An Analysis of Rank-Deficient Scaled Total Least Squares Problem

Wei Xu¹ Yimin Wei² Sanzheng Qiao³

- ¹ Department of Computing and Software, McMaster University Hamilton, Ont. L8S 4L7, Canada. xuw5@mcmaster.ca
 - ² Department of Mathematics, Fudan University Shanghai 200433, P. R. of China. ymwei@fudan.edu.cn
- ³ Department of Computing and Software, McMaster University Hamilton, Ont. L8S 4L7, Canada. qiao@mcmaster.ca

Abstract

In this paper, we study the scaled total least squares problems of rank-deficient linear systems. We present a solution for rank-deficient scaled total least squares and discuss the relation between scaled total least squares and least squares.

AMS Subject Classification(1991): 15A18, 65F20, 65F25, 65F50. Keywords: Scaled total least squares, total least squares, least squares, rank-deficient.

1 Introduction

The least squares (LS) problem is to find \mathbf{x} to minimize $\|\mathbf{b} - A\mathbf{x}\|_2$ for a given $A \in \mathbb{R}^{m \times n}$ $(m \ge n)$ and a $\mathbf{b} \in \mathbb{R}^m$. Let the residual $\mathbf{r} = \mathbf{b} - A\mathbf{x}$, the least squares problem can be recast as

$$\min_{(\mathbf{b}-\mathbf{r})\in \text{range}(A)} \|\mathbf{r}\|_2 \quad \text{for} \quad \mathbf{r} \in \mathbb{R}^m.$$
 (1.1)

This formulation shows that the errors only occur on the vector \mathbf{b} . When $\mathbf{b} \in \text{range}(A)$, (1.1) is solved by $\mathbf{r}_{LS} = 0$. So, we assume $\mathbf{b} \notin \text{range}(A)$ throughout this paper. The total least squares (TLS) problem allows errors to present in both \mathbf{b} and A:

$$\min_{(\mathbf{b}-\mathbf{r})\in \text{range}(A+E)} \|[E\ \mathbf{r}]\|_{F} \quad \text{for} \quad E \in \mathbb{R}^{m \times n} \quad \text{and} \quad \mathbf{r} \in \mathbb{R}^{m}.$$
 (1.2)

When A is of full column rank, rank(A) = n, the LS solution is unique and given by $\mathbf{x}_{LS} = (A^T A)^{-1} A^T \mathbf{b}$. When A is rank-deficient, rank(A) = k < n, the LS solution

is not unique. The minimal 2-norm solution can be obtained by using the singular value decomposition (SVD) as follows. Suppose that

$$A = \widehat{U} \begin{bmatrix} \widehat{\Sigma} & 0 \\ 0 & 0 \end{bmatrix} \widehat{V}^{\mathrm{T}} \tag{1.3}$$

is the SVD of A, where $\widehat{U} \in \mathbb{R}^{m \times m}$ and $\widehat{V} \in \mathbb{R}^{n \times n}$ are orthogonal and $\widehat{\Sigma} = \operatorname{diag}(\widehat{\sigma}_1, ..., \widehat{\sigma}_k)$, $\widehat{\sigma}_1 \geq \cdots \geq \widehat{\sigma}_k > 0$. The minimal norm LS solution is given by

$$\mathbf{x}_{ ext{LS}} = A^{\dagger}\mathbf{b}$$
 where $A^{\dagger} = \widehat{V} \begin{bmatrix} \widehat{\Sigma}^{-1} & 0 \\ 0 & 0 \end{bmatrix} \widehat{U}^{ ext{T}}$

and the vector

$$\mathbf{r}_{\text{LS}} = \mathbf{b} - A\mathbf{x}_{\text{LS}} = (I - AA^{\dagger})\mathbf{b}$$

solves (1.1).

For the TLS problem, we consider the SVD:

$$[A \quad \mathbf{b}] = \breve{U}\breve{\Sigma}\breve{V}^{\mathrm{T}},\tag{1.4}$$

where $\check{\Sigma} = \operatorname{diag}(\check{\sigma}_1, ..., \check{\sigma}_{n+1}), \ \check{\sigma}_1 \geq \cdots \geq \check{\sigma}_{n+1} \geq 0 \text{ and } \check{U} \in \mathbb{R}^{m \times (n+1)} \text{ and } \check{V} \in \mathbb{R}^{(n+1) \times (n+1)}$ have orthonormal columns, and partition

$$reve{U} = egin{array}{cccc} reve{U}_1 & reve{\mathbf{u}}_{n+1} \ n & 1 \end{array} \quad ext{and} \quad reve{V} = \left[egin{array}{cccc} reve{V}_{11} & reve{\mathbf{v}}_{12} \ reve{\mathbf{v}}_{21}^{\mathrm{T}} & reve{\nu}_{22} \ n & 1 \end{array}
ight] \quad n \ 1 \ .$$

