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Abstract

In this paper, we study the scaled total least squares problems of rank-deficient linear
systems. We present a solution for rank-deficient scaled total least squares and discuss
the relation between scaled total least squares and least squares.
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1 Introduction

The least squares (LS) problem is to find x to minimize ||b — Ax||2 for a given A € R™*"
(m > mn) and a b € R™. Let the residual r = b — Ax, the least squares problem can be
recast as

min IIr||2 for reR™. (1.1)

(b—r)€range(A)

This formulation shows that the errors only occur on the vector b. When b € range(A),
(1.1) is solved by r s = 0. So, we assume b ¢ range(A) throughout this paper. The total
least squares (TLS) problem allows errors to present in both b and A:

min |[Ex)lr for E€R™ and reR™ (1.2)
(b—r)€range(A+E)

When A is of full column rank, rank(A) = n, the LS solution is unique and given
by x1s = (ATA)7'A™b. When A is rank-deficient, rank(A) = k < n, the LS solution



is not unique. The minimal 2-norm solution can be obtained by using the singular value
decomposition (SVD) as follows. Suppose that

~[5 0o P
A= 1.
U[O O]V (1.3)

is the SVD of A, where U € Rn*™m and V € R™" are orthogonal and s = diag(ay, ..., %),
01 > -+ > 0 > 0. The minimal norm LS solution is given by

~

~ -1 ~
x5 = A'b  where Al =V [ EO 8 ] Ut

and the vector
I‘LS = b - AXLS = (I - A.A.T)b

solves (1.1).
For the TLS problem, we consider the SVD:

[A b]=UxVT, (1.4)

where 3 = diag(&1, ..., 5nq1), 51 > -+ > Fny1 > 0 and U € RX(+1) and v e R+ x(n+1)
have orthonormal columns, and partition

[T teed] 5 Vii Vi n
U= ; "? and V= | v} g 1

n 1
If 5, > 0p41, which implies that &, > 0 or A is of full column rank, then the matrix
[ETLS rTLS] = _5'n+11v1n+1[‘7:1112 522]

solves (1.2) and

is the unique solution to (A + Fr s)x = b+ ropg [2, Page 598].
If G, = 0pnt1, then the solution to the TLS problem may still exist, although it may not
be unique. Wei [10] considered the minimal norm TLS solution for a general case when

for some integers 1 < p < n and ¢ > p. For convenience, we restate the theorem for p = k
and ¢ =k + 1.

Theorem 1.1 [10, Theorem 2.2] Partitioning 3, U, and V in (1.4):

3 0 k y y
%= 0 3o n—k+1 , U= [211 _ZZ% : (1.5)
k n—k+1 "



and

. Vi Vio n
V= o \o 1, (1.6)
k n—k+1
if
Ok > Opq1 > Opq2 > -+ 2 0py1 > 0,
then YV/U s of full column rank, Voo # 0, and
XrLs = (‘\J/lvli)f‘v’21 — ‘u/ll‘v’?l/(l - ‘U’QTl‘U’ﬂ)
= —Via(¥)' = —ViaVaa /(1 — ¥3,¥21) (1.7)

= (ATA - V32V )1 (ATb — V1o X3va)
is the minimal norm TLS solution. Moreover, let q = Vao/||Va2||2, then
[Eris Tris] = ﬁ2i2qu[Vlg Voo

solves (1.2) and
”[ETLS rTLS]”F = Ok+1-

We refer the details of LS to [3] and TLS to [8]. The problems of LS and TLS can be
unified by introducing a scaling parameter into the TLS problem. Rao [6] proposed

min I[E Ar]|lp for E € R™™ and r € R™,
(b—r)€range(A+E)

where A > 0 is a given scalar. Paige and Strakos [5] suggested a slightly different but
equivalent formulation:
min I[E r]|e- (1.8)
(Ab—r)€range(A+E)
If [Esrs rsrus) solves the above problem (1.8), then the solution xgr.s for x in (4 +
Egris)Ax = Ab —rgri is called the scaled total least squares (STLS) solution. In this paper,
we adopt the formulation (1.8) by Paige and Strakos.

Obviously, when A = 1, the STLS (1.8) reduces to TLS. It is shown in [5] that xgris
approaches xps as A — 0. In the STLS literatures [4, 5, 6], it is assumed that A is of full
column rank. This paper presents the STLS solution when A is rank-deficient. The rest of
the paper is organized as follows. In Section 2, we analyze the STLS when A is rank-deficient.
Then in section 3, we relate STLS to LS.

