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In statistical computation, the inverse or pseudoinverse of a covariance ma-
trix is often needed. When random variables are added, the order of the
covariance matrix is increased. It is desirable to efficiently update the pseu-
doinverse when the order of the covariance matrix is increased. Instead of
updating the pseudoinverse, Larimore [2, 3] proposed a method for updat-
ing a factor of the pseudoinverse. Let y and x; be two vectors of random
variables and Y and X; the two corresponding data matrices such that the
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Abstract

This paper presents a distributed algorithm for prediction error
computation.

Introduction

covariance matrices

Counsider an estimation problem where the minimum variance unbiased es-

Sy, =YTX; and S;; =X X.
X1

timate of y from x; is given by

" -1
Y = Syx, 511 X1

and the prediction error variance is

El(ly —9)(y — 9)"] = Syy — Syx, S11' Sxuy-



The covariance matrix S1; is symmetric and positive semidefinite. In gen-
eral, S11 may be singular. In this general case, Larimore [2, 3] has shown
that if rank(S11) = 71 and a matrix M; satisfies

MESy M, =1, (1)

then the prediction error variance can be expressed by Syy —Syx, M1 M 1T Sx,y-
Actually, since (M M{)S11(MiML) = MiM{, M is a factor in the {2}-
inverse M1M£F of S11. How to find such M;? Suppose that

Ry O

X1=[U1[71]l 0 0

] Wi "
is the complete orthogonal decomposition [1] of X, we call X; = U1 Ry VlT
the economy version of the complete orthogonal decomposition. It then can
be verified that M; = VlRl_1 satisfies (1).

Now, a vector xo of ny random variables is added to the ni-vector x;
to form x = [x] x3]T. If the covariance matrix is S = XTX, rank(S) = r,
and M satisfies MTSM = I,, then the prediction error variance is Syy —
SyxMM TSxy. Since the covariance matrices Syx and Sxy can be easily
obtained by updating Syx, and Sx,y, the problem remains to compute M
from M. Specifically, given M; satisfying M{FSHMl = I,,, find M such
that M'SM = I,. An updating method for the M matrix is presented in
Section 2. Then in Section 3, assuming the samples of random variables
are collected over various locations, we give a distributed algorithm for the
prediction error computation.

2 An Updating Scheme
Let the covariance matrix

S = [Xl X2]T[X1 X2] — [ Sll 512 ] :

S;FQ S99
where X is m-by-n1 and X5 is m-by-ng, m > ni + ns. Suppose that
X, = UsRy V'

is the economy version of the complete orthogonal decomposition of Xj,
where Ry is ro-by-ro upper triangular and nonsingular. Thus, the matrix
My = VoRy I satisfies MZT Soo My = I.,. In practice, it is rare that a matrix



is exactly singular. In this case, we set the small blocks in the R matrix in
the complete orthogonal decomposition to zero and then get the economy
version.
Suppose that
(X1 M1)T (XaMa) = Q13Q;

is the full SVD, where )1 and Q)2 are orthogonal and of orders r; and 7o
respectively and

g1 0
5= ,

0 Ory

0 0

assuming r; > r9. Letting
Ji=MQ1 and Jy = MyQo,
we have the following equations

JESnJi = QTMES\ 1M Q) =1,
Jy Soado = Q3 My S:2MQs = I,
JESids = QIMIXTX,MyQy = 3.

Finally, the block upper triangular matrix

[ M —s=D
M‘lo JoD ]

where D = diag(y/1 - o7, .., V1 —02,) so that DT(I = STS)D = I,,, sat-
isfies

MYSM
[m -2=D)'[ Sy S |[M —JED
|l o & SL Sw || 0 D
C(er —=p 1" [ 0] (80 Se][h o0][QF —=p
|0 D 0 Jo SL Sao 0 Jo 0 D
C[qr =p]"[1, s[qF =D
- 0 D > I, 0 D
e DX Qf -¥D
= lo pru-s"s) || 0 D




I, 0
0 DY(I-%'S)D
= I.

As shown in [3] , 7 =71 + 79.

3 Distributing the Computation

Suppose that the data matrix X is distributed among k locations: X =
[X1, ..., Xk]. Location 7 has a block X; of columns and computes a column
block M; of M = [Mj,..., My] and a column block Y; of XM = [Y7,..., Yi].
Note that M is block upper triangular. The algorithm for location 7 is as
follows.

Algorithm

Get Yl, ceey Yifl;

Get My, ..., M;_1;

Complete orthogonal decomposition X; = UiRiViT;
SVD [Yla "',Y;—I]TUi = QIEQ’QT, Y= diag(aj);

Ji = [My, ..., M; 1]Qu;

Jo = ViR Q;

L _le.D _ . . 2.
MZ—[ JoD ],whereD—dlag(\/l o7 );

Y; = —[X1, .., X4 1] iBD + X oD = —[Y1,...,Y; 1]Q13D + X; J2D.
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