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Abstract

This paper presents the solution of a general constrained matrix equation using

generalized inverses and gives an explicit expression for the elements of the solution

matrix using Cramer rule.
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1. Introduction

In [8], there is a Cramer rule for the unique solution of the constrained linear

system of equations
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Ax ¼ b; x 2 M ;
where A 2 Cm�n, b 2 RðAÞ, which the symbol RðAÞ denotes the range space of A,
and M is a complementary subspace of NðAÞ, which the symbol NðAÞ denotes
the null space of A. A Cramer rule for the unique solution of
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Ax ¼ b; x 2 RðAkÞ;
where A 2 Cn�n, k ¼ IndðAÞ and b 2 RðAkÞ, is given in [6]. A Cramer rule for the

unique solution of
WAW x ¼ b; x 2 RððAW Þk1Þ;
where A 2 Cm�n, W 2 Cn�m, k1 ¼ IndðAW Þ, k2 ¼ IndðWAÞ and b 2 RððWAÞk2Þ, is
given in [7].

The Cramer rule for the unique solution or one of solution of the con-

strained linear system of equations
Ax ¼ b; x 2 T ;
where A 2 Cm�n, rankðAÞ ¼ r, and T is an arbitrary but fixed subspace of Cn, is
discussed in [4]. The conditions for the existence and uniqueness of the solution

is given there. This paper considers the following more general problem.

Given an m-by-n matrix A (rankðAÞ ¼ r), a p-by-q matrix B (rankðBÞ ¼ ~r),
and an m-by-q matrix D, solve for X in the matrix equation:
AXB ¼ D; ð1Þ
with the constraints
RðX Þ � T and NðX Þ � eS ; ð2Þ
for the predetermined subspaces T � Cn (dimðT Þ ¼ t6 r) and eS � Cp

(dimðeSÞ ¼ p �~tP p � ~r). Chen [5] gives a solution to this constrained matrix

equation. In the method there, the matrix equation
AXB ¼ D; RðX Þ � T ; NðX Þ � S;
is first transformed into
A	AXBB	 ¼ A	DB	; RðX Þ � T ; NðX Þ � S:
Then the Bott–Duffin inverse is used in the solution. In this paper, we use the
{2} inverse with prescribed range and null space, which includes the Bott–

Duffin inverse as a special case. Thus, our results are more general and,

moreover, our derivations are simpler than those in [5].

The following notations are used in this paper.

Given a matrix A and a subspace S, AS denotes the subspace obtained by

applying the transformation A to S.
Given a matrix A and a column vector b, Aði! bÞ is the matrix obtained by

replacing the ith column of A with b; AðbT  jÞ is the matrix obtained by
replacing the jth row of A with bT.

Following the notations in [1,2], Ay denotes the Moore–Penrose inverse of A,
Ad the Drazin inverse, AðiÞ (i ¼ 1; 2) the fig inverse, and Að2ÞT ;S the {2} inverse
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with range T and null space S. It is shown in [4] that AAð2ÞT ;S is the projector PAT ;S
and Að2ÞT ;SA is the projector PT ;ðA	S?Þ? . In particular,
PAT ;SX ¼ X if RðX Þ � AT ; ð3Þ
and
XPAT ;S ¼ X if NðX Þ � S: ð4Þ
This paper is organized as follows. In Section 2, we present a proof of the

existence and uniqueness of the solution for the matrix equation (1) with the

constraints (2). Then, in Section 3, applying Cramer rule, we show an explicit

expression for the elements xij of the solution X . Finally, in Section 4, we

consider the special case when A and B in (1) are square and express the
solution in terms of the Drazin inverse.
2. Existence and uniqueness

In this section, we give the conditions for the existence of the solution for the

matrix equation (1) with the constraints (2) and express the solution in terms of

{2} inverses with specified ranges and null spaces. We also show that the

solution is unique if it exists.

If we define the range and null space of a pair of matrices A and B as sets of

matrices:
RðA;BÞ ¼ fY ¼ AXB; for some Xg;
and
NðA;BÞ ¼ fX such that AXB ¼ 0g;
then obviously the unconstrained matrix equation (1) has a solution if

D 2 RðA;BÞ.
Now, we consider the solution of (1) with the constraints (2). Let S � Cm

and eT � Cq be two subspaces such that
dimðS?Þ ¼ dimðT Þ ¼ t6 r and AT � S ¼ Cm;
which is equivalent to T � ðAHS?Þ? ¼ Cn, and
dimðeT Þ ¼ dimðeS?Þ ¼ ~t6~r and BeT � eS ¼ Cp;
which is equivalent to eT � ðB	eS?Þ? ¼ Cq.

We have the following theorem of the existence and uniqueness of the

solution for the matrix equation (1) with the constraints (2).

