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ABSTRACT

This paper analyzes the important steps of an O(n?logn) algorithm for finding the eigenvalues of a complex Hankel
matrix. The three key steps are a Lanczos-type tridiagonalization algorithm, a fast FFT-based Hankel matrix-vector
product procedure, and a QR eigenvalue method based on complex-orthogonal transformations. In this paper, we
present an error analysis of the three steps, as well as results from numerical experiments.
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1. INTRODUCTION

The eigenvalue decomposition of a structured matrix has important applications in signal processing. In this paper,
we consider a complex Hankel matrix H € C™"*™:

hy hy ... hp_1 hn,
h2 h3 PR hn hn+1
H=| @ ] (1)
hn—l hn .. h2n—3 h2n—2
hn hn+1 .. h2n—2 h2n—1

The authors* proposed a fast algorithm for finding the eigenvalues of H. The key step is a fast Lanczos tridiago-
nalization algorithm which employs a fast Hankel matrix-vector multiplication based on the Fast Fourier transform
(FFT). Then the algorithm performs a QR-like procedure using the complex-orthogonal transformations in the di-
agonalization to find the eigenvalues. In this paper, we present an error analysis and discuss the stability properties
of the key steps of the algorithm.

This paper is organized as follows. In Section 2, we discuss eigenvalue computation using complex-orthogonal
transformations, and describe the overall eigenvalue procedure and three key steps. In Section 3, we introduce
notations and error analysis of some basic complex arithmetic operations. We analyze the orthogonality of the
Lanczos vectors in Section 4 and the accuracy of the Hankel matrix-vector multiplication in Section 5. In Section 6,
we derive the condition number of a complex-orthogonal plane rotation and we provide a backward error analysis of
the application of this transformation to a vector. Numerical results are given in Section 7.
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2. COMPLEX-ORTHOGONAL TRANSFORMATIONS

An eigenvalue decomposition of a nondefective matrix H is given by
H=XDX " (2)

We will pick the matrix X to be complez-orthogonal; that is, XX T = I. So, H = XDXT. We apply a special Lanczos
tridiagonalization to the Hankel matrix (assuming that the Lanczos process does not prematurely terminate):

H=QJQ", (3)
where () is complex-orthogonal and J is complex-symmetric tridiagonal:
ar B 0
B ar B
J= B (4)
. - Bama
0 Bn-1  an
Let Q= (qi q2 ... qy). Since QTQ = I, we see that
q; 9j = bjj. ()

We call the property defined by (5) as complex-orthogonality (c-orthogonality for short).

The dominant cost of the Lanczos method is matrix-vector multiplication. We propose an O(nlogn) FFT-based
multiplication scheme so that we can tridiagonalize a Hankel matrix in O(n? logn) operations. Given w € C" we
want to compute the product p = Hw. Define ¢ € C?*~! by

€= (hn hngr .o hapy hy hy ... hp)b. (6)
Let w=(w;, ws ... wyp)'. Define w € C2"~! by
w=(wy, wp_1 ... w 0 ... 0). (7)

Let fft(v) denote one-dimensional FFT of a vector v, ifft(v) one-dimensional inverse FFT of v, and “.x” component-
wise multiplication of two vectors. The desired product is given by the first n elements of the vector ifft(fft(c).fft(w)).
The authors? showed that Algorithm 2 requires 30n log(n) + O(n) flops (real floating-point operations).

To maintain symmetry and tridiagonality of J, we apply complex-orthogonal rotations in the QR iterations:
J=WDW?",

where W is complex-orthogonal and D is diagonal. Thus, we get (2) with X = QW. The workhorse of our QR-like
iteration® is a complex-orthogonal “plane-rotation” P € C™*". That is, P is an identity matrix except for four
strategic positions formed by the intersection of the ith and jth rows and columns:

G:<pii pij>:< ¢ S>, (8)
bji  Pjj -5 ¢
where ¢? + s = 1. The matrix G is constructed to annihilate the second component of a 2-vector x = (1, x2)".

We present our computational schemes in the following.

OVERALL PROCEDURE (HANKEL EIGENVALUE COMPUTATION). Given H, compute all its eigenvalues.

