
Analysis of a Fast Hankel Eigenvalue AlgorithmFranklin T. Luka and Sanzheng QiaobaDepartment of Computer ScienceRensselaer Polytechnic InstituteTroy, New York 12180 USAbDepartment of Computing and SoftwareMcMaster UniversityHamilton, Ontario L8S 4L7 CanadaABSTRACTThis paper analyzes the important steps of an O(n2 logn) algorithm for �nding the eigenvalues of a complex Hankelmatrix. The three key steps are a Lanczos-type tridiagonalization algorithm, a fast FFT-based Hankel matrix-vectorproduct procedure, and a QR eigenvalue method based on complex-orthogonal transformations. In this paper, wepresent an error analysis of the three steps, as well as results from numerical experiments.Keywords: Hankel matrix, eigenvalue decomposition, Lanczos tridiagonalization, Hankel matrix-vector multipli-cation, complex-orthogonal transformations, error analysis.1. INTRODUCTIONThe eigenvalue decomposition of a structured matrix has important applications in signal processing. In this paper,we consider a complex Hankel matrix H 2 Cn�n:H � 0BBBB@ h1 h2 : : : hn�1 hnh2 h3 : : : hn hn+1... ... . . . ... ...hn�1 hn : : : h2n�3 h2n�2hn hn+1 : : : h2n�2 h2n�1
1CCCCA : (1)The authors4 proposed a fast algorithm for �nding the eigenvalues of H . The key step is a fast Lanczos tridiago-nalization algorithm which employs a fast Hankel matrix-vector multiplication based on the Fast Fourier transform(FFT). Then the algorithm performs a QR-like procedure using the complex-orthogonal transformations in the di-agonalization to �nd the eigenvalues. In this paper, we present an error analysis and discuss the stability propertiesof the key steps of the algorithm.This paper is organized as follows. In Section 2, we discuss eigenvalue computation using complex-orthogonaltransformations, and describe the overall eigenvalue procedure and three key steps. In Section 3, we introducenotations and error analysis of some basic complex arithmetic operations. We analyze the orthogonality of theLanczos vectors in Section 4 and the accuracy of the Hankel matrix-vector multiplication in Section 5. In Section 6,we derive the condition number of a complex-orthogonal plane rotation and we provide a backward error analysis ofthe application of this transformation to a vector. Numerical results are given in Section 7.Supported by the Natural Sciences and Engineering Research Council of Canada under grant OGP0046301



2. COMPLEX-ORTHOGONAL TRANSFORMATIONSAn eigenvalue decomposition of a nondefective matrix H is given byH = XDX�1: (2)We will pick the matrixX to be complex-orthogonal ; that is, XXT = I . So, H = XDXT. We apply a special Lanczostridiagonalization to the Hankel matrix (assuming that the Lanczos process does not prematurely terminate):H = QJQT; (3)where Q is complex-orthogonal and J is complex-symmetric tridiagonal:J � 0BBBBB@�1 �1 0�1 �2 �2�2 . . . . . .. . . . . . �n�10 �n�1 �n
1CCCCCA : (4)Let Q � (q1 q2 : : : qn ). Since QTQ = I , we see thatqTi qj = �ij : (5)We call the property de�ned by (5) as complex-orthogonality (c-orthogonality for short).The dominant cost of the Lanczos method is matrix-vector multiplication. We propose an O(n logn) FFT-basedmultiplication scheme so that we can tridiagonalize a Hankel matrix in O(n2 logn) operations. Given w 2 Cn wewant to compute the product p = Hw. De�ne bc 2 C2n�1 bybc = (hn hn+1 : : : h2n�1 h1 h2 : : : hn�1 )T : (6)Let w � (w1 w2 : : : wn )T. De�ne bw 2 C2n�1 bybw = (wn wn�1 : : : w1 0 : : : 0 )T : (7)Let �t(v) denote one-dimensional FFT of a vector v, i�t(v) one-dimensional inverse FFT of v, and \.�" component-wise multiplication of two vectors. The desired product is given by the �rst n elements of the vector i�t(�t(bc):��t(bw)).The authors4 showed that Algorithm 2 requires 30n log(n) +O(n) ops (real oating-point operations).To maintain symmetry and tridiagonality of J , we apply complex-orthogonal rotations in the QR iterations:J =WDWT;where W is complex-orthogonal and D is diagonal. Thus, we get (2) with X = QW . The workhorse of our QR-likeiteration3 is a complex-orthogonal \plane-rotation" P 2 Cn�n. That is, P is an identity matrix except for fourstrategic positions formed by the intersection of the ith and jth rows and columns:G = � pii pijpji pjj � = � c s�s c � ; (8)where c2 + s2 = 1. The matrix G is constructed to annihilate the second component of a 2-vector x = (x1; x2)T.We present our computational schemes in the following.Overall Procedure (Hankel Eigenvalue Computation). Given H, compute all its eigenvalues.1. Apply a Lanczos procedure (Algorithm 1) to reduce H to a tridiagonal form J . Use Algorithm 2 to computethe Hankel matrix-vector products.2. Apply a QR-type procedure (Algorithm 3) to �nd the eigenvalues of J .