If $\widehat{\sigma}_n > \widecheck{\sigma}_{n+1}$, which implies that $\widehat{\sigma}_n > 0$ or A is of full column rank, then the matrix

$$[E_{\scriptscriptstyle \mathrm{TLS}} \ \mathbf{r}_{\scriptscriptstyle \mathrm{TLS}}] = -\breve{\sigma}_{n+1}\breve{\mathbf{u}}_{n+1} [\breve{\mathbf{v}}_{12}^{\mathrm{T}} \ \breve{\nu}_{22}]$$

solves (1.2) and

$$\mathbf{x}_{\scriptscriptstyle \mathrm{TLS}} = -(A^{\mathrm{T}}A - \breve{\sigma}_{n+1}^2 I_n)^{-1} A^{\mathrm{T}} \mathbf{b} = -\breve{\mathbf{v}}_{12} / \breve{\nu}_{22}$$

is the unique solution to $(A + E_{TLS})\mathbf{x} = \mathbf{b} + \mathbf{r}_{TLS}$ [2, Page 598].

If $\widehat{\sigma}_n = \widecheck{\sigma}_{n+1}$, then the solution to the TLS problem may still exist, although it may not be unique. Wei [10] considered the minimal norm TLS solution for a general case when

$$\breve{\sigma}_p > \breve{\sigma}_{p+1} = \dots = \breve{\sigma}_q > \breve{\sigma}_{q+1} \ge \dots \ge \breve{\sigma}_{n+1} \ge 0,$$

for some integers $1 \le p \le n$ and q > p. For convenience, we restate the theorem for p = k and q = k + 1.

Theorem 1.1 [10, Theorem 2.2] Partitioning $\check{\Sigma}$, \check{U} , and \check{V} in (1.4):

$$\overset{\circ}{\Sigma} = \begin{bmatrix} \overset{\circ}{\Sigma}_1 & 0 \\ 0 & \overset{\circ}{\Sigma}_2 \\ k & n-k+1 \end{bmatrix} \quad \overset{k}{n-k+1} \quad , \quad \overset{\circ}{U} = \begin{bmatrix} \overset{\circ}{U}_1 & \overset{\circ}{U}_2 \\ k & n-k+1 \end{bmatrix} ,$$
(1.5)

and

$$\check{V} = \begin{bmatrix}
\check{V}_{11} & \check{V}_{12} \\
\check{\mathbf{v}}_{21}^{\mathrm{T}} & \check{\mathbf{v}}_{22}^{\mathrm{T}}
\end{bmatrix} \quad n \\
k \quad n - k + 1$$
(1.6)

if

$$\ddot{\sigma}_k > \ddot{\sigma}_{k+1} > \ddot{\sigma}_{k+2} \ge \cdots \ge \ddot{\sigma}_{n+1} \ge 0,$$

then \breve{V}_{11} is of full column rank, $\breve{\mathbf{v}}_{22} \neq 0$, and

$$\mathbf{x}_{TLS} = (\breve{V}_{11}^{\mathrm{T}})^{\dagger} \breve{\mathbf{v}}_{21} = \breve{V}_{11} \breve{\mathbf{v}}_{21} / (1 - \breve{\mathbf{v}}_{21}^{\mathrm{T}} \breve{\mathbf{v}}_{21})$$

$$= -\breve{V}_{12} (\breve{\mathbf{v}}_{22}^{\mathrm{T}})^{\dagger} = -\breve{V}_{12} \breve{\mathbf{v}}_{22} / (1 - \breve{\mathbf{v}}_{21}^{\mathrm{T}} \breve{\mathbf{v}}_{21})$$

$$= (A^{\mathrm{T}} A - \breve{V}_{12} \breve{\Sigma}_{2}^{2} \breve{V}_{12}^{\mathrm{T}})^{\dagger} (A^{\mathrm{T}} \mathbf{b} - \breve{V}_{12} \breve{\Sigma}_{2}^{2} \breve{\mathbf{v}}_{22})$$
(1.7)

is the minimal norm TLS solution. Moreover, let $\mathbf{q} = \breve{\mathbf{v}}_{22}/\|\breve{\mathbf{v}}_{22}\|_2$, then

$$egin{aligned} [E_{\scriptscriptstyle TLS} & \mathbf{r}_{\scriptscriptstyle TLS}] = reve{U}_2reve{\Sigma}_2\mathbf{q}\mathbf{q}^{
m T}[reve{V}_{12}^{
m T} & reve{\mathbf{v}}_{22}] \end{aligned}$$

solves (1.2) and

$$||[E_{\scriptscriptstyle TLS} \ \mathbf{r}_{\scriptscriptstyle TLS}]||_{\rm F} = \breve{\sigma}_{k+1}.$$

