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Abstract We present componentwise condition numbers for the problems of Moore-

Penrose generalized matrix inversion and linear least squares. Also, the condition num-

bers for these condition numbers are given.
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1 Introduction

Condition number is a measurement of the sensitivity of a problem to the perturbation in

its inputs. In general, consider a function f(x). Suppose that the input x is perturbed by Δx.

The condition number κ for the problem f(x) quantifies the magnification of the relative errors

caused by the perturbation. Specifically, κ satisfies

|f(x + Δx) − f(x)|
|f(x)| ≤ κ

|Δx|
|x| .

Assuming |Δx| ≤ ε |x|, we can define the condition number

κ = lim
ε→0+

sup
|Δx|≤ε |x|

|f(x + Δx) − f(x)|
ε |f(x)| .

In the problem of inverting a nonsingular matrix A, the condition number

κ(A) = ‖A‖ ‖A−1‖
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represents the ratio between the relative errors in A and its inverse:

‖(A + ΔA)−1 − A−1‖
‖A−1‖ ≤ κ(A)

1 − κ(A)‖ΔA‖/‖A‖
‖ΔA‖
‖A‖ ,

assuming the perturbation ΔA is small relative to A [4]. In this paper, ‖ · ‖ denotes the 2-

norm. The condition number for solving a nonsingular system of linear equations Ax = b is also

κ(A) = ‖A‖ ‖A−1‖ in that

‖(A + ΔA)−1(b + Δb) − A−1b‖
‖A−1b‖ ≤ κ(A)

(‖ΔA‖
‖A‖ +

‖Δb‖
‖b‖

)
+ O(ε2),

for ΔA and Δb such that ‖ΔA‖ ≤ ε ‖A‖, ‖Δb‖ ≤ ε ‖b‖, and A + ΔA is nonsingular [4].

In the general case when A can be rectangular or rank-deficient, the Moore-Penrose gener-

alized inver A† of A is introduced. It can be defined as the unique matrix satisfying the follow

four matrix equations for X [2]:

AXA = A, XAX = X, (AX)T = AX, (XA)T = XA.

The condition number for the generalized matrix inversion is given by ‖A‖ ‖A†‖ [6]. For the

problem of linear least squares

min
x

‖b − Ax‖, (1.1)

the minimal norm solution is A†b and the condition number is approximately ‖A‖ ‖A†‖ when the

residual r = b − Ax is small and ‖A‖2‖A†‖2 otherwise [6]. The condition numbers for weighted

Moore-Penrose inverse and weighted least squares are discussed in [8, 9]. The condition numbers

for structured least squares are given in [10].

The above condition numbers are called normwise condition numbers, because they are

in the forms of matrix norms. The normwise analysis has two major drawbacks: It is norm

dependent; it gives no information about the sensitivity of individual components [7]. Rohn

[7] presented componentwise condition numbers for matrix inversion and nonsingular system of

linear equations. Let A = [Aij ]. Denoting |A| = [|Aij |], we say |A| ≤ |B| when |Aij | ≤ |Bij | for

all i and j. The componentwise condition number for matrix inversion is defined by

cij(A) = lim
ε→0+

sup
{ |(A + ΔA)−1 − A−1|ij

ε|A−1|ij , |ΔA| ≤ ε|A|
}

,

for nonsingular A + ΔA. Rohn proposed

cij(A) =
(|A−1| |A| |A−1|)ij

|A−1|ij . (1.2)

For the nonsingular system Ax = b of linear equations, Rohn defined

ci(A, b) = lim
ε→0+

sup
{ |(A + ΔA)−1(b + Δb) − A−1b|i

ε|A−1b|i , |ΔA| ≤ ε|A|, |Δb| ≤ ε|b|
}

,
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for nonsingular A + ΔA, and proposed

ci(A, b) =
(|A−1| |A| |A−1b| + |A−1| |b|)i

|A−1b|i . (1.3)

In this paper, we present a componentwise condition number for the Moore-Penrose generalized

inversion and a componentwise condition number for the minimal norm linear least squares in

Sections 2 and 3 respectively. These condition numbers are generalizations of those in [7] in

that our condition numbers become (1.2) and (1.3) in the nonsingular cases. Then in Section 4,

we show condition numbers, called level-2 condition numbers, for our componentwise condition

numbers.

2 Generalized Inversion

The following theorem shows a componentwise condition number for the generalized matrix

inversion.