Algorithm 1 (Lanczos Tridiagonalization). Given H, this algorithm computes a tridiagonal matrix J .Initialize q1 such that qT1 q1 = 1;v1 = Hq1;for j = 1 : n�j = qTj vj ;rj = vj � �jqj ;if j < n�j =qrTj rj ;if �j = 0, break; end;qj+1 = rj=�j ;vj+1 = Hqj+1 � �jqj ;endendAlgorithm 2 (Fast Hankel Matrix-Vector Multiplication). Given w 2 Cn, compute p = Hw.Construct the vectors bc and bw as in (6) and (7). Calculate y 2 C2n�1 byy = i�t(�t(bc): � �t(bw)):The desired p 2 Cn is given by the �rst n elements of y: p = ( y1 y2 : : : yn�1 yn )T.Algorithm 3 (Complex-Symmetric QR Step). Given J 2 Cm�m, this algorithm implements one step ofthe QR method with the Wilkinson shift.Initialize Q = I ;Find the eigenvalue � of Jm�1:m;m�1:m that is closer to Jmm;Set x1 = J11 � �; x2 = J21;for k = 1 : m� 1Find a complex-orthogonal matrix PTk to annihilate x2 using x1;J = PTk JPk;Q = QPk;if k < m� 1x1 = Jk+1;k; x2 = Jk+2;k ;end ifend for. 3. ERROR ANALYSIS FUNDAMENTALSLet u denote the unit roundo�. Since the objective of this paper is to analyze the stability of our algorithm4 andnot to derive precise error bounds, we carry out �rst-order error analysis. Sometimes, we ignore moderate constantcoe�cients. The following results for the basic complex arithmetic operations are from Higham2:fl(x� y) = (x� y)(1 + �); j�j � u; (9)fl(xy) = xy(1 + �); j�j � p2 2; (10)fl(x=y) = (x=y)(1 + �); j�j � p2 4; (11)Using (10) and, similar to the real case,2 repeatedly applying (9), we can show that for two n-vectors x and yfl(xTy) = xT(y +�y) = (x+�x)Ty; (12)where j�yj � n+1jyj; j�xj � n+1jxj; n+1 = (n+ 1)u1� (n+ 1)u:We assume that nu� 1. So we can think of n as approximately nu.



4. LANCZOS TRIDIAGONALIZATIONAnalogous to the analysis of the conventional Lanczos tridiagonalization,5 we shall show that column vectors qj canlose c-orthogonality. Let b�j = fl(bqTj bvj) = bqTj (bvj +��v)for some ��v. It follows immediately from (12) that k��vk2 � n+1kbvjk2. Thus,b�j = bqTj bvj +��; j��j � n+1kbqjk2 kbvjk2; (13)and jb�j j � (1 + n+1)kbqjk2 kbvjk2: (14)If brj = fl(bvj � b�jbqj) � (bvj +�v) � b�j(bqj +�q) (15)for some �v and �q, then (9) and (10) show thatk�qk2 � p2 2kbqjk2; k�vk2 � ukbvj � b�jbqjk2:Denoting �r = �v � b�j�q as the �rst order error in brj and using (14), we getk�rk2 � ukbvj � b�jbqjk2 + jb�j jp2 2kbqjk2 � (u+ (p2 2 + u)kbqjk22)kbvjk2: (16)Now, from (11), we have bqj+1 = fl(brj=b�j) = (brj +��r)=b�j ; k��rk2 � p2 4kbrjk2;that is, b�jbqj+1 = brj +��r; k��rk2 � p2 4kbrjk2: (17)To check c-orthogonality, we multiply bqTj on the both sides of the above equation:b�jbqTj bqj+1 = bqTj (brj +��r) � bqTj bvj � b�jbqTj bqj + bqTj (�r +��r):Since bqj is normalized and bqTj bvj = b�j ��� from (13), we getb�jbqTj bqj+1 � ���+ bqTj (�r+��r): (18)Next we derive the bound for k��rk2 by using (17), (15), and (14),k��rk2 � p2 4kbvj � b�jbqjk2 � p2 4(1 + kbqjk22)kbvjk2: (19)It follows from (16) and (19) thatk�r+��rk2 � k�rk2 + k��rk2� �(p2 2 + u)kbqjk22 + u� kbvjk2 +p2 4(1 + kbqjk22)kbvjk2= �(p2 2 +p2 4 + u)kbqjk22 + (p2 4 + u)� kbvjk2:Finally, (13) and (18) imply thatjb�jbqTj bqj+1j � j��j+ k�r+��rk2kbqjk2� �(n+1 +p2 4 + u) + (p2 2 +p2 4 + u)kbqjk22� kbvjk2 kbqjk2:Using the approximation n � nu when nu� 1 and ignoring the moderate constant coe�cients, we obtainjbqTj bqj+1j �  (n+ kbqjk22)kbqjk2 kbvjk2jb�j j !u: (20)The above inequality says that bqj can lose c-orthogonality when either jb�j j is small or kbqjk2 is large (recall that bqjand b�j denote computed results). Hence the loss is due to either the cancellation in computing �j or the growthin kbqjk2, and not the accumulation of roundo� errors. In the real case, kbqjk2 � 1 and (20) is consistent with theresults in Paige,5 whereas in the complex case, the norm kbqjk2 can be arbitrarily large. This is an additional factorthat causes the loss of c-orthogonality.



