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Abstract

In this paper, we study the displacement rank of the Drazin inverse. Both Sylvester displacement and the
generalized displacement are discussed. We present upper bounds for the ranks of the displacements of the
Drazin inverse. The general results are applied to the group inverse of a structured matrix such as close-to-
Toeplitz, generalized Cauchy, Toeplitz-plus-Hankel, and Bezoutians.
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1. Introduction

Displacement gives a quantitative way of identifying the structure of a matrix. Consider an n X n
Toeplitz matrix
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[
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in which all the elements on the same diagonal are equal. A displacement is defined as the difference
T — ZTZ", where

o 0
1 0

7= (1.1)
0 1 0,

is the shift-down matrix and Z is the complex conjugate and transpose of Z. Define a displacement
operator V:

V,T=T-2ZTZ".

It is easy to check that the rank of the displacement V7 is at most two, independent of the order »
and low compared with n. There are several versions of displacement structures. Given matrices U
and V', Sylvester UV -displacement is AU — VA and Stein UV -displacement is 4 — VAU. If the rank
of a displacement is low comparing with the order of the matrix, then the matrix is called structured
with respect to the displacement [4,6-8,10]. Thus, a Toeplitz matrix 7 is structured with respect
to the displacement V7. Low displacement rank can be exploited to construct fast algorithms for
triangular factorization, inversion, among others [6].

This paper discusses the displacement rank of the Drazin inverse. For an »n x n matrix 4, the index
of 4 is the smallest nonnegative integer k such that rank(4**!)=rank(4*). The Drazin inverse [1,3],
denoted by AP, of 4 is the unique matrix satisfying

APAAP = AP, AAP =AP4, AFTAP = A5,

where k is the index of 4. When the index of 4 is one, AP is called the group inverse of 4 and is
denoted by AS. The Drazin inverse plays an important role in numerical analysis [2,9,12].

The index of a matrix is characterized as the order of the largest Jordan block with zero eigen-
values. From Jordan canonical form theory [2], for any complex n X n matrix 4 of index k£ and
rank(4*) = r, there exists a n x n nonsingular matrix R such that

S
A=R
0

where S is an 7 X r nonsingular matrix and N is nilpotent, N¥ = 0. Note that if index(4) = 1, then
N is a zero matrix. Now we can write the Drazin inverse of 4 in the form:

s! o] 1
R (1.3)

R, (1.2)

AP =R

Denote

Q=44 and P=1— A4, (1.4)
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then Q and P are oblique projections onto Range(4*) and Null(4*) respectively. It is easy to check
that

Range(Q) = Range(4”) = Range(4" ) = Range(O") (1.5)
and
Null(4P) = Null(4*) = Range(P) = Null(Q). (1.6)

This paper is organized as follows. We show an upper bound for the Sylvester displacement rank
of the Drazin inverse in Section 2. Then, in Section 3, we give an estimate for the generalized
displacement rank of the Drazin inverse. In Section 4, we present a case study of several versions of
displacement rank of the group inverse of a structured matrix such as close-to-Toeplitz, generalized
Cauchy, Toeplitz-plus-Hankel, and Bezoutian.

2. Sylvester displacement rank

In this section, we study Sylvester displacement rank of the Drazin inverse. We first establish
a relation between the Sylvester displacements of a matrix 4 and its Drazin inverse AP. Then we
show that the Sylvester displacement rank of AP is bounded above by the sum of the Sylvester
displacement ranks of A4 and A*.

Define the Sylvester displacement operator Ay, y:

AyyA=AU — VA.
When 4 is nonsingular, the Sylvester displacement ranks of A and its inverse A~! are related by
rank(4y,yA~") = rank(4y, yA),
since AU — VA = A(UA™" — A='V)A. This says that if 4 is a structured matrix, then 47! is also
structured with respect to Sylvester displacement.
Now, we consider the displacement of the Drazin inverse. First, we establish a relation between
the displacements of 4 and AP.
Proposition 1. Let A€ C"" be of index k, then
Ay yAP = APVP — PUAP — AP (Ay,yA)AP, (2.1)
where P is defined in (1.4).

