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ABSTRACT

We present three orthogonalization schemes for stablizing Lanczos tridiagonalization of a complex symmetric
matrix.
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1. INTRODUCTION

For any complex symmetric matrix A of order n, there exist a unitary Q € C™*™ and an order n nonnegative
diagonal ¥ = diag(o,...,0,), where o1 > g2 > -+ > o, > 0, such that

A=Q2QT or QUAQ =73,

where @ is the complex conjugate of Q. This special form of singular value decomposition (SVD) is called Takagi
factorization.!>2

The computation of the Takagi factorization consists of two stages: tridiagonalization and diagonalization.?
A complex symmetric matrix is first reduced to complex symmetric and tridiagonal form. There are various
tridiagonalization schemes. Householder transformations can be used.®> Unfortunately, when A is sparse or
structured, Householder transformations destroy sparsity or structure. Alternatively, Lanczos method can be
applied. Since Lanczos algorithm involves only matrix-vector multiplication, sparsity and structures can be
exploited to develop fast tridiagonalization algorithms.*

The second stage, diagonalization of the complex symmetric tridiagonal matrix computed in the first stage,
can be implemented by the implicit QR method.? *

This paper presents three orthogonalization techniques for the Lanczos tridiagonalization of complex symmet-
ric matrices. In Section 2, we describe the generic Lanczos tridiagonalization algorithm for complex symmetric
matrices. Unfortunately, this method is unstable in floating-point arithmetic. A simple selective orthogonaliza-
tion scheme and a practical partial orthogonalization scheme are proposed in Sections 3 and 4. Then, in Section
5, we present a modified partial orthogonalization scheme. Finally, Section 6 demonstrates our numerical exper-
iments.

2. LANCZOS TRIDIAGONALIZATION
For an n-by-n complex symmetric A, we can find a unitary @ € C™*™ such that
T =QHAQ (1)
3

is complex symmetric and tridiagonal. For example, () may consist of a sequence of Householder transformations.
Let

a1 51 0
| B 2)
5n—1
0 ﬂn—l On
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and rewrite (1) as

AQ = QT. 3)
Comparing the jth columns on the both sides of (3), we have

Aq; = fj—1qj-1 + a;q; + Biqi+1,  Podo =0,
which leads to a Lanczos three-term recursion:

Biqj+1 = Aq; — a;q; — fj-195-1. (4)

The orthogonormality of q; implies

Q; = q;{A(_lJ
Let r; = Aq; — @;q; — fj—14;j—1, then §; = £||r;||2 and q;41 =r;/; if rj # 0. Thus we have a generic Lanczos
tridiagonalization algorithm for complex symmetric matrices.

ALGORITHM 1 (LANCzOS TRIDIAGONALIZATION). Given a starting vector b and a subroutine for matriz-
vector multiplication y = Ax for any x, where A is an n-by-n complex symmetric matrixz. This algorithm
computes the diagonals of the compler symmetric and tridiagonal matriz T in (2) and a unitary Q such that

T = QUAQ.

qo = 0; Bo = 0;
a1 = b/[|bl|2;
forj=1ton
y = Aq;;
S
@ =q;y;
rj =Yy — a;qj — Bj-14j-1;
Bi = lIrjll2;
if B; = 0, quit; end
qQj+1 = Tj/ﬂj%
end.

Since the major computation in Lanczos method is matrix-vector multiplication, fast tridiagonalization can
be developed by exploiting the structure of A.* Unfortunately, in floating-point arithmetic, the above algorithm
suffers from the loss of the orthogonality of the computed @. To circumvent the problem, we may orthogonalize
each q; against all previous q;_1,...,q;. This is called complete orthogonalization. For example, Householder
matrices® or Gram-Schmidt scheme® can be used. Complete orthogonalization, however, is prohibitively expen-
sive. In the following section, we propose a selective orthogonalization scheme.

3. SELECTIVE ORTHOGONALIZATION

Analogous to the Lanczos algorithms for symmetric eigenvalue problem,® in this section, we present a selective
orthogonalization scheme for the Lanczos tridiagonalization of a complex symmetric matrix.