5. HANKEL MATRIX-VECTOR MULTIPLICATIONThe only computation in the fast Hankel matrix-vector multiplication isy = i�t(�t(bc): � �t(bw)):Denoting the computed y as by = fl(i�t(�t(bc): � �t(bw)));we consider the computation of �t(bw). Assume that the weights !jk in the FFT are precalculated and that thecomputed weights b!jk satisfy b!jk = !jk + �kj ;where j�kj j � �for all j and k. Depending on the method that computes the weights, we can pick� = cu; � = cu log j; or � = cuj;where c denotes a constant dependent on the method.6 Following Higham2 we letx = �t(bw) and bx = fl(�t(bw)):We have kx� bxk2 � p2n� 1� � log2(2n� 1)1� � log2(2n� 1)� kxk2;where � = �+ 4(1 + �):Approximately, kx� bxk2 �  p2n� log2n1� � log2n ! kxk2: (21)Similarly, let v = �t(bc) and bv = fl(�t(bc)):Then kv� bvk2 �  p2n� log2n1� � log2n ! kvk2: (22)Next, we consider the componentwise multiplication z = bv: � bx. Denoting the computed z asbz = fl(bv: � bx);we have approximately kz� bzk2 � u kzk2: (23)Finally, we consider y = i�t(bz) and by = fl(i�t(bz)):Since Fn is the FFT matrix, we have F�1n = n�1Fn:Thus, similar to (21) and (22), we get ky� byk2 �  p2n� log2n1� � log2n ! kyk2: (24)



As n�1=2Fn is unitary, it follows thatkyk2 = ki�t(bz)k2 = kF2n�1bzk2=(2n� 1) = kbzk2=p2n� 1 � kbzk2=p2n:Consequently, using (23) and (24), we getky� byk2 � � � log2n1� � log2n� kbzk2 � � � log2n1� � log2n� (1 + u)kzk2:Ignoring the second and higer order terms of u, we haveky � byk2 � � � log2n1� � log2n� kbv: � bxk2: (25)Now, it remains to express kbv: � bxk2 in terms of kbck2 and kbwk2. Using this inequality:ka: � bk2 � maxi jaij kbk2 � kak2kbk2and ignoring the second and higher order terms of u, we obtainkbv: � bxk2 � kv: � xk2 + k(v � bv): � xk2 + kbv: � (x� bx)k2� kvk2 kxk2 + kv � bvk2 kxk2 + kbvk2 kx� bxk2� kvk2 kxk2 + kv � bvk2 kxk2 + kvk2 kx� bxk2:It follows from (21) and (22) that kbv: � bxk2 � �1 + 2p2n � log2n1� � log2n� kvk2 kxk2: (26)Note that kvk2 = k�t(bc)k2 � p2n kbck2and kxk2 � p2n kbwk2:Using (25) and (26) and ignoring the second and higher order terms, we obtainky � byk2 � � 2n� log2n1� � log2n� kbck2 kbwk2:What does the above error bound tell us about the accuracy of the fast multiplication? For simplicity, we assumethat the entries in the Hankel matrix H are about the same size. Recall that bc consists of the �rst column and thelast row of H . So kbck2 �p2=n kHkF;and we conclude that ky � byk2 �  2n�p21� � log2n! log2npn kHkF kbwk2:For conventional matrix-vector multiplication Hw, we have2kHw� fl(Hw)k2 � nkHk2 kwk2:Since n � nu and � is of size u, our fast multiplication is more accurate than conventional multiplication by roughlya factor of log2n=pn.In summary, the fast Hankel matrix-vector multiplication scheme is stable. This is consistent with the errorbound for the FFT, which says that the FFT has an error bound smaller than that for conventional multiplicationby the same factor as the reduction in complexity of the method.2



