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Abstract

This paper presents a divide-and-conquer method for computing the Takagi factoriza-
tion, or symmetric singular value decomposition, of a complex symmetric and tridiagonal
matrix. An analysis of accuracy shows that our method produces accurate Takagi values
and orthogonal Takagi vectors. Our preliminary numerical experiments have confirmed
our analysis and demonstrated that our divide-and-conquer method is much more effi-
cient than the implicit QR method even for moderately large matrices.

1 Introduction

The Takagi factorization of a complex symmetric n× n matrix A can be written as

A = V ΣV T ,

where V is a unitary matrix, V T is the transpose of V and Σ is a diagonal matrix with
non-negative diagonal elements. The columns of V are called the Takagi vectors of A and
the diagonal elements of Σ are its Takagi values. Since V T = V̄ H , where V̄ denotes the
complex conjugate of V , the Takagi factorization is a symmetric form of the singular value
decomposition (SVD). The Takagi values are the singular values, the Takagi vectors are the
left singular vectors and the complex conjugates of the Takagi vectors are the right singular
vectors. A standard algorithm for computing the Takagi factorization consists of two stages.
The first stage reduces a complex symmetric matrix A to a complex symmetric tridiagonal
matrix through Lanczos method with partial orthogonalization [5, 8] as the following

A = PTP T ≡ P
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P T , (1)

where P is a unitary matrix of order n and T is an n × n tridiagonal matrix. The second
stage computes the Takagi factorization of T = QΣQT . The combination of the two stages
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gives
A = P (QΣQT )P T = V ΣV T ,

where V = PQ.
In this paper, we focus on the computation of the Takagi factorization of a complex sym-

metric tridiagonal matrix T by the divide-and-conquer method based on rank-one tearings
of TTH . It is known that the divide-and-conquer method is the most efficient method for
computing the eigenvalues and eigenvectors of a Hermitian matrix. The Takagi vectors of
T , that is the columns of Q, are the eigenvectors of the semi-positive definite Hermitian
matrix TTH , since TTH = QΣQT Q̄ΣQH = QΣ2QH . However, it is not always true that an
eigenvector of TTH is a Takagi vector of T . For example, let

T =

[

1
√
−1√

−1 1

]

,

It is easy to see that the eigenvalue decomposition of TTH is

TTH =

[

1 0
0 1

] [

2 0
0 2

] [

1 0
0 1

]

.

Obviously, the unit vectors are not the Takagi vectors of T since T is not diagonal. In fact,
using the algorithm in [6], we can get the Takagi factorization:

T = QΣQT =
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The basic idea of our method is to apply the divide-and-conquer method to TTH to get
its eigenvectors and eigenvalues. The square roots of the eigenvalues of TTH are the Takagi
values of T . We then transform the eigenvectors of TTH into the Takagi vectors of T . How-
ever, explicitly computing TTH is too expensive and also destroys the tridiagonal structure
of T . We will introduce an implicit method for computing the eigenvalue decomposition of
TTH .

The rest of the paper is organized as follows. Section 2 describes a divide-and-conquer
method for computing the eigenvalue decomposition of TTH without explicitly forming TTH .
However, as mentioned above, the eigenvectors of TTH may not be the Takagi vectors of
T . In Section 3, We will propose a method for transforming the eigenvectors of TTH into
the Takagi vectors of T . We analyze the sensitivity of Takagi vectors of T in Section 4.
Finally, the results of our preliminary numerical experiments are given in Section 5 to show
the stability, accuracy, and efficiency of our algorithm.
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2 Divide-and-Conquer Scheme

2.1 Dividing the matrix

Let the Takagi factorization of the complex symmetric tridiagonal matrix T in (1) be

QHTQ̄ = Σ = diag(σ1, · · · , σn) or T = QΣQT .

In the first step, we tear the tridiagonal matrix T into two tridiagonal submatrices of half
size. For simplicity, we assume that n is a power of 2 and m = n/2, then

T =

[

T1 bmemeT
1

bme1e
T
m T2

]

(2)
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and e1 and em are unit vectors, [1, 0, · · · , 0] and [0, · · · , 0, 1] respectively. Now, we establish
the relations between the eigenvalues and eigenvectors of TiT

H
i and those of TTH as follows.