Proof. It follows from the following identity:
AP(AU — v4)A° = (I — P)UAP — 4PV (I — P)
since P=1—A%4. O
Now, we consider the ranks of the matrices on the right side of the Eq. (2.1). From (1.5), we
have

rank(PUAP) = dim(PU Range(4®)) = dim(PU Range(Q)) = rank(PUQ).
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Similarly, from (1.6), we have Range(Q") = Range((4”)!) and

rank(4°VP) = dim((VP)" Range((4°)")) = rank((VP)" Q") = rank(QVP).
It then follows from (2.1) that

rank(4°V — UAP) < rank(4U — VA) + rank(QVP) + rank(PUQ). (2.2)
However, QVP and PUQ are dependent on A°. We claim that

rank(QVP) + rank(PUQ) < rank(UA* — 4*V). (2.3)

Thus we have the following theorem of Sylvester displacement rank of the Drazin inverse.

Theorem 1. For any A € C"™" of index k,
rank(4y,yA°) < rank(4y, yA) + rank(4y, yA").

This theorem shows that the Sylvester V'U-displacement rank of AP is bounded above by the sum
of the Sylvester UV -displacement rank of 4 and the Sylvester VU-displacement of 4*, where k is
the index of A. So, if both 4 and A* are structured with respect to Sylvester displacement, then 4P
is also structured.

Now we prove (2.3). Following the dimensions in the Jordan canonical form (1.2), we partition

Ui Up i Vu]

Vor Vo

R™'UR = and R'VR= [

U Un
Using the canonical form (1.2), we get

RN (UA" — A*V)R=R'"URR'A*R — R™'A*"RR™'VR

sk 0 sk 0] [V Vi
0 0] o 0] [Vﬂ V22]
[ULSE— Sk —SEr
Uy S* 0

(U Up
| U1 U

Since —S¥V, and U, S* are submatrices of the last matrix in the above equation and S is nonsingular,
we have

rank(UA* — A*V') > rank(S*V,) + rank(U S*) = rank (V1) + rank(Us) ).
On the other hand, rank(V},) = rank(QVP) and rank(U,; ) = rank(PUQ), since, from the canonical
forms (1.2) and (1.3),
‘ R
1

I 0
Q:AAD:R[() 0]13—1 and P=1-Q=R

This proves (2.3).
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3. Generalized displacement

Heinig and Hellinger [4] unified and generalized Sylvester and Stein displacements. The general-
ized displacement operator Ay, is defined by

Ay, )A = apA + ap AU + agVA + a1 VAU,
where a;; (i,j =0,1) are the elements of the 2 x 2 nonsingular matrix a. In particular, when
o0
0 -1

the generalized displacement operator A,y is Stein UV -displacement operator; when

the generalized displacement operator 4,y reduces to Sylvester UV -displacement operator.

In this section, we generalize the result on Sylvester displacement rank to the generalized displace-
ment rank of the Drazin inverse. Specifically, analogous to Theorem 1, we show that the generalized
displacement rank of the Drazin inverse 4P is bounded above by the sum of the generalized dis-
placement ranks of 4 and A*, where k is the index of A.

Theorem 2. For any A€ C"™" of index k and nonsingular a,x € C**?,

rank(Ay,1yA4°) < rank(4,rp,00A4) + rank(Ay, 14", (3.1)

T

where a' is the transpose of a.

The following lemma [4] establishes a relation between the generalized displacement and Sylvester
displacement.