Theorem 2.1 Let the componentwise condition number for the Moore-Penrose generalized

matrix inversion be defined by

cij(A) = lim
ε→0+

sup
{ |(A + ΔA)† − A†|ij

ε|A†|ij , |ΔA| ≤ ε|A|
}

, (2.1)

for R(ΔA) ⊆ R(A) and R(ΔAT) ⊆ R(AT), then

cij(A) ≤ (|A†| |A| |A†|)ij

|A†|ij
and this bound is achievable.

Proof It is shown in [1] that if R(ΔA) ⊆ R(A), R(ΔAT) ⊆ R(AT), and ‖A†‖ ‖ΔA‖ < 1,

then

(A + ΔA)† = (I + A†ΔA)−1A†.

It then follows from |ΔA| ≤ ε|A| and the expansion of (I + A†ΔA)−1 that

(A + ΔA)† − A† = −A†ΔAA† + O(ε2)E, (2.2)

where E is the matrix of which all entries equal one. Thus, componentwisely, we have

|(A + ΔA)† − A†|ij = |A†ΔAA†|ij + O(ε2).

Since

|A†ΔAA†|ij ≤ (|A†| |ΔA| |A†|)ij ≤ ε(|A†| |A| |A†|)ij ,

from the definition (2.1), we have the inequality

cij(A) ≤ (|A†| |A| |A†|)ij

|A†|ij .
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This bound can be achieved for any matrix A such that A = |A| and A† = |A†|. Indeed, let

ΔA0 = −εA, then ΔA0 satisfies

|ΔA0| = ε|A|, R(ΔA0) = R(A), and R(ΔAT
0 ) = R(AT).

Now, using (2.1), (A + ΔA0)† = (1 − ε)−1A† implies that

cij(A) = lim
ε→0+

sup
{ |(A + ΔA)† − A†|ij

ε|A†|ij , |ΔA| ≤ ε|A|
}

≥ lim
ε→0+

|(A + ΔA0)† − A†|ij
ε|A†|ij

= lim
ε→0+

ε|A†|ij
(1 − ε)ε|A†|ij

= 1.

On the other hand, since A = |A| and A† = |A†|,

(|A†| |A| |A†|)ij

|A†|ij =
|A†AA†|ij
|A†|ij = 1.

This completes the proof.

For example, the matrix E, of which all entries equal one, satisfies |E| = E and |E†| =

n−2E = E†, where n is the order of E.

Since

|A†| = |A†AA†| ≤ |A†| |A| |A†|,

we have (|A†| |A| |A†|)ij/|A†|ij ≥ 1. Thus, from Theorem 2.1, we propose

cij(A) =
(|A†| |A| |A†|)ij

|A†|ij (2.3)

as the componentwise condition number for the generalized matrix inversion and define

c(A) = max
i,j

(cij(A)). (2.4)

The condition number (2.3) is a generalization of (1.2), since A† = A−1 when A is nonsin-

gular.

3 Linear Least Squares

Analogous to the componentwise condition number for the generalized matrix inversion

presented in the previous section, we have the following result for the componentwise condition

number for the minimal norm linear least squares problem.
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Theorem 3.1 Let the componentwise condition number for the least squares problem

(1.1) be defined by

ci(A, b) = lim
ε→0+

sup
{ |(A + ΔA)†(b + Δb) − A†b|i

ε|A†b|i , |ΔA| ≤ ε|A|, |Δb| ≤ ε|b|
}

, (3.1)

for R(ΔA) ⊆ R(A) and R(ΔAT) ⊆ R(AT), then

ci(A, b) ≤ (|A†| |A| |A†b| + |A†| |b|)i

|A†b|i
and this bound is achievable.

Proof Applying (2.2), we get

(A + ΔA)†(b + Δb) − A†b = A†Δb − A†ΔAA†b + O(ε2)e,

where e is the vector of which all the components equal one. Then, in componentwise form, we

have

|(A + ΔA)†(b + Δb) − A†b|i = |A†Δb − A†ΔAA†b|i + O(ε2).

Since

|A†Δb − A†ΔAA†b|i ≤ (|A†Δb| + |A†ΔAA†b|)i ≤ ε(|A†| |A| |A†b| + |A†| |b|)i,

from the definition (3.1), we have

ci(A, b) ≤ (|A†| |A| |A†b| + |A†| |b|)i

|A†b|i .

Again, the above bound is achievable for any A and b such that A = |A|, A† = |A†|, and b = |b|.
In fact, setting

ΔA0 = −εA and Δb0 = εb,

we get

|ΔA0| = ε|A|, R(ΔA0) = R(A), R(ΔAT
0 ) = R(AT), and |Δb0| = ε|b|.