From (2), we get

TTH =

[

T1 bmemeT
1

bme1e
T
m T2

] [

TH
1 b̄memeT

1

b̄me1e
T
m TH

2

]

=

[

T1T
H
1 + |bm|2emeT

m bmemeT
1 T

H
2 + b̄mT1emeT

1

b̄mT2e1e
T
m + bme1e

T
mT

H
1 T2T

H
2 + |bm|2e1e

T
1

]

=

[

T1T
H
1 0

0 T2T
H
2

]

+

[

|bm|2emeT
m bmemeT

1 T
H
2

b̄mT2e1e
T
m 0

]

+

[

0 b̄mT1emeT
1

bme1e
T
mT

H
1 |bm|2e1e

T
1

]

=

[

T1T
H
1 0

0 T2(Im − e1e
T
1 )TH

2

]
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bmem
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]
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m eT

1 T
H
2

]
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H
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1

]

=

[

T1(Im − emeT
m)TH

1 0
0 T2(Im − e1e

T
1 )TH

2

]

+

[

bmem

T2e1

]

[

b̄meT
m eT

1 T
H
2

]

+

[

T1em

bme1

]

[

eT
mT

H
1 b̄meT

1

]

=

[

T1(Im − emeT
m)TH

1 0
0 T2(Im − e1e

T
1 )TH

2

]

+ z1z
H
1 + z2z

H
2 , (3)
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where

z1 =

[

bmem

T2e1

]

and z2 =

[

T1em

bme1

]

.

From (3), if the eigenvalue decompositions

T1T
H
1 = U1Σ

2
1U

H
1 and T2T

H
2 = U2Σ

2
2U

H
2 (4)

of the semi-positive definite Hermitian matrices T1T
H
1 and T2T

H
2 are available, we can find

the eigenvalue decomposition of TTH by four rank-one modifications. Thus, if the Takagi
factorizations of T1 and T2 are available, we can compute the Takagi values of T and the
eigenvectors of TTH by four rank-one modifications. Later in Section 3, we will show how
to transform the eigenvectors into the Takagi vectors.

Theorem 2.1 in [2] characterizes the eigenvalues and eigenvectors of the real rank-one
modification. We generalize it to the complex case. The proof is similar to the proof in [2].

Theorem 2.1 Suppose D2 = diag(d2
1, · · · , d2

n), d2
1 > d2

2 > · · · > d2
n, z ∈ Cn is a vector with

no zero entries, and ρ > 0, then the eigenvalues of the matrix D2 + ρzzH are the n roots
δ21 > δ22 > · · · > δ2n of the rational function

w(δ2) = 1 + ρzH(D2 − δ2I)−1z = 1 + ρ
n
∑

j=1

|zj |2
d2

j − δ2
. (5)

The corresponding eigenvectors, g1, g2, · · · , gn of D2 + ρzzH are given by

gj = (D2 − δ2I)−1z/‖(D2 − δ2I)−1z‖2, (6)

and d2
j strictly separate the eigenvalues δ2j :

d2
n < δ2n < d2

n−1 < δ2n−1 < · · · < d2
1 < δ21 < d2

1 + ρzHz.

Proof. Let (δ2,g) be an eigenpair of D2 + ρzzH , then it satisfies

(D2 + ρzzH)g = δ2g,

which implies that (D2 − δ2I)g = −ρzzHg. We will show that D2 − δ2I is nonsingular.
Suppose it is singular, then we can find δ = di, for some i. Consequently, the ith component
[(D2 − δ2I)g]i = −zizHg = 0, implying that zHg = 0. It then follows that (D2 − δ2I)g =
−ρzzHg = 0, that is, (d2

j − δ2)gj = 0 for all j 6= i. Thus, we have zHg = zigi = 0, which
shows that zi = 0. It contradicts the assumption. Therefore, we have

zHg 6= 0 and g = ρzHg(D2 − δ2I)−1z.

