
Conditioning Properties of the LLL Algorithm

Franklin T. Luka and Sanzheng Qiaob

aDepartment of Mathematics, Hong Kong Baptist University, Kowloon Tong, Hong Kong
bDept. of Computing and Software, McMaster Univ., Hamilton, Ontario L8S 4L7, Canada

ABSTRACT

Although the LLL algorithm1 was originally developed for lattice basis reduction, the method can also be
used2 to reduce the condition number of a matrix. In this paper, we propose a pivoted LLL algorithm that
further improves the conditioning. Our experimental results demonstrate that this pivoting scheme works well
in practice.

Keywords: LLL algorithm, matrix conditioning, pivoting, unimodular matrix, lattice, reduced basis, Gauss
transformation.

1. INTRODUCTION

The LLL algorithm, named after Lenstra, Lenstra, and Lovász1, is a method useful for reducing a lattice basis.
Recently, Luk and Tracy2 propose a linear algebraic interpretation: Given a real nonsingular matrix A, the LLL
algorithm computes a QRZ decomposition:

A = QRZ−1,

where the matrix Q is orthogonal, the matrix R is triangular and reduced (in the sense that its columns form a
reduced basis as defined in Section 2), and the matrix Z is integer and unimodular. Since the publication of the
LLL algorithm in 1982, many new applications (e.g., cryptography3 and wireless communications4 ,5) have been
found. The two related objectives of this paper are to show that the LLL algorithm can be used to reduce the
condition number of a matrix and that a new pivoting scheme can further improve the conditioning.

The paper is organized as follows. In Section 2, we present the QRZ decomposition by Luk and Tracy2 and
illustrate it with a 2-by-2 matrix. In Section 3, we give a geometrical interpretation of the LLL algorithm and
show how the algorithm reduces a lattice basis and improves the condition of a matrix. To further reduce the
condition number, we present a pivoting scheme in Section 4 and prove that this scheme can further decrease
the condition number, at least in the case of the 2-by-2 matrix. Empirical results in Section 5 demonstrate that
our pivoting scheme can improve conditioning in general.

2. LLL ALGORITHM

Without loss of generality, we start with a nonsingular upper triangular matrix R, for otherwise a general matrix
of full column rank can be reduced to this desired form by the QR decomposition6. Let us describe the matrix
decomposition interpretation of the LLL algorithm as proposed by Luk and Tracy2 ; the algorithm computes the
QRZ decomposition:

R = QR̃Z−1,

where Q is orthogonal, R̃ is upper triangular and reduced, and Z is integer unimodular as defined below7.

Definition 2.1 (Unimodular). A nonsingular integer matrix M is said to be unimodular if det(M) = ±1.

A consequence of this definition is that a nonsingular integer matrix M is unimodular if and only if M−1 is an
integer matrix. We adopt the definition of a reduced triangular matrix from Luk and Tracy2:

Send correspondence to S. Qiao: qiao@mcmaster.ca

Definition 2.2 (Reduced basis). An upper triangular matrix R is reduced if

|ri,i| ≥ 2|ri,j |, for all 1 ≤ i < j ≤ n, (1)

and
r2
i,i + r2

i−1,i ≥ ω r2
i−1,i−1, for all 2 ≤ i ≤ n. (2)

where 0.25 < ω < 1.

The algorithm comprises the following two building blocks.

Procedure 1 (Decrease(i, j)). Given R and Z, calculate γ = ⌈ri,j/ri,i⌋, form Zij = In − γeie
T
j , where ei

is the ith unit vector, and apply Zij to both R and Z:

R← RZij and Z ← ZZij .

Thus, if |ri,i| < 2|ri,j | in the old R, then in the updated R, we have |ri,i| ≥ 2|ri,j | satisfying the condition (1).

Procedure 2 (SwapRestore(i)). Given R, Z, and Q, compute the plane reflection

G =

[

c s
s −c

]

such that

G

[

ri−1,i−1 ri−1,i

0 ri,i

]

P =

[

r̂i−1,i−1 r̂i−1,i

0 r̂i,i

]

, where P =

[

0 1
1 0

]

,

and apply Qi = diag([Ii−2 Ji In−i]) and permutation Πi = diag([Ii−2 P In−i]) to R, Z, and Q:

R← QiRΠi, Z ← ZΠi, Q← QQi.

The above procedure swaps columns i−1 and i of R and restores its upper triangular structure. If in the old R we
have r2

i,i+r2
i−1,i < ω r2

i−1,i−1, where |ri−1,i| ≤ |ri−1,i−1|/2, then in the updated R, we have r2
i,i+r2

i−1,i ≥ ω r2
i−1,i−1.