Before discussing the selective orthogonalization, we introduce some notations and definitions. During the
kth iteration, ay, Bk, and qg41 are computed. Denote

Qr = a1, .-, A
and
o P 0
Tk — ﬂl
Br-1



Suppose that
T, = USyUT ()

is the Takagi factorization of T}. We call the singular values or Takagi values on the diagonal of ¥ the Takagi-
Ritz values and the columns of QiU or their complex conjugates the Takagi-Ritz vectors. These values and
vectors are approximations of the Takagi values (singular values) and Takagi vectors (left and right singular
vectors) of A.

The basic idea behind the selective orthogonalization is to orthogonalize q11 against only a few selected
Takagi-Ritz vectors, rather than all previously computed q;. What are the criteria for selecting the Takagi-Ritz
vectors?

Similar to the case of real symmetric tridiagonalization problem considered by Paige.” we will show, for the
case of complex symmetric tridiagonalization, that

if |Brul/IlAll2 < Ve then |aiy,Qrul > O(Ve), (6)

where u is a column of U in (5) and uy, is the kth or the last entry of u and € is the unit of roundoff. A large
|qI,;I+1Qku|, which measures the orthogonality between qi1 and a Takagi-Ritz vector Qru indicates that qg41
has a large component in the direction of QQxu. We then orthogonalize qxy1 against Qxu.

Now, we prove the statement (6). Incorporating roundoff errors into the three-term recursion (4), we write

Biqj+1 + 8 = Aq; —ajq; — Bj-1q;-1, J=1,..,k, (7)

where f; represents roundoff errors. In matrix form,

[0,...,0, Brarr1] + Fr = AQx — Qi Tk,
where Fj, = [fy, ..., f;], that is .
AQy = QxTy + Braxtiej + Fy,

where ey, = [0, ...,0,1]T. Premultiplying the above equation with QI, we get

QEAQk = QEQkTk + BrQidrt1e) + Q1 Fy.

Since Q1 AQ, is symmetric,

(QrQrTr — TeQr Qk) + Br(Q) arr1e; — exdi1 Qr) + (Qk Fr — F Qr) = 0.

Let Q¥Qy = I+ C + CH, where C is the strictly lower triangular part of QI Q. We assume that q; is almost
orthogonal to q; for j =1, ..., k, i.e., q?HqJ = O(e), then both the diagonal and subdiagonal of C are zero. Also,
Q)41 qr = O(e) implies that the last entry of qj, ; Q is almost zero, which means that exqy | Qy is also strictly
lower triangular. Thus CTy, — T;C is the strictly lower triangular part of Q) QxTr — TrQ} Qx and Srerqy, , Qk
is the strictly lower triangular part of Bx(Q} qr+1€j — exqyy,@k). Denoting L as the strictly lower triangular
part of QUF, — FTQy, we get

(CTy, — T C) — Brexqjp 1@ + L = 0. (8)

Let (o,u) be a Takagi pair of Ty, then premultiplying and postmultiplying (8) with uf! and @ respectively, we
have

o(u"Cu—u"Cu) — Briay,, Qe+ u’ Lu = 0.
Consider the real part. Since Real(uCu —u'Cu) =0,

|Real(By kg1 Qr1t)| = [Real(u” Lu)|.

The right side
[Real(u" La)| < [u"La| < [|L]|2 = O(|Fl2) = O(e || All2).
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Figure 1. Algorithm 1 is applied to a 40-by-40 complex symmetric matrix. Column k plots |Brux| (2 “+”) and

[P

|diy1(Qrui)| (an “0”) computed in the kth iteration, k = 1, ..., 30.

The left side
|Real(ﬂkﬁkq;£+1Qkﬁ)|
= |Br(Real(ur) Real(qy,, Qxu) — Im(ug) Im(qiy; Qrn))|-

Thus
| B (Real (ug) Real (., Qku) — Im(ug) Im(qly, Qru))| = O(e || 4]]2).