We refer the details of LS to [3] and TLS to [8]. The problems of LS and TLS can be unified by introducing a scaling parameter into the TLS problem. Rao [6] proposed

$$\min_{(\mathbf{b}-\mathbf{r})\in \mathrm{range}(A+E)} \|[E \ \lambda \mathbf{r}]\|_{\mathrm{F}} \quad \text{for } E \in \mathbb{R}^{m \times n} \text{ and } \mathbf{r} \in \mathbb{R}^m,$$

where $\lambda > 0$ is a given scalar. Paige and Strakoš [5] suggested a slightly different but equivalent formulation:

$$\min_{(\lambda \mathbf{b} - \mathbf{r}) \in \text{range}(A+E)} \| [E \ \mathbf{r}] \|_{F}. \tag{1.8}$$

If $[E_{\text{STLS}} \ \mathbf{r}_{\text{STLS}}]$ solves the above problem (1.8), then the solution \mathbf{x}_{STLS} for \mathbf{x} in $(A + E_{\text{STLS}})\lambda\mathbf{x} = \lambda\mathbf{b} - \mathbf{r}_{\text{STLS}}$ is called the scaled total least squares (STLS) solution. In this paper, we adopt the formulation (1.8) by Paige and Strakoš.

Obviously, when $\lambda=1$, the STLS (1.8) reduces to TLS. It is shown in [5] that \mathbf{x}_{STLS} approaches \mathbf{x}_{LS} as $\lambda\to 0$. In the STLS literatures [4, 5, 6], it is assumed that A is of full column rank. This paper presents the STLS solution when A is rank-deficient. The rest of the paper is organized as follows. In Section 2, we analyze the STLS when A is rank-deficient. Then in section 3, we relate STLS to LS.

2 Solving Rank-Deficient STLS

Following the STLS formulation (1.8), we denote

$$C := [A \ \lambda \mathbf{b}] = U \Sigma V^{\mathrm{T}}, \tag{2.1}$$

where $U \in \mathbb{R}^{m \times (n+1)}$ has orthonormal columns, $V \in \mathbb{R}^{(n+1) \times (n+1)}$ orthogonal, and $\Sigma = \operatorname{diag}(\sigma_1, ..., \sigma_{n+1})$, $\sigma_1 \geq \cdots \geq \sigma_{k+1} > \sigma_{k+2} = \cdots = \sigma_{n+1} = 0$. From Theorem 1.1, if $\sigma_k > \sigma_{k+1} > 0$, then, substituting **b** in (1.2) with λ **b**, we can obtain the minimal norm STLS solution by applying the minimal norm TLS solution (1.7). Specifically, $\lambda \mathbf{x}_{\text{STLS}} = \mathbf{x}_{\text{TLS}}$. When does condition $\sigma_k > \sigma_{k+1}$ hold? The following theorem gives a necessary and sufficient condition for $\sigma_{k+1} = \widehat{\sigma}_k$. The interlacing property says that $\sigma_k \geq \widehat{\sigma}_k \geq \sigma_{k+1}$. Thus, $\widehat{\sigma}_k \neq \sigma_{k+1}$ implies $\sigma_k > \sigma_{k+1}$, which is what we need for applying Theorem 1.1 to STLS.