Theorem 1. Given the matrices A, B, D, and the subspaces T , S, eT , and eS as
above. If
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D 2 RðAG; eGBÞ; ð5Þ
for some matrices G 2 Cn�m and eG 2 Cq�p satisfying
RðGÞ ¼ T ; NðGÞ ¼ S; RðeGÞ ¼ eT ; and NðeGÞ ¼ eS ; ð6Þ
then the matrix equation (1) with the constraints (2) has the unique solution
X ¼ Að2ÞT ;SDB
ð2ÞeT ;eS : ð7Þ
Proof. From the definition of the range of a pair of matrices, (5) implies that

D ¼ AGY eGB for some Y . Consequently, from (6),
RðDÞ � RðAGÞ ¼ AT ; ð8Þ
and
NðDÞ � ðB	eS?Þ?; ð9Þ
since RðDHÞ � B	RðeGHÞ ¼ B	eS?. From (8), (3), (9), and (4), we have
AAð2ÞT ;SDB
ð2ÞeT ;eSB ¼ PAT ;SDPeT ;ðB	eS?Þ? ¼ D;
that is, X in (7) is a solution of the matrix equation (1). The solution X ¼
Að2ÞT ;SDB

ð2ÞeT ;eS also satisfies the constraints (2), because RðX Þ � RðAð2ÞT ;SÞ ¼ T and

NðX Þ � NðBð2ÞeT ;eS Þ ¼ eS .
Finally, we prove the uniqueness. If X0 is a solution of (1) satisfying (2), then
X ¼ Að2ÞT ;SDB
ð2ÞeT ;eS ¼ Að2ÞT ;SAX0BB

ð2ÞeT ;eS ¼ PT ;ðA	S?Þ?X0P
BeT ;eS ¼ X0;
since RðX0Þ � T and NðX0Þ � eS . h
3. Cramer rule

As we know, Cramer rule can be used to express the solution of a nonsin-

gular linear system. In this section, we give an explicit expression for the ele-

ments xij of the solution matrix X .

When A and B in the matrix equation (1) are nonsingular, the solution X ¼
A�1DB�1 can be computed by applying Cramer rule. Let Y be the solution of
the matrix equation AY ¼ D and partition Y ¼ ½y1; . . . ; yn� and D ¼ ½d1; . . . ; dn�,
then, applying Cramer rule, the elements yik (i ¼ 1; . . . ; n) of the kth column yk
are given by
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yik ¼
detðAði! dkÞÞ

detðAÞ :
Similarly, consider the solution Z of the matrix equation ZB ¼ I , then the

elements zkj (j ¼ 1; . . . ; n) of the kth row of Z can be computed by
zkj ¼
detðBðeTk  jÞÞ

detðBÞ ;
where eTk is the kth row of the identity matrix I . Thus the elements xij of the
matrix X ¼ A�1DB�1 ¼ YZ can be obtained by
xij ¼
Xn

k¼1
yikzkj ¼

Pn
k¼1 detðAði! dkÞÞ detðBðeTk  jÞÞ

detðAÞ detðBÞ :
In our case, A and B are general matrices. They may be rectangular or

singular. In order to apply Cramer rule, we extend A and B into nonsingular
matrices and imbed Eq. (1) in a larger but equivalent matrix equation.

Let
L 2 Cm�ðm�tÞ; M	 2 Cn�ðn�tÞ; eL 2 Cp�ðp�~tÞ; and eM 2 Cq�ðq�~tÞ ð10Þ
be matrices of full column rank such that
RðLÞ ¼ S; NðMÞ ¼ T ; RðeLÞ ¼ eS ; and Nð eM Þ ¼ eT ; ð11Þ
then the bordered matrices
A L
M 0

� �
and

B eLeM 0

� �
ð12Þ
are nonsingular [3] and
A L
M 0

� ��1
¼ Að2ÞT ;S ðI � Að2ÞT ;SAÞM y

LyðI � AAð2ÞT ;SÞ LyðAAð2ÞT ;SA� AÞM y

" #
; ð13Þ

B eLeM 0

� ��1
¼

Bð2ÞeT ;eS ðI � Bð2ÞeT ;eSBÞ eM y

eLyðI � BBð2ÞeT ;eS Þ eLyðBBð2ÞeT ;eSB� BÞ eM y

24 35: ð14Þ
Since X is the solution of the constrained matrix equation, from (10), we

have
RðX Þ � T ¼ NðMÞ and NðX Þ � S ¼ RðeLÞ:

It then follows that
MX ¼ 0 and X eL ¼ 0;
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and
A L
M 0

� �
X 0

0 0

� �
B eLeM 0

� �
¼ AXB 0

0 0

� �
:

Thus we can imbed the matrix equation (1) in the equation
A L
M 0

� �
X 0

0 0

� �
B eLeM 0

� �
¼ D 0

0 0

� �
; ð15Þ
where the coefficient matrices are nonsingular, and X ¼ Að2ÞT ;SDB
ð2ÞeT ;eS is the unique

solution of the above extended equation. Applying Cramer rule to (15), we

have the following theorem.