2 Solving Rank-Deficient STLS

Following the STLS formulation (1.8), we denote

C:=[A M\b]=UxV", (2.1)



where U € R™*(™*1) has orthonormal columns, V e R"+1)x(+1) orthogonal, and ¥ =
diag(o1,...,0n+41), 01 > =+ > Ogy1 > Otz = -+ = opy1 = 0. From Theorem 1.1, if
or > og+1 > 0, then, substituting b in (1.2) with Ab, we can obtain the minimal norm
STLS solution by applying the minimal norm TLS solution (1.7). Specifically, AXgrLs = Xrrs.
When does condition oy > 041 hold? The following theorem gives a necessary and sufficient
condition for o1 = 0. The interlacing property says that op > o > oy1. Thus,
O # 0k+1 implies o > 0ky1, which is what we need for applying Theorem 1.1 to STLS.

Theorem 2.1 Suppose that A has the singular values

~ ~ ~

Ul>"'23j>o-]+1:"':8k>ak+1:"': n:O

for some j < k and U= [U1, ..., U] is a column partition. Let

Uk = [Uj41,--0k], p:=|reslle, ai:=1;b, fori=1,..k,
and
J o2
P(o) = N2p% — 0% — N\20? Z S BRY (2.2)
G2 — o
=1 "J
then
Ok+1 = Of,

if and only if R
Uib=0, and (5k) > 0.

Proof. We construct a matrix

(2.3)

N:ﬁTC[‘Af 0]

0 1

which has the same singular values 7; as C in (2.1). Then, the n+1 eigenvalues of NTN 52T
are:

0} — Gpy ey O — Oy Opy1 — Opy —Opyeery —Op
From the interlacing property, the first k eigenvalues in the above list are nonnegative and
there are exactly n — k negative eigenvalues if and only if o511 = 0. In the following,
we transfrom NTN — EI%I while keeping the number of the negative eigenvalues. First, to
simplify NTN — 8,%1 , recall that in the LS problem,

re=(I—Aaahb=0 |2 Y |,
0 Ik

It then follows that
p = |Iresllz = [kt - U] b2



Defining

a=[ag,..,o) :=[y,...,u;]'b and b = [tx41,..., U] b,

from (2.3) and (2.1), we have

= a 5 Aa
= V o0 X 0 Ja I, 0
N=U"A )b = 2=
[ ][0 1] [00/\b] [0 H] 0.0 X
0 0
where H is a Householder matrix such that Hb = pe1. Thus
- T ~
¥ 0 Ja ¥ 0 Ja
N'N-G2T = |0 0 X 0 0 \p | —Gi
| 0 0 O 0 0 O
[ 52 - 52, 0 ATa
— 0 —521, 0
Aaly 0 X2(p? +aTa)
Partitioning
Y = diag(X1,0k1x—;), where X1 = diag(cy,...,0;),
and
M
a—
as
accordingly, we get
2321, 0 0 A8 a;
0 0 0 \ora
Tar _ 227 ka2
NN =g}l 0 0 =82l 4 0
AalY,  A\opai 0 N (p? +aTa) — 57

Now, it can be verified that the Schur complement of 532 — 521, is

0 0 A(/J'\kag
M:=| 0 -8, 0 :
/\Ekag 0 ¢(8k) + /\2a2Ta2

since

X (p® +aTa) — 57 — NalS (53 - 571;) 15 a,

= Majay +2\%p? — 57 + Mala; — Ma] 23(2% - 521;) 'ay

= )\QaQTag + ¢(8k)



Since i% — 521, is positive definite, from Sylvester law of inertia [2, Page 403], the number
of the negative eigenvalues of N'N — 8,%[ equals the number of the negative eigenvalues of
M, which, from (2.4), has exactly n — k negative eigenvalues if and only if

M, = 0 A&kag
V7| X6ral  (6%) + A2alay

is positive semi-definite. It follows from Lemma 3.1 in [5] that M; is positive semi-definite
if and only if
0=a;=0U'b and v(5%) > 0.