Lemma 1. Given n x n matrices U, V, and 2 x 2 nonsingular matrix a, there exist 2 X 2 matrices
b=[b;] and c = [c;;] (i,j = 0,1) such that bool + bo1V and cool + co\U are nonsingular and

0 1
a=>b"de, where d= .
-1 0

For any n x n matrix A, the generalized displacement
Agv.uyA = (bool + bort V )(A . ).1,0r)A) ool + corU),
where f(W) is a matrix function defined by
Fs (W)= (s00 + 501 W)~ (s10] + 511 W) = (s10] + s11W )(s00l + 501 W)~ (3.2)

for a matrix W and a 2 x 2 nonsingular matrix s = [s;;] (i,j = 0,1) such that sool + s W is
nonsingular.
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In particular, since we are interested in displacement ranks, Lemma 1 gives a useful relation
between the generalized displacement rank and Sylvester displacement rank

I'al’lk(Aa([/" U)A) = rank(Af-C(U)J-b(V)A). (33)

Now, we prove Theorem 2. From Lemma 1, there exist 2 x 2 matrices b, ¢, y, and z such that
0 1
a=>b'dc and x= dez, where d = Lol

and from (3.3),
rank(Aa(U,V)AD) = rank(A‘,-C(V),fb(U)AD), (34)

rank (4 1y, yA) = rank(4 7, v, r.0HA4), (3.5)
and
rank(Ayu,1)A*) = rank(4 7). 7 () A").
Applying (2.2) to (3.4), we further transform Sylvester displacement rank of AP to that of A4:
rank(AfC(V),fb(U)AD) < rank(4 7, vy, r.v)4) + rank(Q f(V)P) + rank(P f ,(U ) Q). (3.6)

Thus, substituting rank(4,v,1,A4) and rank(A4,ry,;yA4) in (3.1) with (3.6) and (3.5), respectively,
it then remains to show that

rank(Qf (¥ )P) + rank(Pf5(U)Q) < rank(4 1.7, 1A").

From (2.3), we have

rank(4 .y, r,w)A*) = rank(Qf.(V)P) + rank(Pf ,(U)Q).

The following proposition shows that rank(Qf(V)P) = rank(QVP) and rank(Pf(U)Q) =
rank(PUQ). It then follows that rank(Qf.(V)P) = rank(QVP) = rank(Qf.(V)P) and
rank(P (U )Q) = rank(PUQ) = rank(Pf ,(U)Q), which completes the proof of Theorem 2.

In particular, if we choose a =x in (3.1), then

rank( Ay, 1 AP) < rank(4 1. yA4) + rank (4w, r)A").

This means that if both 4 and A* are structured with respect to some displacement, then AP is also
structured.

Proposition 2. Given W, let k be the index of A and s = [s;;] (i,j = 0,1) nonsingular such that
sool + so1 W is nonsingular, then

rank(QWP) =rank(Q fs(W)P) and rank(PWQ) =rank(Pf(W)Q),
where fo(W) is defined by (3.2).
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Proof. Since, from (1.6), Range(P) = Null(4¥), we consider QW |Nuli4t) @s an operator restricted
on Null(4%). Then the null space of this operator is

N = Null(4") N Null(4* w),

since Null(Q) = Null(4¥), which implies that Null(QW ) = Null(4* ). It then follows that the rank
of the operator QW |yy4+) equals the dimension of the quotient space

2 =Null(4" o 1.
In other words,
rank(QWP) = dim(2).
Following the above argument, if we define the subspaces
N =Null(4¥) "N Null(4* f(W)) and 2 =Null(4*)e 4,
then rank(Qf(W)P) = dlm(Q) From the definitions of the quotient spaces 2 and 9, if we can

show that dim(./") = dim(./"), then we have dim(2) = dim(2), which implies rank(QWP) =

rank(Qf (W )P).

Indeed, for any x €.4", which means A*x = A¥Wx = 0, there is z = (sool + 501 W)X € A", since
A¥z = AF(sool + soiW)x =0 and A* f (W )z = A*(s10] + s W)x = 0. Conversely, for any ze .1,
which means 4%z =A* (W )z=0, we define X = (sgo/ + 501 W)~ 'z. Then 4* (W )z=0 implies that
A¥(s10l 4+ s, W)x =0 and 4*z = 0 implies that A*(spo + so; W)x = 0. Thus 4*x =0 and 4*Wx =0,
i.e., X € ./, since the matrix s is nonsingular.