1. Apply a Lanczos procedure (Algorithm 1) to reduce H to a tridiagonal form J. Use Algorithm 2 to compute
the Hankel matrix-vector products.

2. Apply a QR-type procedure (Algorithm 3) to find the eigenvalues of J. o



ALGORITHM 1 (LANCZOS TRIDIAGONALIZATION). Given H, this algorithm computes a tridiagonal matriz J.

Initialize q; such that qf q; = 1;

vi = Hqy;
forj=1:n
T ..
Qj = q; Vj,
rj =V = Q;q;;
ifj<n
Bj = \/r] rj;
if 3; = 0, break; end;
qj+1 =1;/Bj;
vit1 = Haqji1 — B5q;;
end
end O

ALGORITHM 2 (FAsT HANKEL MATRIX-VECTOR MULTIPLICATION). Given w € C", compute p = Hw.
Construct the vectors ¢ and w as in (6) and (7). Calculate y € C*"~! by

y = ifft(fft(c). * fit(w)).
)T

[m]

The desired p € C" is given by the first n elements of y: p=(y1 ¥2 ... Yn-1 Un

ALGORITHM 3 (COMPLEX-SYMMETRIC QR STEP). Given J € C™*™  this algorithm implements one step of
the QR method with the Wilkinson shift.

Initialize Q = I;
Find the eigenvalue p of Jy,—1.m,m—1:m that is closer to Jp,m;
Set x1 = Ji11 — p; T2 = Joy;
fork=1:m-—1
Find a complex-orthogonal matrix P,;F to annihilate x5 using x1;
J = PkTJPk,
Q = QPy;
ifk<m-—1
21 = Jet1,k; T2 = Jpt2.k;
end if
end for. D

3. ERROR ANALYSIS FUNDAMENTALS

Let u denote the unit roundoff. Since the objective of this paper is to analyze the stability of our algorithm?* and
not to derive precise error bounds, we carry out first-order error analysis. Sometimes, we ignore moderate constant
coefficients. The following results for the basic complex arithmetic operations are from Higham?:

fllexy) = (@xy)(1+9), |6 <u, (9)
fllzy) = =zy(1+9), 6] < V27, (10)
fllz/y) = (z/y)(1+9), 6] < V27, (11)
Using (10) and, similar to the real case,? repeatedly applying (9), we can show that for two n-vectors x and y
filxty) =x"(y + Ay) = (x + Ax) 'y, (12)
where
(n+u

Ay < Yuralyl, 1A% < vogalxl, Vg1 = ———
|AY] < Yugalyl,  1A%] < Yo lx], Ynn -+

We assume that nu < 1. So we can think of v,, as approximately nu.



4. LANCZOS TRIDIAGONALIZATION

Analogous to the analysis of the conventional Lanczos tridiagonalization,” we shall show that column vectors q; can
lose c-orthogonality. Let

a; = fl(Q;v;) =q; (V; + Av)
for some Av. It follows immediately from (12) that [|AV|2 < yp41]|Vj]l2. Thus,

a; =q;v; + Ao, |Aal < vapa @l 1952, (13)
and
a1 < (L4 )l 19512 (14)
If
r; = fl(v; —a;q;) = (V; + Av) — @;(q; + Aq) (15)
for some Av and Aq, then (9) and (10) show that
1Adllz < V2lidjllz, AV < ullv; - a;d; ]l
Denoting Ar = Av — &;Aq as the first order error in T; and using (14), we get
1Ar]l2 < ullv; —@;a5llz + |a;1V2 )Gl < (u+ (V272 + )@ 1)1Vl (16)
Now, from (11), we have
i1 = fIE;/B) = (& + A0)/B;, 1Az < V2l
that is, R
BiGjn =T; + AF,  [|AF]ls < V2yIE]l2- (17)

To check c-orthogonality, we multiply a;r on the both sides of the above equation:
Biald = Al (F) + AF) ~ 4)'v; — a;d 4 + d) (Ar + AF).