If |Bruk|/||All2 < /€, then |BxReal(ur)|/||All2 < € and |BrIm(ug)|/||4]l2 < V€. Consequently,
O(ellAllz) = |BxReal(aray, Q)|

< VellAllz(IReal(dky Qrw)| + [Im(dy, Qru)|)
~ VellAllzlaiy Qrul,

which implies that |q},, Qxu| > O(y/€).

The relation between |Bgug| and |qj,,Qul is depicted in Figure 1. We ran 30 iterations in Algorithm 1
(without orthogonalization) for a 40-by-40 complex symmetric matrix. For each iteration k, k = 1,...,30, we
computed |q1k{+1(Qku1)|, where u; is the first column of U, and |Brux|, where uy is the last entry of u;. In
Figure 1, a “+” in the kth column is |Bxur| and an “0” is |q},; (Qru1)|. The figure shows that these two values
are related approximately by

O(e)

1Bruk| = oA
|Q£I+1 (Qruy)|

where € is the double precision, approximately 10716.

Finally, we present the following Lanczos algorithm with a simple selective orthogonalization scheme. We use
the largest singular value oy of T}, as an approximation of ||Al|2 and Gram-Schmidt method for orthogonalization.

ALGORITHM 2 (SELECTIVE ORTHOGONALIZATION). Given a starting vector b and a subroutine for matriz-
vector multiplication y = Ax for any x, where A is an n-by-n compler symmetric matrixz. This algorithm



computes the diagonals of the complex symmetric and tridiagonal matriz T in (2) and a unitary Q such that

T = QUAQ.

qo = 0; fo = 0;
q1 = b/||b||z;
forj=1ton
y = Aq;;
o = qj'y;
r; =y — o;q; — Bj—19-1;
Bi = llrll2;
Compute Takagi factorization T; = UXUT;
fork=1toj
if 18U (j, k)| < o1/
v = Qjug;
rj=r;— (vHrj)v;
end
end
Bj = llrjll2;
if B; = 0, quit; end
Qj+1 = 1;/Bj;
end.

This algorithm can be useful in computing the approximations of a few largest Takagi values and their
corresponding Takagi vectors of a large complex symmetric matrix. Figure 2 shows the approximations of the
Takagi values. We generated a 40-by-40 complex symmetric matrix, ran 19 iterations of Algorithm 2. The jth,
j=1,..,19, column in Figure 2 plots the j Takagi-Ritz values computed in the jth iteration. The 21st column
shows the Takagi values or the singular values of A. This example shows that the Takagi-Ritz values quickly
converge to the Takagi values or the singular values of A, especially the large ones.

19 steps of Lanczos
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Figure 2. Takagi-Ritz values of a 40-by-40 complex symmetric matrix A. Column j shows the j Takagi-Ritz values
computed in the jth iteration of Algorithm 2. The 21st column shows the 40 Takagi values of A.
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Figure 3. Vectors selected for orthogonalization in the selective orthogonalization scheme. Column j plots the vectors
selected in iteration j.

This selective orthogonalization scheme has two drawbacks. First, it requires the Takagi factorization of T}
for each iteration. Second, it orthogonalizes q;41 against only selected Takagi-Ritz vectors. What is wrong with
the selective orthogonalization? Suppose that gf'q;;1 has exceeded the threshold, usually some neighboring
qtlq;1 have grown to about the threshold.® If we reorthogonalize q;+1 only against qi, then its effect will be
wiped out immediately by the neighboring terms. Figure 3 illustrates the second drawback. Each “+” in the
figure represents a vector selected for reorthogonalization. For example, in iteration 62, vectors Qgoui, Qgaus,
and Qg¢2u4 are selected for reorthogonalization. While QQgaus is selected, its neighbor (Qg2u3 is not selected in
iteration 62. However, (Qg3us is selected in the subsequent iteration 63. Note that both Qgoug and QQg3uz are
approximations of a same Takagi vector. This means that although qilQg2u3 does not exceed the threshold, it
has grown to about the threshold in iteration 62. The fact that Qg2us and QQg3us are selected in two consecutive
iterations indicates that the effect of the orthogonalization against (Qgouz, which is an approximation of qa,
performed in iteration 62 is immediately wiped out by its neighboring QQg3us. This effect becomes more dramatic
as iteration continues. In the next section, we apply the partial reorthogonalization® to complex symmetric case
to overcome these two drawbacks.