Theorem 2. Given the matrices A, B, and D and the subspaces T , S, eT , and eS as
above. If the matrices L, M , eL, and eM in (10) satisfy (11), then the elements xij of
the solution X in (7) are given by
xij ¼

Pq
k¼1 det

Aði! dkÞ L
Mði! 0Þ 0

� �� 

det

BðeTk  jÞ eLð0 jÞeM 0

� �� 

det

A L
M 0

� �� 

det

B eLeM 0

� �� 


for i ¼ 1; . . . ; n and j ¼ 1; . . . ; p, where dk is the kth column of D and ek is the kth
column of the q-by-q identity matrix.
4. Application

Noting that the Bott–Duffin inverse
ðA	AÞð�1ÞðT Þ ¼ ðA	AÞ
ð2Þ
T ;T? ; ðBB	Þð�1ÞðS?Þ ¼ ðBB

	Þð2ÞS? ;S ; ð16Þ
where
T ¼ RðPT Þ; T? ¼ NðPT Þ; S? ¼ RðPS?Þ; S ¼ NðPS?Þ; ð17Þ
we have the following result.

Corollary 1 [5]. Given A 2 Cm�n, B 2 Cp�q, D 2 Cm�q, the matrix equation
A	AXBB	 ¼ A	DB	; ð18Þ
with the constraints
RðX Þ � T ; NðX Þ � S; ð19Þ



G. Wang, S. Qiao / Appl. Math. Comput. 159 (2004) 333–340 339
has the unique solution
X ¼ ðA	AÞð�1ÞðT Þ A
	DB	ðBB	Þð�1ÞðS?Þ ; ð20Þ
if A	DB	 2 RðA	APT ; PS?BB	 Þ for the orthogonal projectors PT and PS? such that
RðPT Þ ¼ T ; NðPT Þ ¼ T?; ð21Þ

RðPS?Þ ¼ S?; NðPS?Þ ¼ S: ð22Þ
Proof. From the assumption that
A	DB	 ¼ A	APT YPS?BB
	;
for some Y . Consequently, from (21) and (22),
RðA	DB	Þ � A	AT ; ð23Þ
and
NðA	DB	Þ � ðBB	S?Þ?; ð24Þ
since RðBD	AÞ � BB	RðP 	S?Þ ¼ BB	S?. From
ðA	AÞðA	AÞð2ÞT ;T? ¼ PA	AT ;T? ; ð25Þ
and
ðBB	Þð2ÞS?;SðBB
	Þ ¼ PS?;ðBB	S?Þ? ; ð26Þ
we have
ðA	AÞðA	AÞð2ÞT ;T?A
	DB	ðBB	Þð2ÞS? ;SðBB

	Þ ¼ A	DB	;
that is
ðA	AÞðA	AÞð�1ÞðT Þ A
	DB	ðBB	Þð�1ÞðS?ÞðBB

	Þ ¼ A	DB	:
Thus X in (20) is a solution of the matrix equation (18). The solution X also

satisfy the constraints (19) because RðX Þ � RððA	AÞð�1ÞðT Þ Þ ¼ T and NðX Þ �
NððBB	Þð�1ÞðS?ÞÞ ¼ S.

Finally, we prove the uniqueness. If X0 is a solution of (18) satisfying (19),

then
X ¼ ðA	AÞð�1ÞðT Þ A
	DB	ðBB	Þð�1ÞðS?Þ ¼ ðA

	AÞð�1ÞðT Þ A
	AX0BB	ðBB	Þð�1ÞðS?Þ

¼ ðA	AÞð2ÞT ;T?ðA
	AÞX0ðBB	ÞðBB	Þð2ÞS?;S ¼ PT ;A	ATX0PBB	S? ;S ¼ X0;
since RðX0Þ � T and NðX0Þ � S. h
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In particular, when m ¼ n and p ¼ q, i.e., A and B are square, if IndðAÞ ¼ k
(rankðAkÞ ¼ r < m) and IndðBÞ ¼ ~k (rankðB~kÞ ¼ ~r < p), then we have the fol-
lowing results, noting that RðAkÞ � NðAkÞ ¼ Cm and the Drazin inverse

Ad ¼ Að2ÞRðAkÞ;NðAkÞ.

Corollary 2. Given the square matrices A and B as above, the matrix equation
AXB ¼ D;
with the constraints
RðX Þ � RðAkÞ and NðX Þ � NðB~kÞ;
has the unique solution
X ¼ AdDBd ;
if D 2 RðAG; eGBÞ for some matrices G 2 Cm�m and eG 2 Cp�p such that
RðGÞ ¼ RðAkÞ; NðGÞ ¼ NðAkÞ;
and
RðeGÞ ¼ RðB~kÞ; NðeGÞ ¼ NðB~kÞ:
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