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Abstract

We present two orthogonalization schemes for stablizing Lanczos
tridiagonalization of a complex symmetric matrix.
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1 Introduction

For any complex symmetric matrix A of order n, there exist a unitary @ €
C™*™ and an order n nonnegative diagonal ¥ = diag(o1, ...,04,), where o1 >
g9 > -+ > op > 0, such that

A=Q2Q" or QM4AQ==x.

This special form of singular value decomposition (SVD) is called Takagi
factorization [4, 8].

The computation of the Takagi factorization consists of two stages: tridi-
agonalization and diagonalization [1]. A complex symmetric matrix is first
reduced to a complex symmetric and tridiagonal form. There are various
tridiagonalization schemes. Householder transformations can be used [1].
Unfortunately, when A is sparse or structured, Householder transformations
destroy sparsity or structure. Alternatively, Lanczos method can be applied.
Since Lanczos algorithm involves only matrix-vector multiplication, sparsity
and structures can be exploited to develop fast tridiagonalization algorithms
[5].

The second stage, diagonalization of the complex symmetric tridiagonal
matrix computed in the first stage, can be implemented by the implicit QR
method [1, 5].



This paper presents a stable Lanczos tridiagonalization algorithm for
complex symmetric matrices. In Section 2, we describe the Lanczos tridi-
agonalization algorithm for complex symmetric matrices. Unfortunately,
this method is unstable in floating-point arithmetic. A simple selective or-
thogonalization scheme and a practical partial orthogonalization scheme are
proposed in Sections 3 and 4. Finally, Section 5 demonstrates our numerical
experiments.

2 Lanczos Tridiagonalization

For an n-by-n complex symmetric A, we can find a unitary Q € C™*" such
that

T =Q"AQ (1)
is complex symmetric and tridiagonal. For example, () may consists of a
sequence of Householder transformations [1]. Let
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and rewrite (1) as )
4Q=QT. 3)

Comparing the jth columns on the both sides of (3), we have

Aq; = Bj—19j-1 + a;q; + Bjqj+1,  Boqo =0,
which leads to a Lanczos three-term recursion:
Biqj+1 = AQj — ajdj — Bj-1q;-1- (4)
The orthogonormality of q; implies
o = q;{qu.
Let r; = AqQ; — ajq; — Bj—14;-1, then B; = %|rj||2 and q;41 = r;/6; if

r; # 0. Thus we have a generic Lanczos tridiagonalization algorithm for
complex symmetric matrices.



Algorithm 1 (Lanczos Tridiagonalization) Given a starting vector b
and a subroutine for matriz-vector multiplication y = Ax for any x, where
A is an n-by-n complex symmetric matriz. This algorithm computes the

diagonals of the complez symmetric and tridiagonal matriz T' in (2) and a
unitary Q such that T = QUAQ.

qo = 0; Bo = 0;
q1 = b/||b||2;
forj=1ton
y = Aq;;
aj = qjy;
y =Y — a;q; — Bj-195-1;
Bi = llyll2;
if 8; = 0, quit; end
qj+1 =y/Bj;
end.

Since Lanczos method involves only matrix-vector multiplication, fast
tridiagonalization can be developed by exploiting the structure of A [5].
Unfortunately, in floating-point arithmetic, the above algorithm suffers from
the loss of the orthogonality of the computed ). To circumvent the prob-
lem, we may orthogonalize each q; against all previous q;_1,...,qi. This is
called complete orthogonalization. For example, Householder matrices [3,
Page 483] or Gram-Schmidt scheme [2, Page 375] can be used. Complete
orthogonalization, however, is prohibitively expensive. In the following sec-
tion, we propose a selective orthogonalization scheme.

3 Selective Orthogonalization

Analogous to the Lanczos algorithms for symmetric eigenvalue problem [2],
in this section, we present a selective orthogonalization scheme for the Lanc-
zos tridiagonalization of a complex symmetric matrix.

Before discussing the selective orthogonalization, we introduce some no-
tations and definitions. During the kth iteration, oy, Bk, and qgy1 are
computed. Denote

Qk = [Qb ) qk)]



and
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Suppose that
T, =USU" (5)

is the Takagi factorization of Tj. We call the singular values or Takagi values
on the diagonal of 3 the Takagi-Ritz values and the columns of QU or their
complex conjugates the Takagi-Ritz vectors. These values and vectors are
approximations of the Takagi values (singular values) and Takagi vectors
(left and right singular vectors) of A.