The rest of the proof is the same as the proof of Theorem 2.1 in [2]. 2

The above theorem shows that if all diagonal entries ofD2 are nonnegative and satisfy the
assumptions in Theorem 2.1, then the eigenvalues computed by this rank-one modification
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are also nonnegative and satisfy the strict interlacing property. For now, we assume that
all entries in Σ2

1 and Σ2
2 are distinct and there is no zero entry in the rank-one modification

vector z. In the next subsection, we will remove these assumptions.
Now, from Theorem 2.1, we can get the eigenvalues of TTH from (4) via four rank-

one modifications. First, we compute the rank-one modifications T1T
H
1 − T1emeT

mT
H
1 and

T2T
H
2 − T2e1e

T
1 T

H
2 to obtain the eigenvalue decompositions

T1T
H
1 − T1emeT

mT
H
1 = Û1Σ̂

2
1Û

H
1 and T2T

H
2 − T2e1e

T
1 T

H
2 = Û2Σ̂

2
2Û

H
2 . (7)

Applying the above equations to (3), we have

TTH

=

[

Û1

Û2

]





[

Σ̂2
1

Σ̂2
2

]

+

[

û1

û2

] [

û1

û2

]H

+

[

v̂1

v̂2

] [

v̂1

v̂2

]H




[

Û1

Û2

]H

,(8)

where û1 = bmÛ
H
1 em, û2 = ÛH

2 T2e1, v̂1 = Û1
H
T1em, and v̂2 = bmÛ

H
2 e1. We then do

the rank-one modification using the first two terms in the parenthesis to get the eigenvalue
decomposition:

[

Σ̂2
1

Σ̂2
2

]

+

[

û1

û2

] [

û1

û2

]H

= G̃∆2G̃H (9)

Thus, we can rewrite (8) as

TTH =

[

Û1

Û2

]

G̃
(

∆2 + ṽṽH
)

G̃H

[

Û1

Û2

]H

(10)

where ṽH = [v̂1 v̂2]
HG̃H . Finally, applying the rank-one modification to the matrices in the

parenthesis in (10), we get the eigenvalue decomposition:

TTH =

[

Û1

Û2

]

G̃GΣ2GHG̃H

[

Û1

Û2

]H

≡ UΣ2UH . (11)

2.2 Deflation

In this subsection, we remove the assumptions of distinct diagonal entries di and no zero
entries in the modification vector z. We first consider the case when z has zero entries. It
can be easily verified that (d2

i , ei) is an eigenpair of D2 + ρzzH if zi = 0. In this case, the
problem can be deflated by one for each zero entry in z. Next, we consider the case when
there are two equal diagonal elements in D2, say, d2

i = d2
j . Let P be a Givens rotation such

that

P

[

di

dj

]

=

[

∗
0

]

,
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then

P





[

d2
i 0
0 d2

j

]

+

[

zi
zj

] [

zi
zj

]H


PH = P





[

d2
i 0
0 d2

j

]

+

[

∗
0

] [

∗
0

]H


PH

Thus, when d2
i = d2

j for some i 6= j, we can assume zi = 0 or zj = 0. So, the case of equal
diagonal elements in D is reduced to the case of zero entries in z. The procedure is described
in the following algorithm.

Algorithm 2.2 Assume that D2 is a diagonal matrix with nonnegative elements sorted in
decreasing order, z ∈ Cn and ρ > 0, then this algorithm computes the eigenvalues and
eigenvectors of D2 + ρzzH .

1. Check the diagonal elements of D, for each pair (i, j) such that d2
i = d2

j and i 6= j, find

a Givens matrix to transform [zi, zj ]
T to [∗, 0]T ;

2. Order z into the form

[

0
ẑ

]

and order D into

[

D1

D2

]

accordingly;

3. Apply the rank-one update to D2
2 + ρẑẑH to get the eigenvalue decomposition (D2

2 +
ρẑẑH) = G̃2∆̃

2G̃H
2 ;

4. The eigenvalue decomposition of D2 + ρzzH is given by

D2 + ρzzH =

[

Ip
G̃2

] [

D2
1

∆̃2

] [

Ip
G̃2

]H

,

where p is the number of zero entries in z after step 1.