Theorem 2.1 Suppose that A has the singular values

$$\widehat{\sigma}_1 \geq \cdots \geq \widehat{\sigma}_i > \widehat{\sigma}_{i+1} = \cdots = \widehat{\sigma}_k > \widehat{\sigma}_{k+1} = \cdots = \widehat{\sigma}_n = 0$$

for some j < k and $\widehat{U} = [\widehat{\mathbf{u}}_1, ..., \widehat{\mathbf{u}}_m]$ is a column partition. Let

$$\widehat{U}_k = [\widehat{\mathbf{u}}_{j+1}, ..., \widehat{\mathbf{u}}_k], \quad \rho := \|\mathbf{r}_{\scriptscriptstyle LS}\|_2, \quad \alpha_i := \widehat{\mathbf{u}}_i^{\rm T} \mathbf{b}, \quad \textit{for } i = 1, ..., k,$$

and

$$\psi(\sigma) = \lambda^2 \rho^2 - \sigma^2 - \lambda^2 \sigma^2 \sum_{i=1}^{j} \frac{\alpha_i^2}{\widehat{\sigma}_j^2 - \sigma^2},$$
(2.2)

then

$$\sigma_{k+1} = \widehat{\sigma}_k,$$

if and only if

$$\widehat{U}_k^{\mathrm{T}} \mathbf{b} = 0, \quad and \quad \psi(\widehat{\sigma}_k) > 0.$$

Proof. We construct a matrix

$$N = \widehat{U}^{\mathrm{T}} C \begin{bmatrix} \widehat{V} & 0 \\ 0 & 1 \end{bmatrix}, \tag{2.3}$$

which has the same singular values $\hat{\sigma}_i$ as C in (2.1). Then, the n+1 eigenvalues of $N^TN - \hat{\sigma}_k^2I$ are:

$$\sigma_1^2 - \widehat{\sigma}_k^2, ..., \sigma_k^2 - \widehat{\sigma}_k^2, \ \sigma_{k+1}^2 - \widehat{\sigma}_k^2, \ -\widehat{\sigma}_k^2, ..., -\widehat{\sigma}_k^2$$

From the interlacing property, the first k eigenvalues in the above list are nonnegative and there are exactly n-k negative eigenvalues if and only if $\sigma_{k+1} = \widehat{\sigma}_k$. In the following, we transfrom $N^T N - \widehat{\sigma}_k^2 I$ while keeping the number of the negative eigenvalues. First, to simplify $N^T N - \widehat{\sigma}_k^2 I$, recall that in the LS problem,

$$\mathbf{r}_{\scriptscriptstyle \mathrm{LS}} = (I - AA^\dagger)\mathbf{b} = \widehat{U} \left[\begin{array}{cc} 0 & 0 \\ 0 & I_{m-k} \end{array} \right] \widehat{U}^\mathrm{T}\mathbf{b}.$$

It then follows that

$$\rho := \|\mathbf{r}_{\text{LS}}\|_2 = \|[\widehat{\mathbf{u}}_{k+1}, ..., \widehat{\mathbf{u}}_m]^{\text{T}}\mathbf{b}\|_2.$$

Defining

$$\mathbf{a} = [\alpha_1, ..., \alpha_k]^{\mathrm{T}} := [\widehat{\mathbf{u}}_1, ..., \widehat{\mathbf{u}}_k]^{\mathrm{T}} \mathbf{b}$$
 and $\widehat{\mathbf{b}} = [\widehat{\mathbf{u}}_{k+1}, ..., \widehat{\mathbf{u}}_m]^{\mathrm{T}} \mathbf{b}$,

from (2.3) and (2.1), we have

$$N = \widehat{U}^{\mathrm{T}}[A \ \lambda \mathbf{b}] \left[\begin{array}{cc} \widehat{V} & 0 \\ 0 & 1 \end{array} \right] = \left[\begin{array}{cc} \widehat{\Sigma} & 0 & \lambda \mathbf{a} \\ 0 & 0 & \lambda \widehat{\mathbf{b}} \end{array} \right] = \left[\begin{array}{cc} I_k & 0 \\ 0 & H \end{array} \right] \left[\begin{array}{cc} \widehat{\Sigma} & 0 & \lambda \mathbf{a} \\ 0 & 0 & \lambda \rho \\ 0 & 0 & 0 \end{array} \right],$$

where H is a Householder matrix such that $H\hat{\mathbf{b}} = \rho \mathbf{e}_1$. Thus

$$\begin{split} N^{\mathrm{T}}N - \widehat{\sigma}_k^2 I &= \begin{bmatrix} \widehat{\Sigma} & 0 & \lambda \mathbf{a} \\ 0 & 0 & \lambda \rho \\ 0 & 0 & 0 \end{bmatrix}^{\mathrm{T}} \begin{bmatrix} \widehat{\Sigma} & 0 & \lambda \mathbf{a} \\ 0 & 0 & \lambda \rho \\ 0 & 0 & 0 \end{bmatrix} - \widehat{\sigma}_k^2 I \\ &= \begin{bmatrix} \widehat{\Sigma}^2 - \widehat{\sigma}_k^2 I_k & 0 & \lambda \widehat{\Sigma} \mathbf{a} \\ 0 & -\widehat{\sigma}_k^2 I_{n-k} & 0 \\ \lambda \mathbf{a}^{\mathrm{T}} \widehat{\Sigma} & 0 & \lambda^2 (\rho^2 + \mathbf{a}^{\mathrm{T}} \mathbf{a}) - \widehat{\sigma}_k^2 \end{bmatrix}. \end{split}$$