6. CONDITION OF COMPLEX-ORTHOGONAL TRANSFORMATIONIn this section, we derive the condition number of G of (8) and present a backward error analysis of an applicationof G. First, consider cond(G). We have GHG = � t iv�iv t � ; (27)where t = jcj2 + jsj2 and v = 2 Im(�cs):It can be veri�ed that the two eigenvalues of GHG are t+ v and t� v, and thatcond(G) =s t+ jvjt� jvj :Suppose that G is constructed to annihilate the second entry of x = (x1; x2)T. Then in (8)c = � x1 and s = � x2;where � = 1jxTxj :Consequently, in (27) t = � xHx and v = � xH � 0 �ii 0 �x:The two eigenvalues t� v are therefore� xH� 1 �ii 1 �x and � xH � 1 i�i 1 �x:The condition number of G can be arbitrarily large for some complex x. For example, when x = (1+ �; i)T, the twoeigenvalues are j�jj2 + �j and j2 + �jj�j :This also shows that kGk2 can be arbitrarily large. For any real x 6= 0, however, t = 1, v = 0, and cond(G) =kGk2 = 1.Now we consider the application of G to y = (y1; y2)T. Letbz = fl(Gy) = fl� cy1 + sy2�sy1 + cy2 � :From (9) and (10), we get bz = � (cy1(1 + �1) + sy2(1 + �2))(1 + �3)(�sy1(1 + �4) + cy2(1 + �5))(1 + �6) � ;where j�ij � p2 2 for i = 1; 2; 4; 5 and j�ij � u for i = 3; 6. Using �rst-order error analysis, we derivebz = (G+�G)y where �G = � c(�1 + �3) s(�2 + �3)�s(�4 + �6) s(�5 + �6) �and j�Gj � (p2 2 + u) jGj :This shows that the application of G is perfectly stable in the real case but can be unstable in the complex casebecause jGj can be large for some complex x.
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Figure 1. Errors in the eigenvalues of one hundred random Hankel matrices.7. NUMERICAL EXPERIMENTSWe implemented the fast eigenvalue algorithm for Hankel matrices in MATLAB and tested the following exampleson a SUN Ultra 1 station.Example 1 We generated one hundred 20 � 20 random complex Hankel matrices. Each matrix was constructedby choosing two random complex vectors as its �rst column and as its last row. Both the real and imaginary partsof each component of the random vectors were uniformally distributed over [�1; 1]. For each matrix, we measurederrors by assuming that the eigenvalues computed by the MATLAB function eig are exact. Let b� and � be theeigenvalues computed by our program and by MATLAB, respectively. Figure 1 plots the square roots of the sum ofsquares of the relative errors: Eeig =  20Xi=1 jb�i � �ij2j�ij2 !1=2 : (28)We observe that the relative accuracy is generally better than 10�12.Example 2 A rank de�cient complex Hankel matrix H was generated using the Vandermonde decomposition:H = 0BBB@ 1 1 � � � 1z1 z2 � � � zk... ... . . . ...zn�11 zn�12 � � � zn�1k 1CCCA0BBB@ a1 0a2 . . .0 ak 1CCCA0BBB@ 1 z1 � � � zn�111 z2 � � � zn�12... ... . . . ...1 zk � � � zn�1k 1CCCA : (29)The n � n matrix H has rank k. In this example, we chose n = 10, k = 6, zi as random complex numbers withmodulus one, and ai as random real numbers uniformly distributed on [�1; 1]:z = 0BBBBBB@ 0:8585� 0:5128i0:9915� 0:1301i0:8308+ 0:5565i�0:0900� 0:9959i0:9855� 0:1696i0:3677+ 0:9299i
1CCCCCCA ; a = 0BBBBBB@ 0:84360:4764�0:6475�0:18860:87090:8338

1CCCCCCA :Using (29), we generated the �rst column and the last row of a complex Hankel matrix. Then we slightly perturbedthese two vectors by adding two small random noise vectors of size 10�6 with components normally distributed with



zero mean. We obtained the following two vectors as the �rst column and the last row of our test Hankel matrix:
H1;: =