Due to the rounding errors, we regard two elements d2
i and d2

j equal if they are sufficiently
close. In other words, if the difference between d2

i and d2
j is less than a predetermined

tolerance, tol, then we set them equal. How do we determine the tolerance? In our deflation
procedure, when d2

i and d2
j are numerically equal, we find a Givens rotation to transform

[zi, zj ]
T into [∗, 0]T . Let c = z̄i/

√

|zi|2 + |zj |2 and s = −z̄j/
√

|zi|2 + |zj |2, then

[

c −s
s̄ c̄

] [

d2
i

d2
j

] [

c̄ s
−s̄ c

]

=

[

d2
i

d2
j

]

+ E

where

E = (d2
i − d2

j )

[

−|s|2 cs
c̄s̄ |s|2

]

.

We set the tolerance tol so that ‖E‖F ≤ ε ‖diag(d2
i , d

2
j )‖F when |d2

i − d2
j | ≤ tol, where ε is

the machine precision. Taking the Frobenius norm on E and diag(d2
i , d

2
j ), we get

‖E‖F =
√

2 |s| |d2
i − d2

j | and ‖diag(d2
i , d

2
j )‖F ≤

√
2 d2

max,
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where dmax = max(di, dj), and then set the tolerance

tol =
d2
max

|s| ε.

3 Takagi Factorization

As described in the previous section, given the Takagi factorizations of T1 and T2 in (2),
we can compute the eigenvalue decomposition TTH = UΣ2UH through four rank-one mod-
ifications. Let T = QΣQT be the Takagi factorization of T . It is obvious that the Takagi
values of T are the square roots of the eigenvalues of TTH . What remains is to convert the
eigenvectors of TTH into the Takagi vectors of T . First, in the case when the eigenvalues
are distinct, the eigenvectors of TTH are uniquely defined up to a scalar, which implies that
the Takagi vector qi is a scalar multiple of ui. Let T ūi = ξσiui for some scalar ξ such that
|ξ| = 1, and define

qi ≡
√

sign(ξ)ui =
√

ξui, (12)

where sign(x) = x/|x| if x 6= 0, otherwise sign(x) = 1. Then

T q̄i =
√

sign(ξ)T ūi =
√

ξ̄ ξσiui =
√

ξ̄ ξσi

√

ξ̄ qi = |ξ|2σiqi = σiqi

as desired. Specifically, ξ can be obtained by ξ = sign(uH
i T ūi).

Next, in the case of multiple eigenvalues, T ūi may not equal ξσiui. We construct

qi = αi(T ūi + σiui), (13)

where αi = 1/‖T ūi + σiui‖2. Then

T q̄i = αiT (T ūi + σiui) = αi(T T̄ui + σiT ūi) = αi(σ
2
i ui + σiT ūi) = σiqi.

Finally, we check the orthogonality of the Takagi vectors of T converted from the eigen-
vectors of TTH . It is obvious that the orthogonality is maintained among the Takagi vectors
corresponding to distinct Takagi values because of the orthogonality of the eigenvectors cor-
responding to distinct eigenvalues. Now, assume that qi, · · · ,qi+k are the Takagi vectors
corresponding to a multiple Takagi value σi of multiplicity k. The construction of qi shows
that the subspace spanned by qi, · · · ,qi+k is same as the one spanned by ui, · · · ,ui+k since
qi, · · · ,qi+k are the eigenvectors associated with σ2

i . Thus, qi+t (t = 1, · · · , k) are orthogo-
nal to qj, the Takagi vector corresponding to σj, if σj 6= σi. However, the Takagi vectors
corresponding to the same Takagi value may lose their orthogonality. So, the modified
Grand-Schmidt orthogonalization is applied to these vectors to restore the orthogonality.
Suppose that qi+t is one of the Takagi vectors corresponding to σi computed from (13), then
we orthogonalize it against the previous t− 1 vectors qi, · · · ,qi+t−1 as follows:

for j = 1 : t− 1
qi+t = qi+t − qH

i+jqi+tqi+j;

end
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Now, we give the divide-and-conquer algorithm for computing the Takagi factorization
of a complex symmetric tridiagonal matrix.

Algorithm 3.1 Given a complex symmetric and tridiagonal matrix T , this algorithm com-
putes the Takagi factorization T = QΣQT . There are two stages in this algorithm. The first
stage computes the eigenvalue decomposition TTH = UΣ2UH ; the second stage computes the
Takagi vectors qi of T from the eigenvectors ui of TTH .

