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Abstract

This paper presents the solution of a general constrained matrix equation using
generalized inverses and gives an explicit expression for the elements of the solution
matrix using Cramer rule.
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1. Introduction

In [8], there is a Cramer rule for the unique solution of the constrained linear
system of equations

Ax=b, xeM,

where 4 € C"™", b € R(4), which the symbol R(4) denotes the range space of 4,
and M is a complementary subspace of N(4), which the symbol N(4) denotes
the null space of 4. A Cramer rule for the unique solution of
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Ax=b, xecR(4"),

where 4 € C"", k = Ind(4) and b € R(4"), is given in [6]. A Cramer rule for the
unique solution of

WAWX =b, x € R((AW)"),

where 4 € C™", W € C"*", k; = Ind(4W), k, = Ind(WA) and b € R((WA)"), is
given in [7].

The Cramer rule for the unique solution or one of solution of the con-
strained linear system of equations

Ax=b, xe€T,

where 4 € C"™", rank(4) = r, and T is an arbitrary but fixed subspace of C”, is
discussed in [4]. The conditions for the existence and uniqueness of the solution
is given there. This paper considers the following more general problem.

Given an m-by-n matrix 4 (rank(4) = r), a p-by-¢g matrix B (rank(B) = 7),
and an m-by-g matrix D, solve for X in the matrix equation:

AXB = D, (1)
with the constraints
RX)CT and N(X)DS, (2)

for the predetermined subspaces 7' C C" (dim(7) =¢<r) and sccer
(dim(S) = p —1 = p— 7). Chen [5] gives a solution to this constrained matrix
equation. In the method there, the matrix equation

AXB=D, R(X)CT, NX)2S,
is first transformed into
A"AXBB* = A'DB*, R(X)C T, N(X)2S.

Then the Bott-Duffin inverse is used in the solution. In this paper, we use the
{2} inverse with prescribed range and null space, which includes the Bott—
Duffin inverse as a special case. Thus, our results are more general and,
moreover, our derivations are simpler than those in [5].

The following notations are used in this paper.

Given a matrix 4 and a subspace S, AS denotes the subspace obtained by
applying the transformation 4 to S.

Given a matrix 4 and a column vector b, 4(i — b) is the matrix obtained by
replacing the ith column of 4 with b; 4(b" — j) is the matrix obtained by
replacing the jth row of 4 with b".

Following the notations in [1,2], A" denotes the Moore—Penrose inverse of 4,
Ay the Drazin inverse, A% (i = 1,2) the {i} inverse, and A(TZL the {2} inverse
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with range 7 and null space S. It is shown in [4] that AAEEEg is the projector Pyr s
and A?)SA is the projector Py .51+ In particular,

PirsX =X if R(X) C AT, (3)
and
XP;rs=X if N(X)DS. (4)

This paper is organized as follows. In Section 2, we present a proof of the
existence and uniqueness of the solution for the matrix equation (1) with the
constraints (2). Then, in Section 3, applying Cramer rule, we show an explicit
expression for the elements x;; of the solution X. Finally, in Section 4, we
consider the special case when 4 and B in (1) are square and express the
solution in terms of the Drazin inverse.

2. Existence and uniqueness

In this section, we give the conditions for the existence of the solution for the
matrix equation (1) with the constraints (2) and express the solution in terms of
{2} inverses with specified ranges and null spaces. We also show that the
solution is unique if it exists.

If we define the range and null space of a pair of matrices A and B as sets of
matrices:

R(4,B) = {Y = AXB, for some X},
and
N(4,B) = {X such that AXB = 0},

then obviously the unconstrained matrix equation (1) has a solution if
D € R(4,B).
Now, we consider the solution of (1) with the constraints (2). Let § € C"
and 7 C C? be two subspaces such that
dim($*) =dim(T) =¢t<r and AT &S =C",
which is equivalent to 7@ (4"8+)" = €, and
dim(7) = dim($*) =7<7 and BT &8 = (?,

which is equivalent to T & (B*S*)" = .
We have the following theorem of the existence and uniqueness of the
solution for the matrix equation (1) with the constraints (2).

Theorem 1. Given the matrices A, B, D, and the subspaces T, S, T, and S as
above. If
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D € R(AG, GB), (5)

for some matrices G € C"" and G e Cor satisfying

R(G)=T, N(G)=S, R(G)=T, and N(G)=S, (6)
then the matrix equation (1) with the constraints (2) has the unique solution

2 2
X = A(T?SDB%. (7)

Proof. From the definition of the range of a pair of matrices, (5) implies that
D = AGY GB for some Y. Consequently, from (6),

R(D) C R(AG) = AT, (8)
and

N(D) 2 (B°S*)", 9)
since R(D) C B*R(G™) = B*S*. From (8), (3), (9), and (4), we have

@ np@ p_ _
AAT,SDB;EB = PursDP; < =D,

that is, X in (7) is a solution of the matrix equation (1). The solution X =
A(TZ?SDBQL also satisfies the constraints (2), because R(X) C R(A(ng) =T and

7.8 _
N(X) DN(BZ) =5,
Finally, wg’f)rove the uniqueness. If Xj is a solution of (1) satisfying (2), then

_ 42 pR@_ _ 40 @ _ o
X = AFSDBZ = AT A BB = Pr o) o = = Xo,

since R(Xy) CT and N(Xp) 2 §. O

3. Cramer rule

As we know, Cramer rule can be used to express the solution of a nonsin-
gular linear system. In this section, we give an explicit expression for the ele-
ments x;; of the solution matrix X.