What follows is the improved LLL algorithm.2

Algorithm 1 (Improved LLL Algorithm). Given an upper triangular matrix R = [ri,j] of order n and
a parameter ω, 0.25 < ω < 1, this algorithm computes an orthogonal matrix Q and an integer unimodular matrix
Z and overwrites R, so that the new upper triangular matrix R equals QTRZ and its columns form a reduced
basis as defined in Definition 2.2.

set Z ← I and Q← I;
k ← 2;

W1 while k ≤ n
I1 if |rk−1,k/rk−1,k−1| > 1/2
I1.1 Decrease(k− 1, k);

endif
I2 if r2

k,k + r2
k−1,k < ω r2

k−1,k−1
;

I2.1 SwapRestore(k);
I2.2 k ← max(k − 1, 2);

else
F1 for i = k − 2 downto 1
I3 if |ri,k/ri,i| > 1/2
I3.1 Decrease(i, k);

endif
endfor

I2.3 k ← k + 1;
endif

endwhile

Figure 1. The identity matrix and the matrix (5) generate the same lattice points. The grid on the left shows the basis
formed by the columns of the identity matrix, while the grid on the right shows the basis formed by the columns of the
matrix (5).

Let us examine Algorithm 1. If |ri,i| < 2|ri,k| on line I1 or I3, we call Decrease(i, k) on line I3.1 to ensure that
the new ri,i and ri,k satisfy Condition (1). If |rk−1,k−1| ≥ 2|rk−1,k| satisfying (1) but r2

k,k + r2
k−1,k < ω r2

k−1,k−1

on line I2, we call SwapRestore(k) on line I2.1 so that the new rk−1,k−1, rk−1,k, and rk,k will satisfy the second
condition (2).

In the original LLL algorithm, R is given in the form R = DU , where D is the diagonal part of R, and so U has
a unit diagonal. The matrices D2 and U are obtained by applying the modified Gram-Schmidt orthogonalization
method to a general matrix. The original LLL algorithm is square-root-free by working on D2 and U . See LLL1

for details and Luk and Tracy2 for the relation between the original LLL algorithm and the improved version.

Example 1. Let ω = 0.75 and

R0 =

[

9/2 5/3

0
√

2/3

]

. (3)

It can be verified that R0 satisfies the condition (1) but not the condition (2). That is, R0 is not reduced. Applying
SwapRestore and then Decrease, we get the QRZ decomposition:

R0 = Q1R1Z
−1

1 =

[

5
√

3/9
√

6/9√
6/9 −5

√
3/9

] [√
3
√

3/2

0
√

6/2

] [

0 1
1 −2

]

−1

, (4)

where the new matrix R1 is reduced.

3. MATRIX CONDITIONING

Given a real matrix R of full column rank, the set of all points x = Ru, where u is an integer vector, is called the
lattice with basis formed by the columns of R. For example, the identity matrix I generates a rectangular lattice
as shown in Figure 1. The basis is not uniquely determined by the lattice. For example, the upper triangular
matrix

[

1 2
0 1

]

(5)

generates the same lattice points as in Figure 1. In general, two matrices A and B generate the same lattice
points if A = BM , where M is an integer unimodular matrix.

The LLL algorithm reduces a lattice basis. When it is applied to the matrix in (5), the matrix is reduced to
the identity. In Example 1, the LLL algorithm reduces R0 to R1. Both R0 and R1 generate the same lattice up
to the orthogonal transformation Q1. Figure 2 shows that the grid generated by R0 is more skewed than the one
generated by R1. In terms of the matrix condition number, cond(R0) = 10.87 and cond(R1) = 1.97. Thus, the
LLL algorithm can vastly improve the conditioning of a matrix.

How does the LLL algorithm reduce the condition number of a matrix? Condition (1) requires that the
off-diagonal entries of a reduced R are small relative to the diagonal ones. In the extreme case when all the

0

0.5

1

1.5

2

2.5

3

3.5

4

0 0.5 1 1.5 2 2.5 3 3.5 4
0

1

2

3

4

5

6

0 1 2 3 4 5 6

Figure 2. The grid on the left is generated by the matrix R0 in (3) and the one on the right by the matrix R1 in (4).
The intersections of the two families of parallel lines in each grid form the lattice points.

off-diagonal entries equal zero, R is diagonal, meaning that the columns of R are orthogonal to each other; in
other words, cond2(R) = 1. In general, one possible source of ill conditioning of a triangular matrix is from
rows with off-diagonal entries which are large relative to the diagonal ones8. Thus one possible way of improving
conditioning is to decrease off-diagonal elements. Therefore, the procedure Decrease in the LLL algorithm can
improve the conditioning of a triangular matrix by enforcing Condition (1). Condition (2) requires that the
diagonal elements be in loosely increasing order from top to bottom. The smaller the ω is, the more loosely the
diagonal is ordered. The procedure SwapRestore itself does not change the condition, however, by pushing up
small diagonal elements, the LLL algorithm can further improve the conditioning when Decrease is called, as
shown in the above example.