1. Partition T as (2). If T1 and T2 are small enough, directly compute the eigenvalue
decompositions

T1T
H
1 = U1Σ1U

H
1 and T2T

H
2 = U2Σ2U

H
2 .

If T1 and T2 are large, apply this algorithm to T1 and T2;

2. Apply the rank-one modification Algorithm 2.2 to T1T
H
1 − T1emeT

mT
H
1 and T2T

H
2 −

T2e1e
T
1 T

H
2 to obtain their eigenvalue decompositions (7). Thus, TTH has the form

(8);

3. Compute the eigenvalue decomposition (9) using Algorithm 2.2. Then, TTH has the
form (10);

4. Apply Algorithm 2.2 again to the rank-one modification in the parenthesis in (10) to
compute the eigenvalue decomposition

∆2 + ṽṽH = GΣ2GH .

5. At this point, we get the eigenvalue decomposition TTH = UΣ2UH . The Takagi values
of T are the square roots of the eigenvalues of TTH ;

6. For a single Takagi value, its corresponding Takagi vector qi is computed using (12);
for a multiple Takagi value, its Takagi vector qi is computed using (13) and then
orthogonalized against the previously computed Takagi vectors corresponding to the
same Takagi value by the modified Gram-Schmidt orthorgonalization.

4 Orthogonality of Takagi Vectors

In the previous section, we presented a divide-and-conquer algorithm for computing the Tak-
agi factorization of T . It is based on the rank-one update of the eigenvalue decomposition of a
Hermitian matrix. Rank-one modification Theorem 2.1 is applied four times to get the eigen-
value decomposition if we have the decompositions of T1T

H
1 and T2T

H
2 . Due to the rounding

errors, the orthogonality of the eigenvectors may be lost after rank-one modifications. In
this section, we present an analysis of the orthogonality of the computed eigenvectors and
discuss the circumstances under which the orthogonality can be maintained. For simplicity,
we assume that the given matrix in the rank-one modification is already deflated.
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First, we derive a formula for the eigenvectors gj in Theorem 2.1. Differentiating the
both sides of the function w(t) in (5) with respect to t, we get

‖(D2 − δ2I)−1‖2
2 =

n
∑

j=1

|zj |2
(d2

j − δ2)2
=

1

ρ
|w′(δ2)|.

Then (6) can be rewritten as

gj =

(

z1
d2
1 − δ2j

,
z2

d2
2 − δ2j

, ...,
zn

d2
n − δ2j

) √
ρ

√

w′(δ2j )
. (14)

Let δ̂2i be a computed root of w in (5). In the following, by extending the results in
[4], we show that if the relative error in d2

j − δ̂2i is small for all i and j, then the computed
eigenvectors gi have good orthogonality.

Theorem 4.1 Denote δ̂2i and δ̂2k as the computed roots of w in (5). Let the relative errors

in d2
j − δ̂2i and d2

j − δ̂2k be θi and θk respectively, that is,

d2
j − δ̂2i = (d2

j − δ2i )(1 + θi) and d2
j − δ̂2k = (d2

j − δ2k)(1 + θk),

and |θi|, |θk| ≤ τ � 1 for all j, then

|ĝH
i ĝk| = |gH

i Egk| ≤ τ(2 + τ)

(

1 + τ

1 − τ

)2

,

where ĝi and ĝk are computed eigenvectors using (14) and E is a diagonal matrix whose ith
diagonal entry is

Eii =
θi + θk + θiθk

(1 + θi)(1 + θk)

(

w′(δ2i )w′(δ2k)

w′(δ̂2i )w′(δ̂2k)

)1/2

.