Similarly, we can prove that rank(PWQ) = rank(Pf(W)Q) by noting that rank(PWQ) =
rank(QUWHPH) and rank(Pf(W)Q) = rank(OW(f(W))"'P") and considering the subspaces
Null((45)H), Null((4*)FwH), and Null((AH(f(W)HH). O

Example 3.1. Let U be the shift-down matrix Z in (1.1), ¥ the shift-up matrix Z",

1 0
a=x= ,
0 -1

and A4 a singular Toeplitz matrix of index two:

0 0 1 0 0 0 0]
100 1 00 0
01 00 1 0 0
A=]1 0 1 0 0 1 0
1 101 0 0 1
01 1.0 1 0 0
001 10 1 0




154 H. Diao et al. | Journal of Computational and Applied Mathematics 167 (2004) 147—-161

We get
[—1 0 1 1 0 -1 0]
1 0 -3 -1 1 3 -1
1 0 -1 0 0 1 0

AP = — 1 1 1 -1 0 -1 1

]
o o O
o
—
]
=]
=]

and

rank(A,ry0A) =2, rank(dyunA?) =4,  rank(dyu,)A”) = 6.

This example shows that the upper bound given by Theorem 2 is sharp.

4. Case study

In this section we present a case study of Theorem 2. We consider the case when the index of 4
is one and study the displacement rank of the group inverse of close-to-Toeplitz matrix, generalized
Cauchy matrix, Toeplitz-plus-Hankel matrix, and Bezoutian. In this case, (3.1) becomes

rank(A,,1)A%) < rank(4,1(y,1yA4) + rank(Ay, 1)A].
4.1. Close-to-Toeplitz matrix

Let U be the shift-down matrix Z in (1.1), V' the shift-up matrix Z", and

1 0
a=x= ,
0 -1

then we have
AquinAS =A% —ZASZ8,  Apnd=A4—2Z"4Z, and  AuuyyAd =A — ZAZM.
A matrix is said to be close-to-Toeplitz if the displacement ranks
r, =rank(4 — Z"4Z) and r_ =rank(4 — ZAZ™)
are low. Thus, we have
rank(4¢ — Z4ZMy <, + 7, (4.1)

which means that the group inverse of a close-to-Toeplitz matrix is structured. In particular, for a
Toeplitz matrix, », and r_ are at most two, we have the following theorem of the displacement
rank of the group inverse of a Toeplitz matrix.
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Theorem 3. For a Toeplitz matrix A of index one,
rank(4¢ — Z4%7%) < 4.
For a general matrix, we have |r, —r_| <2 [5,6]. The following theorem follows from (4.1).

Theorem 4. Let A€ C"™" be of index one, then
rank(4¢ — Z49Z") < 2rank(4 — ZM47) + 2.

The above theorem shows that the group inverse of a close-to-Toeplitz matrix is also close-to-
Toeplitz. So the group inverse can be computed by fast algorithms such as Newton method presented
in [7,8].

Also, from (4.1), we get the following decomposition of the group inverse.

Theorem 5. The group inverse AS of A€ C™" can be decomposed as
A9 =" L(e)R(r;), (4.2)
i=1

where r =r, +r_, L(c;) and R(r;) are respectively lower and upper triangular Toeplitz matrices
of order n and ¢; and r; are the first column and the first row of L(c;) and R(x;) respectively.

This theorem shows that for a close-to-Toeplitz matrix, the group inverse solution A9b [9] can be
computed in O(nlog(n)) operations if the FFT is used in Toeplitz matrix-vector multiplications.