This completes the proof. O

The condition g > 041 for the existence of the minimal norm STLS solution requires
the singular values of both A and C. This theorem provides the alternative conditions
Ulb # 0 and 1(5%) < 0 which require only the SVD of A. From this theorem, if Ulb # 0
or (o) < 0, then we can apply Theorem 1.1 to STLS. For example, if ¥, U, and V in
(2.1) are partitioned as in (1.5) and (1.6), then, from (1.7), the minimal norm STLS solution
XgrLs can be given by

Mxsres = (Vi) Tvor = —Vig(vih) T = (ATA — V22V D) T (AATD — V15 52vy)). (2.5)
Moreover, let q = va3/||vaz||2, then

[Bsrrs Tsris] = UsZoqq [Vi5 vaol
solves (1.8) and
||[ESTLS rSTLS]HF = Ok41-

Finally, we conclude this section by presenting two properties of o ;.

Corollary 2.2 If ﬁka # 0 or () < 0, then oxy1 is the smallest positive solution for o
in Y(o) =0 defined in (2.2).

Proof. On the one hand, the matrix N defined in (2.3) has the singular values o1 > -+ >
Ok+1. Thus, op1 is the smallest positive solution for o in the equation det(NTN —o2I) = 0.
On the other hand, we consider

$2 o2, 0 ASa
NTN — %I = 0 —0%I, 4 0
AaTy 0 A2(p? +aTa) — o2

Similar to (2.4), the Schur complement of 52— 621, is

—O'ZIn_k 0

0 P(o) |’



since
A(p? +aTa) — 0? — N2aTS(52 - 021;) " 'Sa
= \p? -0’4+ NaTa— AQaT§2(§2 2
= (o).
Thus, we have

det(NTN — 021) = (=1)" ko2 Ry (5)det (82 — o21y).

From Theorem 2.1, when ﬁ,cT b # 0 or 9(0x) < 0, we have gy > oky1. Consequently,
Y2 - 0,% 411k is positive definite. Therefore, ox11 is the smallest positive solution for o

in the equation (o) = 0, because it the smallest positive solution for o in the equation
det(N*N — o%I) = 0. O

Corollary 2.3 Under the condition that (/J\',;fb # 0 or ¥(ok) < 0, ogy1 is a monotonically
increasing function of A.

Proof. From Corollary 2.2, under the given condition, 9(o+1) = 0. Differentiating

0= p(ors1)/(Noi 1),
with respect to A, we get
20%04 ., | 2 ! 2070410441
0 = ——5H+5-> =0
k41 i1 (@5 - Ois1)

bl

2
= F_20;€+1 +0k+1z
1

k+ J Ulc+1)

which impies o, 41> 0, since A > 0 and the value of the expression in the square bracket is
positive. 0

3 Relating STLS to LS

The relation between STLS and TLS is obvious. The TLS problem is a special case of STLS
when A = 1. In this section, we discuss the relation between STLS and LS. It is shown in [5]
that xsrrs approaches to x5 as A tends to zero when A is of full column rank and U,C b # 0.
In this section, we extend their result to the case when A is rank-deficient.

Theorem 3.1 If Uyb # 0 or P(0k) <0, then

. . Ok41
lim x =X and lim —— =
A XsTrs LS m Y



Proof. We first show that

Indeed, from Corollary 2.2, we have
J
a,%+1:,\2<p _ngZ&?_U ) (3.1)
J k+1

It follows that limy_o(o2 4+1/A) = 0, which implies limy_,o o} 4+1 = 0. Then, noting that
Yo = diag(og41,0, ...,0) and (ATA)TAT = Af, from (2.5), we have

lim xgrrs = lim(ATA — V22V D)1 (ATb — A 1Vi952vy,)
A—0 A—0

= (ATA)TATb
= Xig-
Also, from (3.1), we get
j
- Ok+1 . _ B
R R\ L IO D = .

In the following, we derive bounds for ||xgr.s —X1s||2 and the residual norm ||b— Axgris||o-

Theorem 3.2 If Uxb # 0 or ¢(oy) <0, then

o2
||X5TL5 - XL5||2 < :;+1 ||V12X5TL5 /\_1V22||2 + ,8||XSTL5||2
k
1
k+1
< =+
( s ) Allvall2’
where
U/% 1
Ok — Tk+1
Also, the residual norm
2
Ok41

b- A =Pt Noulvaale
|| XSTLS||2 Spt A0k||v22||2

Proof. First, we show some equalities used in our derivation. Partitioning ¥, U, and V in
the SVD (2.1) of C as ¥, U, and V in (1.5) and (1.6), we can verify

ATA= VTV 4+ VieBaVis, AT = Vi Sivar + VigZivas. (3.3)



and

VisVig + vaovy, = 1. (3.4)
From the generalized inverse theory [9], we have
(ATAAT = AT, (IT-ATA)AT =0 (3.5)
and
xt =xT/(xTx), x#0. (3.6)