The basic idea behind the selective orthogonalization is to orthogonalize
dx+1 against only few selected Takagi-Ritz vectors, rather than all previously
computed q;. What are the criteria for selecting the Takagi-Ritz vectors?

Similar to the case of real symmetric tridiagonalization problem consid-
ered by Paige [6]. we will show, for the case of complex symmetric tridiag-
onalization, that

if |Brukl/[All2 < Ve then |giy;Qrul > O(Ve), (6)

where u is a column of U in (5) and uy is the kth or the last entry of u and e
is the unit of roundoff. A large |qE +1@rul, which measures the orthogonality
between qg41 and a Takagi-Ritz vector Qru indicates that qxy; has a large
component in the direction of QQyu. We then orthogonalize qj1 against the
Takagi-Ritz vector.

Now, we prove the statement (6). Incorporating roundoff errors into the
three-term recursion (4), we write

Biqj+1 + £ = Aq; — ajq; — Bj—1qj—1, J=1,.,k, (7)
where f; represents roundoff errors. In matrix form,
[0,...,0, Brar 1] + Fi = AQk — QxTh,
where Fj, = [f1, ..., f;], that is
AQk = QrTr + Brar+1e; + Fr

where e; = [0,...,0,1]T. Premultiplying the above equation with QE, we
get -
QrAQk = Q) QiTx + BrQiarr1€ + Q) F.



Since QEAQ;C is symmetric,
(QRQkT: — Tx Qi Q) + Be(QF k1€ — exdr1Qk) + (QFF — FF Q) = 0.

Let QEQk = I+ C + CH, where C is the strictly lower triangular part of
QEQ;C. We assume that q;; is almost orthogonal to q; for j = 1,...,k, i.e.,
q?ﬂqj = O(e), then both the diagonal and subdiagonal of C are zero. Also,
qi '11dx = O(¢) implies that the last entry of ai +1Q1€ is almost zero, which
means that e;gq;cF +1Qk is also strictly lower triangular. Thus CT} — T;C is
the strictly lower triangular part of QEQka — TkQEQk and @kekq;f 1@k 18
the strictly lower triangular part of ﬂk(QEqueE — (_aqu_HQk). Denoting
L as the strictly lower triangular part of QEFk — F,;F Q, we get

(CTy — TvC) — Prery1Qr + L = 0. (8)

Let (o,u) be a Takagi pair of T, then premultiplying and postmultiplying
(8) with u'! and @ respectively, we have

o(u'Cu —u"Ca) - Brirqr,Qra +u L = 0.
Consider the real part. Since Real(u®Cu — u'Cia) = 0,
|Real(Britxqy 1 Qkt)| = [Real(u Lu))|.
The right side
[Real(u"La)| < [u"'La| < ||L]; = O(|F||2) = O(e || All2).
The left side

Real(Byixqj, Qru)|
= |Br(Real(uy) Real(qyy; Qgu) — Im(uy) Im(qy; Qpu))|-

Thus
|8 (Real(uy,) Real(qy 1 Qpu) — Im(ug) Im(qily; Qru))| = O(e || All2)-

If | Brug| /|| All2 < V€, then [BxReal(uk)|/||All2 < v/€ and |Belm(uk)|/[|All2 <
v/€. Consequently,

O(e||lAll2) = |BxReal(urqs,,Qr0)|

< Vel Al2(|Real(qp 1 Qru)| + Im(qi 1 Qku)))
~ VellAlzlap 1 Qrul,



which implies that g}, Qru| > O( /).

Finally, we present the following Lanczos algorithm with a simple selec-
tive orthogonalization scheme. We use the largest singular value o; of T} as
an approximation of ||A]|; and Gram-Schmidt method for orthogonalization.

Algorithm 2 (Selective Orthogonalization) Given a starting vector b
and a subroutine for matriz-vector multiplication y = Ax for any x, where
A is an n-by-n complex symmetric matriz. This algorithm computes the
diagonals of the complex symmetric and tridiagonal matriz T in (2) and a

unitary Q such that T = QHAQ.

qo = 0; Bo = 0;
ai = b/[[b||2;
forj=1ton
y = Aq;;
aj = qj'y;
Yy =Y —ojq; — fj1q;-1;
Bi = llyll2;
Compute Takagi factorization T; = USUT;
fork=1toj
vV = Qjug;
y=y—y)v;
end
end
Bi = llyll2;
if ﬁj = 0, quit; end
qj+1 =Yy/Bj;
end.