Proof. From (14), we have

−ĝH
i ĝk

= −




n
∑

j=1

|zj |2
(d2

j − δ2k)(d
2
j − δ2i )(1 + θi)(1 + θk)





ρ

(w′(δ̂2i )w′(δ̂2k))1/2

=





n
∑

j=1

|zj |2
(d2

j − δ2k)(d2
j − δ2i )

−
n
∑

j=1

|zj |2
(d2

j − δ2k)(d
2
j − δ2i )(1 + θi)(1 + θk)





ρ

(w′(δ̂2i )w
′(δ̂2k))

1/2

since gH
i gk = 0. Thus, we have

|ĝH
i ĝk|
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=

∣

∣

∣

∣

∣

∣

n
∑

j=1

(

|zj |2
(d2

j − δ2k)(d
2
j − δ2i )

)

(

1 − 1

(1 + θi)(1 + θk)

)

ρ

(w′(δ̂2i )w′(δ̂2k))1/2

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

n
∑

j=1

(

|zj |2
(d2

j − δ2k)(d
2
j − δ2i )

)

(

θi + θk + θiθk

(1 + θi)(1 + θk)

)

(

w′(δ2i )w′(δ2k)

w′(δ̂2i )w′(δ̂2k)

)1/2
ρ

(w′(δ2i )w′(δ2k))
1/2

∣

∣

∣

∣

∣

∣

= |gH
i Egk| ≤ ‖E‖2,

where E is a diagonal matrix, whose diagonal elements are

Eii =
θi + θk + θiθk

(1 + θi)(1 + θk)

(

w′(δ2i )w′(δ2k)

w′(δ̂2i )w′(δ̂2k)

)1/2

. (15)

On the other hand, it is easy to show that

w′(δ2i )

w′(δ̂2i )
=

∑n
j=1

|zj|2
(d2

j
−δ2

i
)2

∑n
j=1

|zj|2
(d2

j
−δ2

i
)2(1+θi)2

≤ (1 + τ)2. (16)

Subsituting w′(δ2i )/w′(δ̂2i ) in (15) with (16), we have

max(Eii) ≤ τ + τ + τ2

(1 − τ)2
(1 + τ)2 = τ(2 + τ)

(

1 + τ

1 − τ

)2

.

It completes the proof. 2

Apparently, if the roots δ2i of w are computed in high accuracy, then the relative errors
in d2

j − δ̂2i are small, provided that the eigenvalues δ2i are not clustered. Consequently, from
the above theorem, the computed eigenvectors ĝi have good orthogonality. In the following,
we show how to compute the roots δ2i accurately.

From Theorem 2.1, the eigenvalues of a rank-one modification are the zeros of the function
w(t) in (5). There are many zero finding methods, for example, the rational interpolation
strategy in [1] and bisection and its variations [7, 9]. We adopt the rational interpolation
strategy in our algorithm. In a zero finding method, accurate function evaluation is crucial.
In the following, we reformulate the function w(t) in (5) into a new function, which can be
evaluated accurately.

Theorem 2.1 shows that each root δ2i of the function w(δ2) is located in (d2
i , d

2
i−1). First,

we consider the case when δ2 ∈ (d2
i , (d2

i−1 + d2
i )/2) and let ζj = (d2

j − d2
i )/ρ,

ψi(µ) =
i−1
∑

j=1

|zj |2
ζj − µ

and ϕi(µ) =
n
∑

j=i

|zj |2
ζj − µ

where µ = (δ2 − d2
i )/ρ ∈ (0, ζi−1/2). Thus, the equation w(δ2) = 0 can be rewritten as

w(ρµ+ d2
i ) = 1 + ψi(µ) + ϕi(µ) ≡ fi(µ) = 0.

10



An important property of fi(µ) is that the difference |ζj−µ| can be computed to high relative
accuracy for any µ ∈ (0, ζi−1/2) [3]. It then assures that the function fi(µ) can be evaluated
for any µ ∈ (0, ζi−1/2) and d2

j − δ2 = d2
j − d2

i − (δ2 − d2
i ) = ρ(ζj − µ) is in high relative

accuracy, which guarantees the good orthogonality of the computed eigenvectors.
Now we consider the case when δ2 ∈ [(d2

i−1 + d2
i )/2, d

2
i−1) and let ζj = (d2

j − d2
i−1)/ρ,

ψi(µ) =
i−1
∑

j=1

|zj |2
ζj − µ

and ϕi(µ) =
n
∑

j=i

|zj |2
ζj − µ

where µ = (δ2 − d2
i−1)/ρ ∈ [ζi/2, 0). So, the equation w(δ2) = 0 can be rewritten as

w(ρµ+ d2
i−1) = 1 + ψi(µ) + ϕi(µ) ≡ fi(µ) = 0.