Then, using the first equation in (3.5), x;s = A'b = (ATA)TATb and the second equation
in (3.3), we get

XstLs — XLs

= (I - A'A)xeris + (ATA) V1932V D xrrs + (ATA)T(AT A)xgrrs
—(ATA) V32V P x s — (ATA)TATD

= (ATA)(ATA - VioZ2V ) xeris — AT VS 3ve ] — A1 (AT A) V95 2vy,
+(I — AT A)xgres + (ATA) V22V g,

From the first equation in (3.3) and Axsy s = (V{1)Tvyy in (2.5), the expression in the square
bracket in the above equation:

(ATA = VioZ3Vih)xsms — A7 Vi Shvay
= AV (V) var = AV Sy
= 0,

since Vi1 (V1) = I, because, applying Theorem 1.1, Vi; is of full column rank. Thus
XsTLs — XLg = (I - ATA)XSTLS + (ATA)TW2E§(V1£XSTLS - >\_1V22)- (3-7)

In the following, we show that the first term on the right side of (3.7) satisfies ||(I —
AT A)xgrslle < Bl|Xsris||2, where 3 is defined in (3.2).

On the one hand, ||(I— At A)xgrrs]|2 < ||Xsrrs||2 since T—Af A is an orthogonal projection.
On the other hand, (2.5) and the symmetry of AT A — V15,%3V}}, imply that

xsts = (ATA—ViaZ3Vi) 1 (ATA — ViaB3Vih ) xsuus
(ATA - V122V ) (AT A - Via22Vh) Pxgms.

Hence, from the second equation in (3.5),

”(I - ATA)XSTLSHQ

(I - A]LA)(ATA - ‘/1223V11;)(ATA - W2E%V13)TXSTLS||2
(T — ATA) V1253 Vi5 (AT A — Via B5V15) Txsmsl2

ViS5 Vi5lall (AT A = VieS5Vi5) ol [xsres|l2

‘71%+1||(ATA - ‘/'122§V12)T||2||XSTL5||2-

IA A

9



Now, we claim that

1
I(ATA - VieZ3Vi) e < 55—,
g, — O
k k+1

then we have ||(I — ATA)xgris|l2 < B||Xsres|l2. Indeed, from the first equation in (3.3),
ATA - V1932VE is of rank k, so

1
op(ATA — V1,32V )

I(ATA = VieS3Vi) T2 =

From Mirsky theorem [7, Page 204], we have
ok (AT A = VieZ3Vi3) — ok (ATA) > —||[ViaZ3Visll2 > —o

and consequently
1 1

ATA - VB3V Tlo = < = :
H( 12442 12) ||2 O'k(ATA— Vlzzgvl'g) = 0']% — 0]%4_1

For the second term on the right side of (3.7), from Axsris = —Via(vip)! in (2.5), (3.4),
and (3.6), we have
Vgxsms - )\_1V22
= XN (VihVaz(van) + va2)
= AN (Vi5Viz + vaavay)Vas/ (Vi vao)
= _>‘_1(v2T2)T,
which implies

(AT 4) V1o 3 (Vigxsres — A vas)l2

2
ag
< %HVgXSTLs - >\_1V22||2
k
2 2
Okt1 .1 Ok+1
Aa]% || 22”2 )\a\k||v22||2 ( )

Putting things together, we get

Tht1 Thr1 1
[xsrLs — Xislle € = + BlIxstslle < | = + 8 | 75— M
)\ak||v22||2 o A|vazll2

since | Axsrusllz = [|Vie(vih) lla < [Ivhsll2 = lIvazllz ™
Finally, using (3.7) and (3.8), we get the residual norm

||b - AXSTLSHZ

< b — Axs|l2 + ||A(ATA)TV12Z%(V{£XSTLS - )\_1"22)”2

< n ‘71%+1” 1 I i 01%4-1 O
-~ ||V = =

= f MOk 22112 p )\Jk||v22||2

10



Conclusion

In this paper, we showed the conditions for the existence of the minimal norm solution for
rank-deficient STLS. Our conditions involve only the SVD of the coefficient matrix A. Also,
we gave explicit forms of the minimal norm solution for rank-deficient STLS. In Section 3 we
showed the difference norm ||xsr.s — Xps|| between an STLS solution and its corresponding
LS solution and the STLS residual norm ||b — Axgrrg||.
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