0BBBBBBBBBBBBBB@
2:1887� 0:0000i1:8406� 0:0394i1:0119� 1:2191i0:4866� 2:6229i0:9623� 2:7117i1:7038� 1:5199i1:2395� 0:2055i�0:2300+ 0:4271i�0:8873+ 0:1759i�0:1035� 0:6176i

1CCCCCCCCCCCCCCA ; H:;n =
0BBBBBBBBBBBBBB@

�0:1035� 0:6176i0:7279� 1:0566i0:5042� 0:7927i�0:2653� 0:8801i�0:7093� 2:1353i�0:6196� 3:3412i�0:2362� 2:8084i�0:1845� 0:9649i�1:1269+ 0:3874i�2:5246+ 0:6284i
1CCCCCCCCCCCCCCA

T :
In the sixth and seventh Lanczos iterations, we got small subdiagonal elements:�6 = (3:4136+ 1:3181i)� 10�4 and �7 = (2:0738 + 7:3102i)� 10�6:The complex-orthogonality of the matrix Q computed by the Lanczos method was lost:kQTQ� I10kF = 2:1:Our fast algorithm computed the eigenvalues �1:3168� 9:1207i4:3390� 7:2136i�1:3928+ 6:1754i�1:0186+ 0:9140i1:0442� 0:3515i�0:0061+ 0:0215i0:0000� 0:0000i0:0000+ 0:0000i4:3588� 7:1929i�1:4280� 9:2212iThe last two eigenvalues are spurious. For comparison, MATLAB eig gave�1:3168� 9:1207i4:3390� 7:2136i�1:3928+ 6:1754i�1:0186+ 0:9140i1:0442� 0:3515i�0:0061+ 0:0215i0:0000� 0:0000i0:0000+ 0:0000i0:0000+ 0:0000i0:0000+ 0:0000iThe errors in the �rst six eigenvalues were in the magnitude of 10�13. So, if we know the rank or an estimate k, wecan stop the Lanczos process after k iterations. This leads to an algorithm for computing the k dominant eigenvaluesof a complex Hankel matrix. In this example, we quit the Lanczos procedure after six iterations and computed theeigenvalues of the 6-by-6 triadiagonal matrix. All six computed eigenvalues were correct to at least four digits. Thethree largest eigenvalues were correct to at least nine digits.
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Figure 2. Errors in the eigenvalues of one hundred random Hermitian Toeplitz matrices.Example 3 Our fast algorithm for complex Hankel matrices can be adapted for Hermitian Toeplitz matrices byincorporating the following simple changes:� Replace the fast matrix-vector multiplication algorithm for Hankel matrices with one for Toeplitz matrices.� Replace the modi�ed Lanczos method with a conventional one for Hermitian matrices;� Replace the modi�ed QR method with a conventional one for Hermitian matrices.We generated one hundred 20-element random complex vectors as the �rst columns of the Hermitian Toeplitzmatrices. Figure 2 shows the error parameter Eeig as de�ned in (28). Not surprisingly, the errors here are smallerthan those in Example 1; speci�cally, the accuracy is better than 10�13.REFERENCES1. G.H. Golub and C. F. Van Loan.Matrix Computations . 3rd Ed., The Johns Hopkins University Press, Baltimore,MD, USA, 1996.2. N. J. Higham. Accuracy and Stability of Numerical Algorithms . Society for Industrial and Applied Mathematics,Philadelphia, PA, USA, 1996.3. F. T. Luk and S. Qiao. Using Complex-Orthogonal Transformations to Diagonalize a Complex-Symmetric Matrix.In Advanced Signal Processing Algorithms, Architectures, and Implementations VII , Franklin T. Luk, Editor,Proceedings of SPIE Vol. 3162, pp. 418{425, 1997.4. F. T. Luk and S. Qiao. A Fast Eigenvalue Algorithm for Hankel Matrices. In Advanced Signal Processing Al-gorithms, Architectures, and Implementations VIII , Franklin T. Luk, Editor, Proceedings of SPIE Vol. 3461,pp. 249{256, 1998.5. C.C. Paige. Error Analysis of the Lanczos Algorithm for Tridiagonalizing a Symmetric Matrix. J. Inst. MathsApplics , Vol. 18, pp. 341{349, 1976.6. C. F. Van Loan. Computational Frameworks for the Fast Fourier Transform, Society for Industrial and AppliedMathematics, Philadelphia, PA, USA, 1992.