Since q; is normalized and q; v; = @; — Aa from (13), we get

Birdj41 ~ —Aa+ GF (Ar + AF). (18)
Next we derive the bound for ||A¥||; by using (17), (15), and (14),
IAE]l2 < V2749 — @G51l2 < V231 + G311V - (19)
It follows from (16) and (19) that
|Ar + AFfls < [|Arflz + [|AT])2
< (V2% + Wl 13 + ) 195l + V21 + 1651319512

(V23 + V2 + 0@l + (VZya +w)) 19511
Finally, (13) and (18) imply that

Q

|Aal+ 1 Ar + A ;112
< (O + V29 0) + (V2 + VI + 0lIGs 1) 19511 5112

18,4, @j+1]

Using the approximation v, = nu when nu < 1 and ignoring the moderate constant coefficients, we obtain

AT (n + g l)lIa; ll2 195112

|q;'rq1'+1| < ( U2/ 14y ! u. (20)
161

The above inequality says that q; can lose c-orthogonality when either | Bj| is small or ||q;]|, is large (recall that q;

and f3; denote computed results). Hence the loss is due to either the cancellation in computing §; or the growth

in ||q;||2, and not the accumulation of roundoff errors. In the real case, ||q;]|2 = 1 and (20) is consistent with the

results in Paige,” whereas in the complex case, the norm ||g;||2 can be arbitrarily large. This is an additional factor
that causes the loss of c-orthogonality.




5. HANKEL MATRIX-VECTOR MULTIPLICATION

The only computation in the fast Hankel matrix-vector multiplication is
y = ifft(fft(c). * fit(w)).

Denoting the computed y as

y = fl(ifft(fft(c). = fit(w))),
we consider the computation of fft(w). Assume that the weights wi in the FFT are precalculated and that the
computed weights &7, satisfy

(T)‘,’c = wi + €kj,
where
lenj| <

for all 7 and k. Depending on the method that computes the weights, we can pick
pw=cu, p=-culogj, or u=-cuy,
where ¢ denotes a constant dependent on the method.® Following Higham? we let

x = ffit(W) and % = fI(t(W)).

We have log, (2 0
I 1108y (241 —
— R < V2n -1 :
I =l < VI (e
where
n=p+7(l+np).
Approximately,
~ v2nnlog,n
nx—ﬂhs(T—ﬂ—@—|mm. (21)
—nlogyn

Similarly, let
v =fft(c) and v = fI(fft(c)).

~ V2 log.
|w—ﬂhs(—ﬂiﬁﬂguw} (22)
1 —nlogyn

Then

Next, we consider the componentwise multiplication z = v. * X. Denoting the computed z as
z=fl(v.xX),
we have approximately
Iz — 2|2 < u |zl (23)
Finally, we consider
y =ifft(z) and y = fi(ifft(z)).
Since F}, is the FFT matrix, we have

Fl=n"1F,.

n

Thus, similar to (21) and (22), we get

. Vv2nnlogyn
— < | —= . 24
Iy ﬂh_<1_nb&n Il (24



As n~1Y/2F, is unitary, it follows that
Iyll2 = llifft(2)|l2 = |Fon-12ll2/(2n — 1) = |[z]l2/v2n — 1 ~ ||z]|]2/V2n.

Consequently, using (23) and (24), we get

o nlogyn - nlogyn
-V, < [ ——=22 o < [ 122 ) (1 5.
ly =¥ll2 < (1 —nlog2n> 1z]l> < <1 _nlog2n> (14 u)||z]]2

Ignoring the second and higer order terms of u, we have

-~ nlogyn PP
— < | —2= . . 25
Iy =l < (28 9. %l (25)

Now, it remains to express ||v. * X||2 in terms of ||¢||> and ||w]|2. Using this inequality:

la *bll> < max|as| b2 < flall2 bl

and ignoring the second and higher order terms of u, we obtain

[V.xxllz < [lvoxx]l2 +[[(v = V). s x[l2 + [[V. % (x = X) |2
< vz lixllz + v = vz [[xll2 + [[¥]]2 [[x = X]|2
~ iz [1xllz + v = ¥z [Ix[l2 + [[V]l2 Ix = X]|2.
It follows from (21) and (22) that
~ A~ log,n
9. % %||> < <1+ 221 &> ]|z [lf2- (26)
1 —nlogyn
Note that
[vll2 = [fit(c)[l2 = vV2n el
and

1x[l2 & v2n [[W]s-

Using (25) and (26) and ignoring the second and higher order terms, we obtain

2nmnlogyn

Hy—ﬂh§< )nwﬂwm.