This selective orthogonalization scheme has two drawbacks. First, it requires
the Takagi factorization of T} for each iteration. Second, it orthogonalizes
q;+1 against only selected Takagi-Ritz vectors. What is wrong with the se-
lective orthogonalization? Suppose that qquH has exceeded the threshold,
usually some neighboring qZquH have grown to about the threshold [7]. If
we reorthogonalize q;;1 only against qi, then its effect will be wiped out
immediately by the neighboring terms. In the next section, we apply the
partial reorthogonalization [7] to complex symmetric case to overcome these
two drawbacks.



4 Partial Orthogonalization

To avoid the calculation of the Takagi-Ritz vectors and values, we check
the orthogonalities qqu_H of Takagi vectors, instead of Takagi-Ritz vec-
tors. In this section, we first establish a recursion on the estimates for the
orthogonalities of Takagi vectors. This recursion provides an efficient way
of monitoring the orthogonality. Based on the recursion, we propose a re-
orthogonalization algorithm.

From (7), we have

Bidj+1 = Aqj —oyq; — Bj—19-1 — fj
Brar+1 = Ay — Qe — Br1qk-1 — fi-

Premultiplying the above two equations with qg and q;{ respectively and
denoting wy ; = ngj, we get

H 4= H

Biwkj+1 = ApAQj — djwk,j — B 1wWk,j—1 — A £
H 4~ H

Brwjk+1 = q; AQx — apwjk — Pr—1wjk—1 — qj fx-

Since A is symmetric, qEqu = qJHAqk. Thus, subtracting the above two
equations and noting that wy; = w;, we have the following recursion on
the orthogonalities of the Takagi vectors:

Biwk,j+1 = 5k‘:)k+1,j+ak‘:)k,j_ajwk,j+/6k—1wk—1,j_ﬁj—lwk,j—l‘FQ?fk_Qkaj'

(9)
The above equation shows that we need wy 1, wg; and w1 ; computed
in iteration j and wy ;_1 in iteration j — 1 to calculate wy ;1i. Obviously,
we define wy ; = 0 and w;; = 1 for all j. Thus, we also define

Y = Wyt (10)

as a random variable whose value will be discussed later. The problem is
that the round-off error term qj'fy — qi'f; in (9) is unknown. Again, we
define

Ok, = qj fx — ai fj, (11)

as a random variable whose value will be discussed soon. Using these nota-
tions, we get

—1 _ _ _
Wk,j+1 = B; (BeWk+1,j + kWr,j — ajwy,j + Br—1@k—1,5 — Bj—1wk,j—1) + Ok,

(12)



for k=1,...,7 — 1, with

Po=wo; =0, wjjr1=17; and wjiij41 =10

How do we choose the values for 1; in (10) and 6y ; in (11)? Based on the
statistical study by Simon [7], let € be the machine precision, we propose
that
b = ne%(\h +iT;), T, T; € N(0,0.6), (13)
j
where N(0,v) means normal distribution with zero mean and variance v,
and
Qk,j =e(B + Bj)(@r +1i0;), O, ©; € N(0,0.6). (14)

To aleviate the problem caused by isolated reorthogonalization, when
Wi, j+1 exceeds the threshold /e for some k, we reorthogonalize q;1 against
all the previous Takagi vectors qg, k = 1, ..., j. Moreover, we always perform
a reorthogonalization in the subsequent iteration. Theoretically, after the
reorthogonalization, wg j+1 = 0, kK = 1,...,5. To incorporate the rounding
errors, we set

Wk j+1 = G(Qr + iQi), Qr, Q; € N(O, 1.5). (15)
Finally, we have the following algorithm for the partial reorthogonalization.