Example 4.1.1. Let n =6 and

01 00 0 17
00100 0
1 00 1 00
A= )
01 00 1 0
1 01 0 0 1
01 0 1 0 0]

a singular Toeplitz matrix (rank(4)=15) of index one. The group inverse of A4 is

1 -3 5 2 1 =57
3 -1 -1 2 -1 1
6 1 -2 6 -2 0 2 2

8/-1 3 3 -2 -1 5

—1 3 3 6 -1 -3

. 3 -1 -1 =2 3 1

and rank(49 — Z4A9Z") = 4. So, the upper bound given by Theorem 3 is tight.
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We computed the vectors ¢; and r; in decomposition (4.2) in Matlab:

F—0.9967 r0.06117" —0.0004 T r—0.46557"
—0.1251 0.4721 —0.6652 0.5100
0.4467 ~0.5978 0.3630 0.0236
C = 5 r = 5 C = 5 Iy — 5
0.7616 02518 0.3034 0.6255
—0.0151 ~0.1890 0.6058 0.3586
0.6450 | | 0.5629 | | —0.7250 | | —0.0530 |
[ 0.14657 0450277 0.02717 [—0.07377"
0.1683 0.6206 0.2458 0.1784
—0.0883 0.0634 0.1896 0.7335
€= » 3= , G = , Tg=
0.1535 ~0.0141 0.0865 0.0485
0.3368 ~0.3561 ~0.0609 —0.4075
0.1469 | | —0.5302 | | —0.1453 | | 0.5063 |
and measured the error
4
A9 = " L(e)R(r)|| =1.293-107".
i=1

2

4.2. Generalized Cauchy matrix

In this section, we study the displacement rank of the group inverse of a generalized Cauchy
matrix. A matrix 4 is called a generalized Cauchy matrix if for some vectors ¢ = [¢;] and d = [d/],

r = rank(4 diag(d) — diag(c)4) (4.3)

is small compared with the order of 4. In case ¢; # d;, for all i and j, a generalized Cauchy matrix
has the following form:

fHo
A:[’gf} for i,j=1,...,n, (4.4)
C,‘—dj

where f;, g, € C".
When r=1 and f;=g; =1, 4 is the classical Cauchy matrix. Another important case is the class
of Loewner matrices:

A= |2 / fori,j=1,...,n,
G2 izt

whose displacement rank » = 2.
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Substituting U and V' in Theorem 1 with diag(d) and diag(c) respectively, we have
rank (A€ diag(c) — diag(d)4°)
< rank(4 diag(d) — diag(c)4) + rank(4 diag(c) — diag(d)A).
Under the assumption that
¢i—dj=c;—d; forij=1,...,n, (4.5)
we have
rank (A4 diag(c) — diag(d)4) = rank(4 diag(d) — diag(c)4).

Thus, we have the following estimate for the displacement rank of the group inverse of a generalized
Cauchy matrix.

Theorem 6. For the generalized Cauchy matrix A in (4.4), if the index of A is one and the
assumption (4.5) holds then

rank(4° diag(c) — diag(d)4°) < 2 rank(4 diag(d) — diag(c)4).

It follows from the above theorem that the group inverse of the generalized Cauchy matrix of
displacement rank r is also a generalized Cauchy matrix and its displacement rank is 2r.

Theorem 7. Suppose that assumption (4.5) holds. The group inverse AS of the generalized Cauchy
matrix in (4.4) has the form:

H .
A4S = [dxyﬂ forij=1,....n, (4.6)
ity

where X;,y; € C* and r is the displacement rank of A defined in (4.3).

Since the multiplication of a generalized Cauchy matrix of order n by a vector can be carried out
in O(nlog(n)) operations, the above theorem shows that the group inverse solution 49h [9] for a
generalized Cauchy system can be computed in O(nlog(n)) by using (4.6).

Example 4.2.1. Let

1 0 f) g
c=|-1], d=1|2], f, | =c, g | =—c,
1 0 f; g
then ¢ and d satisfy assumption (4.5) and
-1 -1 -1
A=1|-1 1/3 -1
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is singular and of index one. The group inverse

-1 -6 -1

1
AG:T6 -6 12 -6
-1 -6 -1

It can be found that
rank(4°D(¢) — D(d)A°) = rank(4D(c) — D(d)A) = rank(AD(d) — D(c)4) = 1.

It can be verified that vectors x; and y;

10 1 LT 1 =6 1
xi X x3]= 0o 1 ol [yi ¥ Y3]—E 6 36 6

satisfy (4.6).