Then, from (3.1), (A + ΔA0)† = (1 − ε)−1A† and b + Δb0 = (1 + ε)b imply that

ci(A, b) = lim
ε→0+

sup
{ |(A + ΔA)†(b + Δb) − A†b|i

ε|A†b|i , |ΔA| ≤ ε|A|, |Δb| ≤ ε|b|
}

≥ lim
ε→0+

|(A + ΔA0)†(b + Δb0) − A†b|i
ε|A†b|i

= lim
ε→0+

2
1 − ε

= 2.
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On the other hand, since A = |A|, A† = |A†|, and b = |b|,
(|A†| |A| |A†b| + |A†| |b|)i

|A†b|i =
|A†AA†b + A†b|i

|A†b|i = 2.

This completes the proof.

From Theorem 3.1, we propose

ci(A, b) =
(|A†| |A| |A†b| + |A†| |b|)i

|A†b|i (3.2)

as the componentwise condition number for the least squares and define

c(A, b) = max
i

(ci(A, b)). (3.3)

The condition number (3.2) is a generalization of (1.3), since A† = A−1 when A is nonsin-

gular.

4 Level-2 Condition Numbers

In the previous two sections, we proposed the componentwise condition numbers. How

sensitive are these condition numbers to the perturbations? Demmel [3] introduced the concept

of condition number of the condition number and showed that for certain problems condition

number of the condition number is the condition number up to a constant factor. Higham [5]

investigated the condition numbers, called level-2 condition numbers, for the condition numbers

for matrix inversion and nonsingular linear systems. In this section, we present level-2 condition

numbers for the generalized inversion and least squares. Our results are generalizations of those

in [5] in that they are the same as those in [5] for the nonsingular cases.

Theorem 4.1 Let the level-2 condition number for the componentwise condition number

cij(A) for the Moore-Penrose generalized matrix inversion be defined by

c
[2]
ij (A) = lim

ε→0+
sup

{ |cij(A + ΔA) − cij(A)|
εcij(A)

, |ΔA| ≤ ε|A|
}

, (4.1)

for R(ΔA) ⊆ R(A) and R(ΔAT) ⊆ R(AT), then

c
[2]
ij (A) ≤ 1 + 3 c(A).

Proof We first derive lower and upper bounds for |(A + ΔA)†|. From (2.2) and |ΔA| ≤
ε |A|, we get ∣∣|(A + ΔA)†| − |A†|∣∣ ≤ ε |A†| |A| |A†| + O(ε2)E. (4.2)

It then follows from the definition (2.3) of cij(A) that

(1 − ε cij(A))|A†|ij ≤ |(A + ΔA)†|ij ≤ (1 + ε cij(A))|A†|ij .
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From (2.4), c(A) ≥ cij(A) ≥ 1 for all i and j, hence

(1 − ε c(A))|A†|ij ≤ |(A + ΔA)†|ij ≤ (1 + ε c(A))|A†|ij , (4.3)

for all i and j, which means

(1 − ε c(A))|A†| ≤ |(A + ΔA)†| ≤ (1 + ε c(A))|A†|. (4.4)

Then, using (4.4) and |A + ΔA| ≤ (1 + ε)|A|, we have the upper bound:

(|(A + ΔA)†| |A + ΔA| |(A + ΔA)†|)ij

≤ (1 + ε c(A))2(1 + ε)(|A†| |A| |A†|)ij + O(ε2)

= (1 + ε + 2ε c(A))((|A†| |A| |A†|)ij + O(ε2) (4.5)

Similarly, we can obtain the lower bound

(|(A + ΔA)†| |A + ΔA| |(A + ΔA)†|)ij ≥ (1 − ε − 2ε c(A))((|A†| |A| |A†|)ij + O(ε2). (4.6)

Now, using (4.3) and (4.5), we get

cij(A + ΔA) =
(|(A + ΔA)†| |A + ΔA| |(A + ΔA)†|)ij

|(A + ΔA)†|ij
≤ (1 + ε + 2ε c(A))(|A†| |A| |A†|)ij

(1 − ε c(A))|A†|ij + O(ε2)

= (1 + ε + 2ε c(A))(1 + ε c(A))cij(A) + O(ε2)

= (1 + ε + 3ε c(A))cij(A) + O(ε2),

which implies that
cij(A + ΔA) − cij(A)

ε cij(A)
≤ 1 + 3c(A) + O(ε).

Similarly, using (4.3) and (4.6), we get

cij(A + ΔA) − cij(A)
ε cij(A)

≥ −1 − 3c(A) + O(ε).

This completes the proof.

Analogous to the level-2 condition number for the componentwise condition number for the

Moore-Penrose generalized inverse, we can also get level-2 condition number for the componen-

twise condition number for the least square problem as follows.