Algorithm 3 (Partial Orthogonalization) Given a starting vector b and
a subroutine for matriz-vector multiplication y = Ax for any x, where A is
an n-by-n complexr symmetric matriz. This algorithm computes the diago-

nals of the complez symmetric and tridiagonal matriz T in (2) and a unitary
Q such that T = QUAQ.

qQ =0; 8o =0; w1 =1;

q1 = b/|[blz;
forj=1ton
y = Aqy;
aj = qj'y;
y =Yy — a;q; — Bj-1q;-1;
Bi = llyll2;

Compute wy, j11 for k =1,...,5 — 1 using (12);
Set wj j+1 to 9 using (13);

Set w]'+1,j+1 = 1;

if maxi<k<j(lwe,j+1]) > Ve



Orthogonalize y against qi, ..., q;;

Perform orthogonalization in the next iteration;
Reset wy, j11 using (15);

Recalculate g = ||y||2;

end
if B; = 0, quit; end
qj+1 =y/Bj;

end.

5 Experiments

Algorithms 1, 2 and 3 were programmed in MATLAB. The random complex
symmetric matrices in the following examples were generated as follows.
First, a set of n random numbers with a normal Gaussian distribution with
zero mean and variance 1 was generated. Their absolute values were chosen
as the singular values o1, ...,0,. Then, a random unitary matrix @ of order
n was generated to form a complex symmetric matrix A = QXQ"'. All
starting vectors b were [1,...,1]*.

Example 1. A 40-by-40 random complex symmetric matrix was generated.
We ran 19 iterations in Algorithm 2 and computed the Takagi-Ritz values.
The jth, j = 1,...,19, column in Figure 1 plots the 7 Takagi-Ritz values in
the jth iteration. The 21st column shows the Takagi values or the singular
values of A. This example shows that the Takagi-Ritz values quickly con-
verge to the Takagi values or the singular values of A, especially the large
ones.

Example 2. We ran 30 iterations in Algorithm 1 (without orthogonal-
ization) for a 40-by-40 random complex symmetric matrix and computed
18U (k,1)| and |qjl;(Qgu1)| in iteration k, k = 1,...,30. In Figure 2, a
“+” in the kth column is |8, U(k, 1)| and an “0” is |q}}, | (Qxu1)|. The figure
depicts that these two values are related approximately by

_ o
OO = o Qe

Example 3. Various sizes of random complex symmetric matrices were
generated and ran on Algorithm 2 (with selective orthogonalization). The
orthogonality of @ was measured by ||[I — Q" Q||r/n? and the error in the
tridiagonalization was measured by |QTAQ — T||p/n%. Table 1 shows the
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Figure 1: Takagi-Ritz values of a 40-by-40 complex symmetric matrix A.
Column j shows the j Takagi-Ritz values computed in the jth iteration of
Algorithm 2. The 21st column shows the 40 Takagi values of A.

size | number of vectors selected | orthogonality factorization

n for orthogonalization 17— QHQ|r/n? | |QPAQ — T||p/n?
20 11 2.02E - 11 1.29E - 10

40 73 1.16E — 10 2.60E — 09
100 1122 1.86E — 11 2.35E — 09
200 6162 1.07E — 08 1.15E — 06

Table 1: Efficiency and accuracy of Algorithm 2.

results. For comparison, without orthogonalization, typically, 2 completely
loses orthogonality around size n = 20.

Example 4. In comparison with the selective orthogonalization in Example
3, various sizes of random complex symmetric matrices were generated and
ran on Algorithm 3 (with partial orthogonalization). The measurements of
the orthogonality of () and the error in the tridiagonalization are the same
as those in Example 3. Table 2 shows the results.

Example 5. Algorithm 2 was applied to a random 1000-by-1000 complex
symmetric matrix A for 30 iterations. The four largest Takagi-Ritz values
and their corresponding vectors were computed as approximations of the
Takagi values and vectors of A. Table 3 shows the accuracy of the approxi-
mations. A small 1 — |q'q;| indicates that q; and §; are either in the same
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Figure 2: Algorithm 1 is applied to a 40-by-40 complex symmetric matrix.
Column k plots |B,U(k,1)| (a “+7) and |q}, ; (Qku1)| (an “0”) computed in
the kth iteration, k =1, ..., 30.

direction or in the opposite directions. This example shows that Algorithm
2 is very effective in computing approximations of the largest singular values
and vectors of complex symmetric matrices.

Conclusion. In this paper, we have presented a simple selective orthogo-
nalization scheme and a practical partial orthogonalization scheme for the
Lanczos tridiagonalization of a complex symmetric matrix. Experimental
results show that the partial orthogonalization scheme effectively stablizes
the Lanczos tridiagonalization.
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