4. PARTIAL ORTHOGONALIZATION

To avoid the calculation of the Takagi-Ritz vectors and values, we check the orthogonalities qilq;1 of Takagi
vectors, instead of Takagi-Ritz vectors. In this section, we first establish a recursion on the estimates for the
orthogonalities of Takagi vectors. This recursion provides an efficient way of monitoring the orthogonality. Based
on the recursion, we propose a reorthogonalization algorithm.

From (7), we have

Bidj+1 = Aq; —o;q; — Bj—1d-1 —
Brdrk+1 = Aqr — oy — Br—19k—1 — .

Premultiplying the above two equations with qI,;I and q? respectively and denoting wy, ; = qllqu, we get

_ H 4 H
Bjwk,j+1 = A AQj — ajwg,j — Bj—1wk,j—1 — q £



H 4= H
Brwjk+1 = dj AQr — apwjk — Br-1wjk—1 — q; fk.

Since A is symmetric, qI,;Iqu = q?Aqk. Thus, subtracting the above two equations and noting that wy ; = @; 4,
we have the following recursion on the orthogonalities of the Takagi vectors:

_ _ _ H H
Biwk,j+1 = Br@r+1,j + @k®k,j — QjWk,j + Br—10k—1,5 — Bj—1Wk,j—1 + d;j T — aq; ;. 9)

The above equation shows that we need wg_1 j, wg,; and wiy1,; computed in iteration j and wy ;1 in iteration
J — 1 to calculate wy, j4+1. Obviously, we define wy ; = 0 and w; ; = 1 for all j. Thus, we also define

’(bj = UJj,j+1 (10)

as arandom variable whose value will be discussed later. The problem is that the round-off error term qglfk —qilf;
in (9) is unknown. Again, we define

Orj = o fr — i fj, (11)

as a random variable whose value will be discussed soon. Using these notations, we get

w41 = B (Brrs1,j + 0k j — Qjwrj + Bro1@k—1,; — Bi-1wkj—1) + Ok j» (12)
for k=1,...,5 — 1, with
Bo =Wwo,j = 0, Wj j+1 = 1/)]' and Wj41,54+1 = 1.0

How do we choose the values for ¢; in (10) and 6 ; in (11)? Based on the statistical study by Simon,® let € be
the roundoff unit, we propose that

%:n%R%+NM,QU%€N®ﬂ®, (13)
J

where N(0,v) means normal distribution with zero mean and variance v, and

Ok = (B, + B;)(0: +i0;), O, ©; € N(0,0.6). (14)

To aleviate the problem caused by isolated reorthogonalization, when wy, ;.11 exceeds the threshold /e for some
k, we reorthogonalize q;11 against all the previous Takagi vectors qi, k = 1, ..., . Moreover, we always perform
a reorthogonalization in the subsequent iteration. Theoretically, after the reorthogonalization, wg j+1 = 0,
k=1,...,7. To incorporate the rounding errors, we set

Wi, j+1 = €(Qr + i), O, O € N(0,1.5). (15)
This completes the algorithm for computing the estimates wy, ;41 for ngﬁl, for k = 1,...,j. Finally, we have

the following algorithm for the partial reorthogonalization.

ALGORITHM 3 (PARTIAL ORTHOGONALIZATION). Given a starting vector b and a subroutine for matriz-
vector multiplication y = Ax for any x, where A is an n-by-n complex symmetric matriz. Using partial orthogo-
nalization, this algorithm computes the diagonals of the complex symmetric and tridiagonal matriz T in (2) and
a unitary Q such that T = QUAQ.

Q=0;50=0wi,1 =1

a1 = b/|[bl|;
forj=1ton
y = 4q;;
aj = qjy;
rj =y —a;jqj — fj-19j-1;
B = lIr;llz;

Compute wg, j+1 for k =1,...,5 — 1 using (12);
Set wj,j+1 to ¥; using (13);
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Figure 4. Vectors selected for orthogonalization in partial orthogonalization scheme. Column j plots the vectors selected
in iteration j.