Also, the difference ζj − µ can be computed to high relative accuracy.
Finally, we consider the case when i = 1. Let ζj = (d2

j − d2
1)/ρ,

ψ1(µ) = 0, and ϕ1(µ) =
n
∑

j=1

|zj |2
ζj − µ

.

We want to find a root µ = (δ2 − d2
1)/ρ in (0, ‖z‖2). Similar to the previous cases, for any

µ ∈ (0, ‖z‖2
2), the ratio |zi|2/(ζj − µ) can be computed to high relative accuracy.

So far, we have reformulated the problem of finding the zeros of w(t) into the problem
of finding the zeros of fi(µ) which can be accurately evaluated. Now, we propose a stopping
criterion for fi(µ) so that using this stopping criterion we can obtain accurate computed
eigenvalues δ̂2i .

From the definitions of ψi(µ) and ϕi(µ), we have ψi(µ) ≥ 0 and ϕi(µ) ≤ 0. We define
the stopping criterion as

|fi(µ)| ≤ εn(|ψi(µ)| + |ϕi(µ)| + 1). (17)

In the following, we show that using this criterion, the computed roots δ̂2i of w(δ2) are
accurate.

Since w(δ2i ) = 0, we have

w(δ̂2i ) = w(δ̂2i ) − w(δ2i ) = ρ
n
∑

j=1

|zj |2
d2

j − δ̂2i
− ρ

n
∑

j=1

|zj |2
d2

j − δ2i

= ρ(δ̂2i − δ2i )
n
∑

j=1

|zj |2

(d2
j − δ̂2i )(d2

j − δ2i )

According to the stopping criterion, since fi(µ) can be evaluated accurately, we have

|w(δ̂2i )| ≤ εn



1 + ρ

∣

∣

∣

∣

∣

∣

n
∑

j=1

|zj |2
d2

j − δ̂2i

∣

∣

∣

∣

∣

∣



 ≤ ρεn





n
∑

j=1

|zj |2
|d2

j − δ̂2i |
+

n
∑

j=1

|zj |2
|d2

j − δ2i |




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since 1 = −ρ∑n
j=1

|zj |2
d2

j
−δ2

i

. Without loss of generality, we assume δ2i and δ̂2i are in the same

interval, say (d2
i , d

2
i−1). It follows that (d2

j − δ2i )(d
2
j − δ̂2i ) > 0. So,

|w(δ̂2i )| = ρ|δ̂2i − δ2i |
n
∑

j=1

|zj |2

|(d2
j − δ̂2i )(d2

j − δ2i )|
≤ ρεn





n
∑

j=1

|zj |2

|d2
j − δ̂2i |

+
n
∑

j=1

|zj |2
|d2

j − δ2i |





≤ ρεn(4‖D2 + ρzzH‖2 + |δ̂2i − δ2i |)
n
∑

j=1

|zj |2
|(d2

j − δ̂2i )(d
2
j − δ2i )|

,

since |d2
j − δ̂2i | + |d2

j − δ2i | ≤ 2|d2
j − δ2i | + |δ̂2i − δ2i | ≤ 4‖D2 + ρzzH‖2 + |δ̂2i − δ2i |. From the

above equation, we can get the upper bound for |δ̂2i − δ2i |:

|δ̂2i − δ2i | ≤
4εn‖D2 + ρzzH‖2

1 − εn
. (18)

In conclusion, we apply the rational interpolation zero finding method to fi(µ) using the
stopping criterion (17). We then can obtain accurate eigenvalues δ2i . Provided that the
eigenvalues are not clustered, it results the high relative accuracy of the difference d2

i − δ̂2i ,
which implies good orthogonality of the computed eigenvectors of TTH .

5 Numerical Examples

We programmed our divide-and-conquer Algorithm 3.1 in Matlab and tested it on three
types of complex symmetric and tridiagonal matrices. Our experiments were carried out on a
SUN SPARC Ultra 10. The complex symmetric and tridiagonal matrices with predetermined
Takagi values were generated as follows. First, a random vector uniformly distributed on
(0, 1] was generated and sorted in descending order as a Takagi value vector d. Then a random
unitary matrix was generated as a Takagi vector matrix V . The product A = V ΣV T ,
where Σ = diag(d), was computed as a complex symmetric matrix. Finally, a complex
symmetric and tridiagonal T was obtained by applying the Lanczos method with partial
orthogonalization [8] to A. Denoting Q̂ and d̂ as the computed Takagi vector matrix and
Takagi value vector respectively, the error in the computed Takagi factorization was measured
by

γt = ‖Q̂Σ̂Q̂T − T‖2, where Σ̂ = diag(d̂).