Can the condition of R1 in Example 1 be further improved by modifying the QRZ decomposition (4)? In the
next section, we present a pivoting scheme that gives an affirmative answer to the question.

4. FURTHER CONDITIONING

It was pointed out in Section 3 that the LLL algorithm can improve conditioning by transforming a given matrix
into a reduced one via imposing conditions (1) and (2). In this section, we propose a pivoting strategy into the
LLL algorithm that may further reduce a reduced matrix.

Consider the 2× 2 matrix:

R =

[

1 a
0 b

]

, b 6= 0. (6)

Suppose that the matrix is in the reduced form, that is,

|a| ≤ 1

2
and a2 + b2 ≥ ω. (7)

Permuting its columns, we get
[

a 1
b 0

]

.

To restore the triangular structure, we apply the reflection:

[

a
√

a2+b2
b

√

a2+b2
b

√

a2+b2
−a

√

a2+b2

]

and then get

R̃ =
√

a2 + b2

[

1 a
a2+b2

0 b
a2+b2

]

. (8)

The procedure Decrease will decrease the size of its (1,2)-entry when

2 |a|
a2 + b2

> 1,

that is, a2 − 2 |a|+ b2 < 0, which implies that 1−
√

1− b2 < |a| ≤ 1/2, provided that b2 < 3/4. The inequality
1−
√

1− b2 < |a| is equivalent to b2 < |a|(2−|a|), which implies b2 < 3/4 since |a| ≤ 1/2. In summary, assuming
the matrix R in (6) is in the reduced form, that is, a and b satisfy the conditions (7), if

0 < b2 < |a|(2− |a|), (9)

then after calling the procedure SwapRestore, the resultant matrix R̃ in (8) becomes un-reduced. The application
of the procedure Decrease to R̃ will decrease the size of its (1, 2)-entry. Thus, in addition to the conditions (1)
and (2), we introduce a third condition:

r2
i,i ≥ |ri−1,i|(2 |ri−1,i−1| − |r̂i−1,i|). (10)

What is the effect of decreasing the size of (1, 2)-entry? We will show that the 2-norm condition number of
an upper triangular matrix of order two is improved. Without loss of generality, consider the upper triangular
matrix

[

1 x
0 y

]

.

Its singular values are the square roots of

(x2 + y2 + 1)±
√

(x2 + y2 + 1)2 − 4y2

2
.

It follows that its 2-norm condition number is

(x2 + y2 + 1) +
√

(x2 + y2 + 1)2 − 4y2

2|y| ,

which shows that the condition number will improve when |x| is decreased.

Lemma 4.1. Given a 2 × 2 upper triangular matrix R, if the condition (1) is not satisfied, then the procedure
Decrease reduces the condition number of R.

Since SwapRestore applies orthogonal transformations, we have the following lemma.

Lemma 4.2. Given a 2× 2 upper triangular matrix R, the procedure SwapRestore does not reduce the condition
number of R.

Example 2. The reduced matrix R1 in (4) in Example 1 does not satisfy the condition (10). Applying the
procedure SwapRestore followed by Decrease, we get the QRZ decomposition

R1 = Q2R2Z
−1

2 =

[√
3/3

√
6/3√

6/3 −
√

3/3

] [

3/2 −1/2

0
√

2

] [

0 1
1 −1

]

−1

. (11)

Comparing with cond(R1) = 1.97, the condition number is further reduced to cond(R2) = 1.41. Putting the
decompositions (4) and (11) together, we have

R = QR2Z
−1 =

[

7/9 4
√

2/9

−4
√

2/9 7/9

] [

3/2 −1/2

0
√

2

] [

1 −1
−2 3

]

−1

.

Recall that cond(R) = 10.87 and cond(R2) = 1.41. The final upper triangular R2 satisfies all three conditions
(1), (2), and (10). We may say that R2 is strongly reduced.

The grids generated by R1 and R2 in Figure 3 show that pivoting can further reduce a reduced lattice basis.

0

1

2

3

4

5

6

0 1 2 3 4 5 6
0

1

2

3

4

5

6

0 1 2 3 4 5 6

Figure 3. The grid on the left is generated by the matrix R1 and the one on the right is generated by the matrix R2 in
Example 2, showing that a reduced basis can be further reduced by pivoting.