Theorem 4.2 Let the level-2 condition number for the componentwise condition number

ci(A, b) for the minimal norm linear least square problems defined by

c
[2]
i (A, b) = lim

ε→0+
sup

{ |ci(A + ΔA, b + Δb) − ci(A, b)|
εci(A, b)

, |ΔA| ≤ ε|A|, |Δb| ≤ ε|b|
}
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for R(ΔA) ⊆ R(A) and R(ΔAT ) ⊆ R(AT ) then

c
[2]
i (A, b) ≤ 2c(A, b) + c(A) + 1.

Proof For the least square problem (1.1), the minimal norm solution is x = A†b, where

A† is the Moore-Penrose generalized inverse. Let x + Δx be the minimal norm solution of the

perturbed least squares problem miny ‖(b + Δb) − (A + ΔA)y‖2, then, from (2.2),

x + Δx = (A + ΔA)†(b + Δb)

= (A† − A†ΔAA† + O(ε2)E)(b + Δb)

= A†b + A†Δb − A†ΔAA†b + O(ε2)e.

When |ΔA| ≤ ε|A| and |Δb| ≤ ε|b|, we have the following upper and lower bounds for |x + Δx|:

|A†b| − ε|A†||b| − ε|A†||A||A†b| + O(ε2) ≤ |x + Δx| ≤ |A†b| + ε|A†||b| + ε|A†||A||A†b| + O(ε2).

It then follows the definition (3.2) of ci(A, b) that

|x|i(1 − εci(A, b)) + O(ε2) ≤ |x + Δx|i ≤ |x|i(1 + εci(A, b)) + O(ε2).

Since c(A, b) ≥ ci(A, b), from (3.3), we obtain

|x|i(1 − εc(A, b)) + O(ε2) ≤ |x + Δx|i ≤ |x|i(1 + εc(A, b)) + O(ε2),

for all i, which implies

|x|(1 − εc(A, b)) + O(ε2) ≤ |x + Δx| ≤ |x|(1 + εc(A, b)) + O(ε2). (4.7)

Then, using (3.2), (4.4), (4.7), |ΔA| ≤ ε|A|, and |Δb| ≤ ε|b|, we get the following upper bound

for ci(A + ΔA, b + Δb),

ci(A + ΔA, b + Δb) =
(|(A + ΔA)†| |A + ΔA| |x + Δx|)i

|x + Δx|i +
(|(A + ΔA)†| |b + Δb|)i

|x + Δx|i
≤ ((1 + εc(A))|A†|(1 + ε)|A|(1 + εc(A, b))|x|)i

|x|i(1 − εc(A, b))

+
((1 + εc(A))|A†|(1 + ε)|b|)i

|x|i(1 − εc(A, b))

=
(1 + ε + εc(A) + εc(A, b))(1 + εc(A, b))(|A†| |A| |A†b|)i

|x|i
+

(1 + ε + εc(A))(1 + εc(A, b))(|A†| |b|)i

|x|i + O(ε2)

=
(1 + ε + εc(A) + 2εc(A, b))(|A†| |A| |A†b|)i

|x|i + O(ε2)

+
(1 + ε + εc(A) + εc(A, b))(|A†| |b|)i

|x|i + O(ε2)

≤ (1 + ε + εc(A) + 2εc(A, b))ci(A, b) + O(ε2). (4.8)
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Similarly, we can get the lower bound for ci(A + ΔA, b + Δb)

ci(A + Δ, b + Δb) ≥ (1 − εc(A) − ε − 2εc(A, b))(|A†| |A| |x|)i

|x|i
+

(1 − ε − εc(A) − εc(A, b))(|A+| |b|)i

|x|i + O(ε2)

≥ (1 − ε − εc(A) − 2εc(A, b))ci(A, b) + O(ε2). (4.9)

Hence, using (4.8) and (3.2), we obtain

ci(A + ΔA, b + Δb) − ci(A, b)
εci(A, b)

≤ 1 + c(A) + 2c(A, b) + O(ε).

Similarly, using (4.9) and (3.2), we also have

ci(A + ΔA, b + Δb) − ci(A, b)
εci(A, b)

≥ −1 − c(A) − 2c(A, b) + O(ε).

This completes the proof.

5 Conclusion

We have presented the componentwise condition numbers for the generalized inversion and

least squares. They include the componentwise condition numbers for matrix inversion and

nonsingular linear system proposed by Rohn [7] as special cases. Also, we have generalized

the level-2 condition numbers by Higham [5] to the generalized inversion and least squares and

showed that condition numbers of our componentwise condition numbers are the componentwise

condition numbers.
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