Set Wj41,j4+1 = ].;
if max; <p<;(|wh,j+1]) > Ve
Orthogonalize r; against qy, ..., q;;
Perform orthogonalization in the next iteration;
Reset wy, j+1 using (15);
Recalculate 8; = ||r;]|2;

end
if 8; = 0, quit; end
Q1 = 15/6;;

end.

Figure 4 depicts the vectors selected for reorthogonalization in partial orthogonalization scheme. As shown
in the figure, after orthogonalization is performed in two consecutive iterations, good orthogonality stays for a
few iterations.

5. MODIFIED PARTIAL ORTHOGONALIZATION

In the partial orthogonalization scheme Algorithm 3, r; is orthogonalized against all q, ...,q; when |wg j41| > /€
for some k. The idea behind the modified partial orthogonalization is to orthogonalize r; against only q; and
its neighboring vectors when |wg j 1| > v/€. How do we define the neighborhood of k7 The neighborhood should
include all the vectors q; neighboring qy, for which |w; ;11| have grown to about y/e. Thus, for each k, we define
the neighborhood with the lower bound I}, < k, the smallest integer such that |w; j+1| > tol for all ¢ between I,
and k, and the upper bound u; > k, the largest integer such that |w; ;41| > tol for all i between k and uy. In
other words, [lx,ur] is the largest interval such that k € [ly,ux] and |w; j41| > tol for all i between I and ug.

The tolerance tol should be some value between e and \/e. We choose tol = €%/

As in the partial orthogonalization Algorithm 3, whenever we perform orthogonalization in iteration j, we
carry out orthogonalization in the subsequent iteration j + 1. As shown in (9), since the computation of w41
requires wg—1,j, Wk,j, and wgy1,5, we expand each interval [lg, ug] to [y — 1, ug, + 1] for the subsequent iteration.



The following algorithm shows the modified partial orthogonalization scheme.

ALGORITHM 4 (MODIFIED PARTIAL ORTHOGONALIZATION). Given a starting vector b and a subroutine
for matriz-vector multiplication y = Ax for any x, where A is an n-by-n complexr symmetric matriz. Using
the modified partial orthogonalization, this algorithm computes the diagonals of the complex symmetric and
tridiagonal matriz T in (2) and a unitary Q such that T = QUAQ.

Q =0; o =0;w1,1 =1

a1 = b/[|bl|2;
forj=1ton
y = Aq;;
. _— ~Hy,.
aj =q;y;
r; =y —a;q; — Bj-195-1;
B = ||1‘j||2;

Compute wy, j+1 for k =1,...,5 — 1 using (12);
Set wj,j41 to ¥; using (13);
Set Wj41,54+1 = 1;
k=1,
while k < j
if |wk,j+1] > Ve
Find the neighborhood [Ij, ux] of k;
k=uk+1;
else
k = k+1;
end
end
for each interval [lj, u]
Orthogonalize r; against qq,, ..., Quy;
Reset wyy,j41, --) Wup,j+1 using (15);
Adjust the neighborhood to [l — 1, ug + 1] for the next iteration;
end
if orthogonalization was performed
Recalculate ; = ||r;]|2;

end
if B; = 0, quit; end
qj+1 =15/Bj;

end.

Figure 5 shows that not all previous vectors are selected in some iterations in the modified partial orthogo-
nalization procedure.

6. EXPERIMENTS

Algorithms 1, 2, 3, and 4 were programmed in MATLAB. The random complex symmetric matrices in the follow-
ing examples were generated as follows. First, a set of n random numbers with a normal Gaussian distribution
with zero mean and variance 1 was generated. Their absolute values were chosen as the singular values o1, ..., op.
Then, a random unitary matrix @ of order n was generated to form a complex symmetric matrix 4 = QXQT.
All starting vectors b were [1, ..., 1]T.