Algorithm 2 (LLL Algorithm with Pivoting). Algorithm 1 with pivoting.

set Z ← I and Q← I;
k ← 2;

W1 while k ≤ n
I1 if |rk−1,k/rk−1,k−1| > 1/2
I1.1 Decrease(k− 1, k);

endif
I2 if r2

k,k + r2
k−1,k < ω r2

k−1,k−1;

I2.1 SwapRestore(k);
I2.2 k ← max(k − 1, 2);

else
if r2

k,k < |rk−1,k|(2|rk−1,k−1| − |rk−1,k|) % pivoting

SwapRestore(k);
k ← max(k − 1, 2);

else
F1 for i = k − 2 downto 1
I3 if |ri,k/ri,i| > 1/2
I3.1 Decrease(i, k);

endif
endfor

I2.3 k ← k + 1;
endif

endif
endwhile

5. NUMERICAL EXPERIMENTS

In this section, we present our experimental results to show that the LLL algorithm can dramatically improve
the conditioning of an upper triangular matrix and the pivoting can further improve the conditioning.

We programmed our algorithms in Octave and ran our experiments on an Intel Core 2 Duo with 4 GB memory
in Mac OS X v10.5.6. For each case, we generated random upper triangular matrices with a predetermined
condition number, each of which was generated as follows. Given a condition number κ, a vector of singular
values linearly spaced between one and 1/κ was generated. Two random orthogonal matrices U and V were
obtained from the QR decompositions of two random matrices with entries uniformly distributed in [−1, 1]. Then
a random matrix A with condition number κ was formed by multiplying U , the diagonal singular value matrix,
and V T . The upper triangular matrix was obtained by the QR decomposition of A.

LLL Pivoted LLL
ω κ(R0) κ(R1) #calls Decrease κ(R2) #pivotings #calls Decrease

0.75 104 17.8 435.8 17.3 13.7 485.5
0.75 106 17.2 719.5 15.7 23.7 783.8
0.30 104 61.1 162.1 31.1 23.4 277.0
0.30 106 111.2 267.9 51.3 38.8 433.1

Table 1. Comparison of condition numbers of R0, R1, and R2 with two different values of ω. The table also gives the
numbers of calls to Procedure Decrease and the numbers of pivotings.

In our experiments, each case consisted of ten random upper triangular matrices of order 20. For each case,
the averages of the condition numbers after the LLL algorithm, without and with pivoting, were calculated.
Also, the average number of pivotings and the average number of calls to Decrease were recorded. Table 1 lists
our experimental results with different condition numbers κ and different values of the iteration parameter ω.
Our results show that the LLL algorithm can dramatically improve the conditioning and the pivoting can further
improve the conditioning. For smaller ω, the improvement from pivoting is more noticeable.

As shown in Section 4, the procedure Decrease improves condition. For the same sets of matrices, we counted
the average number of calls to Decrease in the LLL algorithms with and without pivoting. Table 1 lists the
results, which shows empirically that pivoting can further improve the conditioning.

It should be pointed out that the above results are from experimenting with random matrices. The LLL
algorithm does not always improve the conditioning of an upper triangular matrix. An example is given in Luk
and Tracy2:

1 −0.5 −0.5 · · · · · · −0.5
1 −0.5 · · · · · · −0.5

1
. . . · · · −0.5
. . .

. . .
...

1 −0.5
1

.

The n× n matrix is reduced and becomes very ill-conditioned when n≫ 2; indeed, its inverse is given by

1 1.50/2 1.51/2 · · · · · · 1.5n−2/2
1 1.50/2 · · · · · · 1.5n−3/2

1
. . . · · · 1.5n−4/2
. . .

. . .
...

1 1.50/2
1

.

REFERENCES

1. A. Lenstra, H. Lenstra, and L. Lovasz, “Factoring polynomials with rational coefficients,” Mathematicsche
Annalen 261, pp. 515–534, 1982.

2. F. T. Luk and D. M. Tracy, “An improved LLL algorithm,” Linear Algebra and Its Applications 428(2-3),
pp. 441–452, 2008.

3. O. Goldreich, S. Goldwasser, and S. Halevi, “Public-key cryptosystems from lattice reduction problems,” in
Advances in Cryptology - CRYPTO97, 17th Ann. Int. Crypto. Conf., pp. 112–131, 1997.

4. B. Hassibi and H. Vikalo, “On the sphere-decoding algorithm i: Expected complexity,” IEEE Transactions
on Signal Processing 53, pp. 2806–2818, 2005.

5. S. Qiao, “Integer least squares: Sphere decoding and the LLL algorithm,” in Proceedings of C3S2E-08, B. C.
Desai, ed., ACM International Conference Proceedings Series, pp. 69–80, Concordia University, (Montreal,
QC), May 2008.

6. G. Golub and C. V. Loan, Matrix Computations, 3rd Ed., The Johns Hopkins University Press, Baltimore,
MD, 1996.

7. J. Cassels, An Introduction to the Geometry of Numbers, Springer-Verlag, Berlin, 1997.

8. N. J. Higham, Accuracy and Stability of Numerical Algorithms, 2nd Ed., SIAM, Philadelphia, PA, 2002.