4.3. Toeplitz-plus-Hankel matrix

A matrix is Toeplitz-plus-Hankel if it is the sum of a Toeplitz and a Hankel. This kind of matrix
has Sylvester W -displacement rank at most 4, where W = Z + Z%. Applying Theorem 1, we have
the following theorem.

Theorem 8. If a Toeplitz-plus-Hankel matrix is of index one, then its group inverse has Sylvester
WW -displacement rank at most 8, where W = Z + ZH.

Example 4.3. Let the Toeplitz-plus-Hankel matrix

11 1 1 1 1 1110 111 1 1 1 1110
11 1 1 1 1 1110 TS S R T N TS S NS U
11 1 1 1 1 1100 (I TS S T S R T N B
11 1 1 1 1 1000 (S TS S U S R T N B
11 1 1 110000 (D TS (A T R T T N B

Tl it gt 00000 [ttt 11
1 1 110000 00 (S TS U T R T T NS B
11 1000000 0 1111 11111
110000000 0 TS S R R T TS TS NS U
00000 00O0O0GO] [01 1 1 1 1 1 1 1 1]
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0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 -1
0 0 0 0 0 0 0 0o -1 -1
0 0 0 0 0 0 0 -1 -1 -1
0 0 0 0 0 0 -1 -1 -1 -1
o 0 0 0 0 -1 -1 -1 -1 )
0 0 0 o -1 -1 -1 -1 -1 -1
0 0 o -1 -1 -1 -1 -1 -1 -1
0 o -1 -1 -1 -1 -1 -1 -1 -1
0 -1 -1 -1 -1 -1 -1 -1 =1 -1}
then we have rank(4W — WA)=4. Its group inverse
[0 0 0 0 0 0 0 0 1/2 0]
0 0 0 0 0 0 0 0 1/2 0
0 0 0 0 0 0 0 I -1 0
0 0 0 0 0 0 1 -1 0 0
6 0 0 0 0 0 1 —1 0 0 0
0 0 0 0 I —1 0 0 0 0
0 0 0 I —1 0 0 0 0 0
0 0 I -1 0 0 0 0 0 0
1/2 12 -1 0 0 0 0 0 0 0
| 0 0 0 0 0 0 0 0 0 0
We find that
rank(A°W — WAS) = 6.
The upper bound for the displacement rank given by Theorem 8 holds.
4.4. Bezoutian
An n x n matrix 4 = [a;;] (i,j =0,...,n— 1) is called a (Hankel) r-Bezoutian if its generating

function

n—1 n—1

ACL )= ayiiy

i=0 j=0
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has the form

1 r

A ) = = a(Dbi(p),
—Hu
k=1

where a;(A) and bi(u) are polynomials. In case of »r =2, by =a,, and b, = —a;, A4 is a (Hankel of
real line) Bezoutian in the classical sense.

Let VA4 denote the matrix with the generating function (4 — u)A(4,u), then A4 is called an
r-Bezoutian if rank(VA) < r. We introduce the (n + 1) x (n + 1) matrix

A4 0
0 0|

VA=ZA - AZ8,,.

then

Hence, for an r-Bezoutian we have

rank(Z,. 1A — /]Zfﬂ) <r.
Also, we have the estimate

rank(Z,Er 1/] — AZ,,1) <rank(VA4) < r.
Applying Theorem 1, we obtain

rank(Z, 1A% — 497" ) < 2r.
We know that

g

0 0

We conclude this section by the following theorem.

Theorem 9 (Bezoutian). The group inverse of an r-Bezoutian is a 2r-Bezoutian.

5. Concluding remarks

In this paper, we study the displacement rank of the Drazin inverse. We show that Sylvester
displacement rank of the Drazin inverse of a matrix 4 is the sum of the Sylvester displacement ranks
of A and A*, where k is the index of 4. We generalize the result to the generalized displacement.
Finally, we present a case study of the displacement rank of the group inverse. It is natural to ask if
we can extend our results to linear operators in Hilbert spaces [11]. This will be the future research.
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