When A4 and B in the matrix equation (1) are nonsingular, the solution X =
A7'DB™! can be computed by applying Cramer rule. Let Y be the solution of
the matrix equation A4Y = D and partition ¥ = [y,,...,y,]and D = [dy,...,d,],
then, applying Cramer rule, the elements y; (i = 1,...,n) of the kth column y,
are given by
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_ det(4(i — dy;))
T T det(4)
Similarly, consider the solution Z of the matrix equation ZB = I, then the
elements z;; (j =1,...,n) of the kth row of Z can be computed by
B det(B(ef — j))
~ det(B)

ij

where e/ is the kth row of the identity matrix /. Thus the elements x;; of the
matrix X = A~'DB~! = YZ can be obtained by

N Yoy det(4(i — dy)) det(B(ef — j))
Y= ,;y 2y = det(4) det(B) '

In our case, 4 and B are general matrices. They may be rectangular or
singular. In order to apply Cramer rule, we extend 4 and B into nonsingular
matrices and imbed Eq. (1) in a larger but equivalent matrix equation.

Let

Lec™mi  pm e Lec ) and Me ™) (10)

be matrices of full column rank such that

R(L)=S, NM)=T, R(L)=S, and N(M)=T, (11)
then the bordered matrices

(4 L] B L

M 0] and [1\7[ 0] (12)
are nonsingular [3] and

(4 L] AT (I — AP A)M 13)

(M 0] Lt —44P)) L1(44PA — M|

(2 (2 YA

- ~o s I — B2 B)M'

B L} 1: B 7,8 ~( T,s) . (14)

(M 0 Lt - BBy Li(BBY-B— B)M!

7.8 T.§

Since X is the solution of the constrained matrix equation, from (10), we
have

RX)CT=NM) and N(X)2S=R(L).
It then follows that

MX =0 and XL =0,
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and
(4 L][x o|[B L] _ [4XB 0
(M 0|0 Of{m o] | O Of
Thus we can imbed the matrix equation (1) in the equation
(4 L][x o|[B L]_[D 0 (15)
M 0|0 O)|M 0] [0 O)

where the coefficient matrices are nonsingular, and X = A(T%}DBQL is the unique

solution of the above extended equation. Applying Cramer rule to (15), we
have the following theorem.

Theorem 2. Given the matrices A, B, and D and the subspaces T, S, T, and S as
above. If the matrices L, M, L, and M in (10) satisfy (11), then the elements x;; of
the solution X in (7) are given by

:ZZ:1 det({ﬂéi:dés ﬂ)det([B(eZA{j) Z(O(TJ)D

([ sDe([2 ]

fori=1,...,nandj=1,..., p, where dy is the kth column of D and ey is the kth
column of the q-by-q identity matrix.

4. Application

Noting that the Bott—Duffin inverse

@A), = @4y, (BB = BB, (16)
where
T:R(PT)7 TL:N(PT% SL:R(PSL% S:N(PSL)’ (17)

we have the following result.

Corollary 1 [5]. Given 4 € C"™", B € CP*?, D € C"™*1, the matrix equation
A"AXBB* = A*DB", (18)

with the constraints

RX)CT, NX)2S, (19)
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has the unique solution
X = (4°4)(;)4"DB" (BB") ), (20)
if A*DB* € R(A*APr, Ps1pp-) for the orthogonal projectors Pr and Ps. such that
R(Pr) =T, N(Pr) = T, (21)
R(Ps1) = S+, N(Ps.) =S. (22)

Proof. From the assumption that
A*DB* = A" AP, YPs. BB,

for some Y. Consequently, from (21) and (22),

R(A*DB*) C A*AT, (23)
and

N(A*DB*) D (BB*S*)", (24)
since R(BD*4) C BB*R(P;.) = BB*S*. From

(A*A)(A*A)(T%)TL = Pparrt, (25)
and

* 2 *

(BB )E?E,S(BB ) = PSL,(BB*SL)% (26)
we have

(A4"A)(4°A4),, A"DB* (BB"){) (BB") = A"DB",
that is

(4°A4)(4°A){,) 4" DB" (BB") ;!) (BB") = A'DB".

Thus X in (20) is a solution of the matrix equation (18). The solution X also
satisfy th? constraints (19) because R(X) C R((A*A)E;;)) =T and N(X) D
N((BB)(5!)) = .

Finally, we prove the uniqueness. If X; is a solution of (18) satisfying (19),
then

* —1) 4% * 5\ (—1 * —1) 4« * %\ (—1
X = (4°A) ;) A"DB" (BB") 5} = (4"A) (7, 4" AX,BB" (BB") )
(

Tz,)TL (A*A)XO(BB*)(BB*)Q) = PrarXoPpp-st s = Xo,

= (4°A)

st

since R(Xp) C T and N(X;) O S. O
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In particular, when m = n and p = ¢, i.e., 4 and B are square, if Ind(4) = k
(rank(4") = r < m) and Ind(B) = k (rank(B*) = 7 < p), then we have the fol-
lowing )results, noting that R(4*) & N(4*) = C™ and the Drazin inverse
A=A}

Ee(1‘1’°)J\’(zﬁl")'
Corollary 2. Given the square matrices A and B as above, the matrix equation
AXB =D,
with the constraints
R(X) CR(4") and N(X) 2 N(BY),
has the unique solution
X =A,DBy,
if D € R(AG, E;B) for some matrices G € C"™™ and G € CP*P such that
R(G) =R(4"),  N(G)=N(4"),

and
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