[12]16]]2
I ATD]l2

In the following, we derive a lower bound for cond®/(4,b) defined in (3.5). Using (3.3),
we have

cond(4,b) = || AT||2|| A2 + > cond(A) + 1.

cond(A + E,b+ f) — cond(A,b)
[(A+E)i2fb+ fll2
I(A+ E)I(b+ fll2

14Tl
AT

= cond(A+ E) + ond(A)

Let f =0, then

(A +E)laflb+ flla AT [l2llbll2_ [I(A + E)[la[|ATb]l2 — [[AT]|aI(A +E)Tb||2||b“2_
1A+ E)H b+ f)l2 | ATD]2 I(A + E)Tb||2[| ATb]]2

10



From Lemma 3.1, for any € > 0, we can find an Ey such that
|(A+ Eo)Tll2 > [|AT[l2(1 + econd(4)) + O(e?)
and, from (2.2), we have
I(A + E)'bllo = [I(T + ATE) " ATb||2 < (1 + e cond(4)) [ ATb||2 + O(e).

Thus
1A+ Eo) lallATbl2 — AT 12l (4 + Bo)bllz > O),

which means that for £ = Fjy and f =0,
1A+ E)allb+ fllz (| AT]|2]1B]l2

> O(€?).
A+ B G+ Nl A =)
Hence, for £ = Ey and f =0,
cond(A+ E,b+ f) — cond(A,b) > cond(A + E) — cond(A4) + O(€?). (3.13)
On the other hand, let E = Ej be given in Lemma 3.1, then, from (3.9),
cond(A + Eg) — cond(A) > econd(A)(cond(A) — 1) + O(€?). (3.14)
From (3.3) and the inequality
AATD]|2
atplp > 14270
14780 =
we have
AT (|2 [1]l2
cond(4,b) = cond(A)+ —F——
o) SRR P
1All2[A"[l2[1b]l2
< cond(A) +
< oondD g,

bl )
= cond(4 (1—|—7 .
(1 T2,

Consequently, for £ = Ey and f = 0, using (3.13) and (3.14), we get
cond(A+ E,b+ f) — cond(A,b)

ccond(A, b)

§ cond(fel + fi)(;’z?nd(A) 4o

§ (cond(cz;lzl - jl),(;(;nd(A) 4o

Z 1 fﬁﬁffﬁf;«lmﬁ +0(¢)

§ cond(4, b) 1 o0,

- +
(1+[bll2/[[AATD]l2)2 1+ [[bllo/[|AATD[|o

11



Defining y = ||b||o/||AA'b||2, which is the secant of the angle between b and the projection
AA'Db, we claim that

cond(A4, b) 1

0t)? 17 5 >0, equivalently cond(A4,b) >1+7.
Indeed, using
cond(4) >1,  [|ATbll2 < [|AT|l2]|AA D12,
and the second equation in (3.3), we get
Af|lo|lb b

cond(A,b) = cond(A4) + % >1+ % =14+.

Thus, from the definition (3.5) of cond® (4, b), we have the lower bound:
cond(A,b) 1

cond?(A,b) > O

T+7)? 149

When the residual ||r||o is small, ||b|ls = ||AATb||2 since ||b]|2 = ||7||3 + ||[AAD||2, then the
lower bound is approximately

cond? (A4, b) > cond(4,b) 1
4 2
This theorem shows that the level-2 condition number cond® (A,b) is almost the same as
the condition number cond(A,b), up to a small constant.
Finally we note that in practice, the computed condition number cond(A) = [|A||2||AT|2
for the generalized matrix inversion of A is actually ||A + Eilj2||(A + E2)||2, where the
perturbations F7 and Es may be different. We can generalize the definition (3.4) to

{ |4 + E1]|2]|(A + E») [l — cond(4)

cond?(4) = lim sup

e—0t

FE E < e€llA .
econd(A) B2, [1E2]l2 < €l ||2}

We can show that cond?(A), as cond?/(A) in Lemma 3.1, is also essentially same as cond(A).
Specifically, let £1 = €A and Fs = Ej given in Lemma, 3.1, then, from Lemma 3.1, we get

IA+Eill2ll(A+Ea)lla = (1 + €)l|All2l| AT[|2(1 + econd(4)) + O(€?)
= cond(A) + econd(A4)(1 + cond(A)) + O(¢?).

It then follows that
cond®/(4) = cond(4) + 1.

Conclusion In this paper, we first present explicit expressions for the absolution and relative
condition numbers for the rank deficient least squares problems in the weighted Frobenius
norm. Because the problem is rank deficient, we impose the conditions (1.4) on the pertur-
bation matrix E. As a consequence, our condition numbers are independent of the residual.
We then analyze the level-2 condition numbers for the generalized matrix inversion and rank
deficient least squares problem in 2-norm. We show that the level-2 condition numbers are
essentially the same as their corresponding condition numbers.
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