Partitioning

$$\widehat{\Sigma} = \operatorname{diag}(\widehat{\Sigma}_1, \widehat{\sigma}_k I_{k-j}), \quad \text{where } \widehat{\Sigma}_1 = \operatorname{diag}(\widehat{\sigma}_1, ..., \widehat{\sigma}_j),$$

and

$$\mathbf{a} = \left[egin{array}{c} \mathbf{a}_1 \ \mathbf{a}_2 \end{array}
ight]$$

accordingly, we get

$$N^{\mathrm{T}}N - \widehat{\sigma}_k^2 I = \begin{bmatrix} \widehat{\Sigma}_1^2 - \widehat{\sigma}_k^2 I_j & 0 & 0 & \lambda \widehat{\Sigma}_1 \mathbf{a}_1 \\ 0 & 0 & 0 & \lambda \widehat{\sigma}_k \mathbf{a}_2 \\ 0 & 0 & -\widehat{\sigma}_k^2 I_{n-k} & 0 \\ \lambda \mathbf{a}_1^{\mathrm{T}} \widehat{\Sigma}_1 & \lambda \widehat{\sigma}_k \mathbf{a}_2^{\mathrm{T}} & 0 & \lambda^2 (\rho^2 + \mathbf{a}^{\mathrm{T}} \mathbf{a}) - \widehat{\sigma}_k^2 \end{bmatrix}.$$

Now, it can be verified that the Schur complement of $\widehat{\Sigma}_1^2 - \widehat{\sigma}_k^2 I_j$ is

$$M := \begin{bmatrix} 0 & 0 & \lambda \widehat{\sigma}_k \mathbf{a}_2 \\ 0 & -\widehat{\sigma}_k^2 I_{n-k} & 0 \\ \lambda \widehat{\sigma}_k \mathbf{a}_2^{\mathrm{T}} & 0 & \psi(\widehat{\sigma}_k) + \lambda^2 \mathbf{a}_2^{\mathrm{T}} \mathbf{a}_2 \end{bmatrix}, \tag{2.4}$$

since

$$\lambda^{2}(\rho^{2} + \mathbf{a}^{\mathrm{T}}\mathbf{a}) - \widehat{\sigma}_{k}^{2} - \lambda^{2}\mathbf{a}_{1}^{\mathrm{T}}\widehat{\Sigma}_{1}(\widehat{\Sigma}_{1}^{2} - \widehat{\sigma}_{k}^{2}I_{j})^{-1}\widehat{\Sigma}_{1}\mathbf{a}_{1}$$

$$= \lambda^{2}\mathbf{a}_{2}^{\mathrm{T}}\mathbf{a}_{2} + \lambda^{2}\rho^{2} - \widehat{\sigma}_{k}^{2} + \lambda^{2}\mathbf{a}_{1}^{\mathrm{T}}\mathbf{a}_{1} - \lambda^{2}\mathbf{a}_{1}^{\mathrm{T}}\widehat{\Sigma}_{1}^{2}(\widehat{\Sigma}_{1}^{2} - \widehat{\sigma}_{k}^{2}I_{j})^{-1}\mathbf{a}_{1}$$

$$= \lambda^{2}\mathbf{a}_{2}^{\mathrm{T}}\mathbf{a}_{2} + \psi(\widehat{\sigma}_{k}).$$

Since $\widehat{\Sigma}_1^2 - \widehat{\sigma}_k^2 I_j$ is positive definite, from Sylvester law of inertia [2, Page 403], the number of the negative eigenvalues of $N^T N - \widehat{\sigma}_k^2 I$ equals the number of the negative eigenvalues of M, which, from (2.4), has exactly n - k negative eigenvalues if and only if

$$M_1 := \left[egin{array}{ccc} 0 & \lambda \widehat{\sigma}_k \mathbf{a}_2 \ \lambda \widehat{\sigma}_k \mathbf{a}_2^\mathrm{T} & \psi(\widehat{\sigma}_k) + \lambda^2 \mathbf{a}_2^\mathrm{T} \mathbf{a}_2 \end{array}
ight]$$

is positive semi-definite. It follows from Lemma 3.1 in [5] that M_1 is positive semi-definite if and only if

$$0 = \mathbf{a}_2 = \widehat{U}_k^{\mathrm{T}} \mathbf{b}$$
 and $\psi(\widehat{\sigma}_k) \ge 0$.