The error in the computed Takagi values was measured by

γv = ‖d− d̂‖2

and the orthogonality of the computed Takagi vector matrix Q̂ was measured by

γo = ‖Q̂Q̂H − I‖2.
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Example γo γv γt

1 6.5453e-13 2.7071e-13 3.7802e-12
2 4.3764e-14 2.9148e-14 4.9324e-13
3 2.4833e-13 3.7276e-14 1.8752e-12
4 3.3486e-13 5.3199e-14 2.0680e-12
5 3.5356e-14 4.8627e-14 3.2510e-13

Table 1: The Takagi factorization of five 64×64 testing matrices with distinct Takagi values

Example γo γv γt

1 3.4502e-12 2.3378e-14 3.3106e-13
2 7.7844e-12 1.4947e-14 5.6152e-13
3 2.3450e-12 1.5453e-14 7.4974e-13
4 4.6577e-10 2.2160e-14 1.2787e-10
5 4.6045e-12 5.1199e-15 4.9863e-13

Table 2: The Takagi factorization of five 64×64 testing matrices with multiple Takagi values
of small multiplicity

Example 1 Five random complex symmetric and tridiagonal matrices of order 64 were
generated as described above. In this example, the Takagi values of each matrix were distinct.
Table 1 shows that the computed Takagi values and Takagi vectors are accurate.

Example 2 Five random complex symmetric and tridiagonal matrices of order 64 were
generated. In this example, we set the three largest Takagi values equal and the four smallest
Takagi values equal. Table 2 shows the results.

Example 3 Five random T of order 64 were generated. In this example, however, we set
the 15 largest Takagi values equal. As expected, when the Takagi values are clustered, the
computed Takagi vectors may lose orthogonality as shown in the third matrix.

For performance, we tested our algorithm on random complex symmetric and tridiagonal
matrices of five different sizes. For each size, we generated five matrices and ran our divide-
and-conquer (DAC) method and the implicit QR (IQR) method [6]. In our method, when the
size of the submatrix Ti, for i = 1, 2, in (2) is less than or equal to 4, its Takagi factorization
is computed directly by the implicit QR method. Table 4 shows the average running time
and the average factorization error γt of the five matrices of same size. The results in Table
4 demonstrate that our method is significantly more efficient than the implicit QR method
even for matrices of moderately large size. We expect the improvement in efficiency is more
significant for large matrices.
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Example γo γv γt

1 4.6459e-13 4.3785e-15 6.0149e-13
2 1.0763e-13 6.1213e-15 1.5335e-12
3 2.7721e-4 1.2094e-7 2.1865e-4
4 3.2599e-13 1.9481-13 2.3556e-13
5 1.0308e-13 3.5831e-15 6.4613e-14

Table 3: The Takagi factorization of five 64×64 testing matrices with multiple Takagi values
of large multiplicity

Running time (sec) γt

matrix size DAC method IQR method DAC method IQR method

16 0.406 0.568 1.0240e-14 1.0002e-14
32 1.036 1.988 1.6271e-14 1.2533e-14
64 2.882 7.154 4.2004e-13 4.5231e-14
128 9.446 30.674 3.8701e-12 2.7546e-13
256 37.37 158.39 4.9525e-12 9.4915e-13

Table 4: The performance and accuracy comparison of the divide-and-conquer (DAC)
method and the implicit QR (IQR) method

Conclusion We have proposed a divide-and-conquer method for the Takagi factorization of
a complex symmetric and tridiagonal matrix and presented an analysis, which shows that
our method computes accurate Takagi values and vectors provided that the Takagi values are
not clustered. Our preliminary experiments have demonstrated that our method produced
accurate results even for matrices with Takagi values of moderate multiplicities and is much
more efficient than the implicit QR method [6].
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