Example 1. Various sizes of random complex symmetric matrices were generated and ran on Algorithm 2
(with selective orthogonalization). The orthogonality of @ was measured by ||[I — Q2Q||r/n? and the error in
the tridiagonalization was measured by ||Q"AQ — T'||r/n?. Table 1 shows the results. For comparison, without
orthogonalization, typically, @ completely loses orthogonality around size n = 20.
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size | number of vectors selected | orthogonality factorization

n for orthogonalization I — QEQ|r/n? | [|QRAQ — T||r/n?
20 11 2.02FE — 11 1.29F — 10

40 73 1.16E — 10 2.60E — 09
100 1122 1.86F — 11 2.35E — 09
200 6162 1.07E — 08 1.15E — 06

Table 1. Efficiency and accuracy of Algorithm 2.



size | number of vectors selected orthogonality factorization

n for orthogonalization I — QQ|lr/n? | [|QHAQ — T||r/n?
20 7 1.24FE - 15 8.01F — 16

40 106 2.75F — 12 2.74F — 12
100 567 743FE — 13 7.30FE — 13
200 2168 4.54F — 13 444F — 13
500 14735 2.04E - 13 2.01FE —13
1000 51579 8.21FE —-14 8.12E - 14
2000 211373 4.03E—-14 3.96E — 14

Table 2. Efficiency and accuracy of Algorithm 3.

size | number of vectors selected | orthogonality factorization

n for orthogonalization 1T - QHQ|lr/n? | [|QRAQ — T||p/n?
20 5 3.16E — 15 2.78E — 15

40 98 1.21E - 12 1.20F — 12
100 408 8.88E — 13 8.78E — 13
200 2014 4.54F — 13 4.46F — 13
500 13771 1.98E — 13 1.86FE — 13
1000 47676 9.44FE — 14 8.66E — 14
2000 197630 5.96E — 14 5.38E — 14

Table 3. Efficiency and accuracy of Algorithm 4.

Example 2. In comparison with the selective orthogonalization in Example 1, various sizes of random complex
symmetric matrices were generated and ran on Algorithm 3 (with partial orthogonalization). The measurements
of the orthogonality of () and the error in the tridiagonalization are the same as those in Example 1. Table 2
shows the results.

Example 3. In comparison with the partial orthogonalization in Example 2, various sizes of random complex
symmetric matrices were generated and ran on Algorithm 4 (with modified partial orthogonalization). The
measurements of the orthogonality of () and the error in the tridiagonalization are the same as those in Example
1. Table 3 shows that the modified partial orthogonalization is more efficient than the partial orthogonalization.

Example 4. Algorithm 2 was applied to a random 1000-by-1000 complex symmetric matrix A for 30 iterations.
The four largest Takagi-Ritz values and their corresponding vectors were computed as approximations of the
Takagi values and vectors of A. Table 4 shows the accuracy of the approximations. A small 1 — |qq;| indicates
that q; and q; are either in the same direction or in the opposite directions. This example shows that Algorithm
2 is very effective in computing approximations of the largest singular values and vectors of complex symmetric
matrices.

Conclusion. In this paper, we have presented a simple selective orthogonalization scheme and practical partial
orthogonalization and modified partial orthogonalization schemes for the Lanczos tridiagonalization of a complex

i 1 2 3 4
6:—0i] |1.90E—8 | 1.71E—6 | 7271E—4 | 7.40E — 3
1—|q"q; | 1.59E—8 | 333E—6 | 1.10E—3 | 1.11E — 1

Table 4. Errors in the largest four computed Takagi-Ritz values &; and Takagi-Ritz vectors q; against the exact Takagi
values o; and vectors q; after 30 iterations of Algorithm 2 on a 1000-by-1000 complex symmetric matrix.



symmetric matrix. Experimental results show that all the three orthogonalization schemes effectively stablize the
Lanczos tridiagonalization, whereas, partial orthogonalization and modified partial orthogonalization schemes
are efficient. However, the selective orthogonalization is useful in computing the approximations of a few largest
singular values and their corresponding singular vectors of a large complex symmetric matrix.
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