1 —nlogyn

What does the above error bound tell us about the accuracy of the fast multiplication? For simplicity, we assume
that the entries in the Hankel matrix H are about the same size. Recall that ¢ consists of the first column and the

last row of H. So
el = v2/n || H |k,

and we conclude that

IH e |9 ]]2.

~ 2n\/§ log,n
ly = ¥ll2 < < 1 ) &2

1—mnlog,n | /n
For conventional matrix-vector multiplication Hw, we have?
[Hw — fI(HW)||2 < Vol HI|2 [W]]2-

Since 7, = nu and 7 is of size u, our fast multiplication is more accurate than conventional multiplication by roughly
a factor of logyn/\/n.

In summary, the fast Hankel matrix-vector multiplication scheme is stable. This is consistent with the error
bound for the FFT, which says that the FFT has an error bound smaller than that for conventional multiplication
by the same factor as the reduction in complexity of the method.?



6. CONDITION OF COMPLEX-ORTHOGONAL TRANSFORMATION
In this section, we derive the condition number of G of (8) and present a backward error analysis of an application
of G. First, consider cond(G). We have
H/ _ t w
o= 4, ). 1)
where
t=|c*+|s)? and v =2Im(és).

It can be verified that the two eigenvalues of GHG are t + v and t — v, and that

t+ vl

cond(G) = e

Suppose that G is constructed to annihilate the second entry of x = (z1,22). Then in (8)
c=¢&x; and s=E&uwxs,

where
1

T xTx|"

3

Consequently, in (27)

t=¢xtx and v:fo<2 _(Z)>x.

The two eigenvalues ¢ £+ v are therefore

§XH<IZ. _f>x and §XH<_1Z. 1Z>X

The condition number of G' can be arbitrarily large for some complex x. For example, when x = (1 +4,i)", the two
eigenvalues are

9] 2+
pral M R
This also shows that ||G||2 can be arbitrarily large. For any real x # 0, however, t = 1, v = 0, and cond(G) =
IGll2 = 1.
Now we consider the application of G to 'y = (y1,y2)T. Let

~ + sY2
= fiGy)=fi{ .
i fiGy) =i
From (9) and (10), we get

- < (eyr (1 + 1) + sya(1 4 82)) (1 + 05) )
(—sy1 (14 d4) + cy2(1+65))(1 +66) /)

where |6;| < V27, for i = 1,2,4,5 and |§;| < u for i = 3,6. Using first-order error analysis, we derive

C((Sl + (53) S((SZ + 63) >

Z=(G+AQ)y where AG= ( —(04+06) (05 + J)

and
IAG| < (V272 +u) |G].

This shows that the application of G is perfectly stable in the real case but can be unstable in the complex case
because |G| can be large for some complex x.
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Figure 1. Errors in the eigenvalues of one hundred random Hankel matrices.

7. NUMERICAL EXPERIMENTS

We implemented the fast eigenvalue algorithm for Hankel matrices in MATLAB and tested the following examples
on a SUN Ultra 1 station.

Example 1 We generated one hundred 20 x 20 random complex Hankel matrices. Each matrix was constructed
by choosing two random complex vectors as its first column and as its last row. Both the real and imaginary parts
of each component of the random vectors were uniformally distributed over [—1,1]. For each matrix, we measured
errors by assuming that the eigenvalues computed by the MATLAB function eig are exact. Let X and A be the
eigenvalues computed by our program and by MATLAB, respectively. Figure 1 plots the square roots of the sum of

squares of the relative errors:
[Xi = A |2
Eeig = (Z P : (28)

We observe that the relative accuracy is generally better than 1012,

Example 2 A rank deficient complex Hankel matrix H was generated using the Vandermonde decomposition:

1 11 a 0 |
21 Z9 ce 2k a2 1 29 - Zg 1
H= : o : : S .- (29)
n—1 n—1 n—1 '71
2z 25 2y 0 ag 1oz -z

The n x n matrix H has rank k. In this example, we chose n = 10, k = 6, z; as random complex numbers with
modulus one, and a; as random real numbers uniformly distributed on [—1, 1]:

0.8585 — 0.5128: 0.8436

0.9915 — 0.1301¢ 0.4764

I 0.8308 + 0.55651 a— —0.6475
—0.0900 — 0.9959: |’ —0.1886

0.9855 — 0.1696¢ 0.8709

0.3677 4+ 0.9299¢ 0.8338

Using (29), we generated the first column and the last row of a complex Hankel matrix. Then we slightly perturbed
these two vectors by adding two small random noise vectors of size 10~ with components normally distributed with



zero mean. We obtained the following two vectors as the first column and the last row of our test Hankel matrix:

2.1887 — 0.0000:
1.8406 — 0.0394:
1.0119 — 1.21914
0.4866 — 2.6229:
0.9623 — 2.7117:
" 1.7038 — 1.5199:

1.2395 — 0.2055:
—0.2300 + 0.42713
—0.8873 + 0.1759:
—0.1035 — 0.6176¢

—0.1035 — 0.6176:
0.7279 — 1.05661
0.5042 — 0.7927:

—0.2653 — 0.88011

—0.7093 — 2.1353¢

—0.6196 — 3.3412;¢

—0.2362 — 2.8084:

—0.1845 — 0.9649:

—1.1269 + 0.3874:

—2.5246 + 0.62844

In the sixth and seventh Lanczos iterations, we got small subdiagonal elements:

T

Bs = (34136 + 1.31817) x 10°* and B; = (2.0738 + 7.3102i) x 10°.

The complex-orthogonality of the matrix ) computed by the Lanczos method was lost:

1Q"Q — Lo|lr =2.1.

Our fast algorithm computed the eigenvalues

—1.3168 — 9.1207¢
4.3390 — 7.2136¢
—1.3928 + 6.1754¢
—1.0186 + 0.9140¢
1.0442 — 0.3515¢
—0.0061 + 0.0215:
0.0000 — 0.0000z
0.0000 + 0.0000¢
4.3588 — 7.1929;
—1.4280 — 9.2212¢

The last two eigenvalues are spurious. For comparison, MATLAB eig gave

—1.3168 — 9.1207¢
4.3390 — 7.21364¢
—1.3928 + 6.1754¢
—1.0186 + 0.9140:
1.0442 — 0.35154¢
—0.0061 + 0.0215¢
0.0000 — 0.0000z
0.0000 + 0.0000:
0.0000 + 0.0000:
0.0000 + 0.0000¢

The errors in the first six eigenvalues were in the magnitude of 10713, So, if we know the rank or an estimate k, we
can stop the Lanczos process after k iterations. This leads to an algorithm for computing the k£ dominant eigenvalues
of a complex Hankel matrix. In this example, we quit the Lanczos procedure after six iterations and computed the
eigenvalues of the 6-by-6 triadiagonal matrix. All six computed eigenvalues were correct to at least four digits. The

three largest eigenvalues were correct to at least nine digits.
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Figure 2. Errors in the eigenvalues of one hundred random Hermitian Toeplitz matrices.

Example 3 Our fast algorithm for complex Hankel matrices can be adapted for Hermitian Toeplitz matrices by
incorporating the following simple changes:

e Replace the fast matrix-vector multiplication algorithm for Hankel matrices with one for Toeplitz matrices.
e Replace the modified Lanczos method with a conventional one for Hermitian matrices;

e Replace the modified QR method with a conventional one for Hermitian matrices.

We generated one hundred 20-element random complex vectors as the first columns of the Hermitian Toeplitz
matrices. Figure 2 shows the error parameter Fgz as defined in (28). Not surprisingly, the errors here are smaller
than those in Example 1; specifically, the accuracy is better than 10713,
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