This completes the proof.

The condition $\widehat{\sigma}_k > \sigma_{k+1}$ for the existence of the minimal norm STLS solution requires the singular values of both A and C. This theorem provides the alternative conditions $\widehat{U}_k^{\mathrm{T}} \mathbf{b} \neq 0$ and $\psi(\widehat{\sigma}_k) < 0$ which require only the SVD of A. From this theorem, if $\widehat{U}_k^{\mathrm{T}} \mathbf{b} \neq 0$ or $\psi(\widehat{\sigma}_k) < 0$, then we can apply Theorem 1.1 to STLS. For example, if Σ , U, and V in (2.1) are partitioned as in (1.5) and (1.6), then, from (1.7), the minimal norm STLS solution $\mathbf{x}_{\mathrm{STLS}}$ can be given by

$$\lambda \mathbf{x}_{\text{STLS}} = (V_{11}^{\text{T}})^{\dagger} \mathbf{v}_{21} = -V_{12} (\mathbf{v}_{22}^{\text{T}})^{\dagger} = (A^{\text{T}} A - V_{12} \Sigma_{2}^{2} V_{12}^{\text{T}})^{\dagger} (\lambda A^{\text{T}} \mathbf{b} - V_{12} \Sigma_{2}^{2} \mathbf{v}_{22}). \tag{2.5}$$

Moreover, let $\mathbf{q} = \mathbf{v}_{22}/\|\mathbf{v}_{22}\|_2$, then

$$[E_{ ext{STLS}} \ \mathbf{r}_{ ext{STLS}}] = U_2 \Sigma_2 \mathbf{q} \mathbf{q}^{ ext{T}} [V_{12}^{ ext{T}} \ \mathbf{v}_{22}]$$

solves (1.8) and

$$||[E_{\text{STLS}} \mathbf{r}_{\text{STLS}}]||_{\text{F}} = \sigma_{k+1}.$$

Finally, we conclude this section by presenting two properties of σ_{k+1} .

Corollary 2.2 If $\widehat{U}_k^{\mathrm{T}} \mathbf{b} \neq 0$ or $\psi(\widehat{\sigma}_k) < 0$, then σ_{k+1} is the smallest positive solution for σ in $\psi(\sigma) = 0$ defined in (2.2).

Proof. On the one hand, the matrix N defined in (2.3) has the singular values $\sigma_1 \geq \cdots \geq \sigma_{k+1}$. Thus, σ_{k+1} is the smallest positive solution for σ in the equation $\det(N^T N - \sigma^2 I) = 0$. On the other hand, we consider

$$N^{\mathrm{T}}N - \sigma^2 I = \left[\begin{array}{ccc} \widehat{\Sigma}^2 - \sigma^2 I_k & 0 & \lambda \widehat{\Sigma} \mathbf{a} \\ 0 & -\sigma^2 I_{n-k} & 0 \\ \lambda \mathbf{a}^{\mathrm{T}} \widehat{\Sigma} & 0 & \lambda^2 (\rho^2 + \mathbf{a}^{\mathrm{T}} \mathbf{a}) - \sigma^2 \end{array} \right].$$

Similar to (2.4), the Schur complement of $\widehat{\Sigma}^2 - \sigma^2 I_k$ is

$$\left[\begin{array}{cc} -\sigma^2 I_{n-k} & 0\\ 0 & \psi(\sigma) \end{array}\right],\,$$

since

$$\lambda^{2}(\rho^{2} + \mathbf{a}^{T}\mathbf{a}) - \sigma^{2} - \lambda^{2}\mathbf{a}^{T}\widehat{\Sigma}(\widehat{\Sigma}^{2} - \sigma^{2}I_{k})^{-1}\widehat{\Sigma}\mathbf{a}$$

$$= \lambda^{2}\rho^{2} - \sigma^{2} + \lambda^{2}\mathbf{a}^{T}\mathbf{a} - \lambda^{2}\mathbf{a}^{T}\widehat{\Sigma}^{2}(\widehat{\Sigma}^{2} - \sigma^{2}I_{k})^{-1}\mathbf{a}$$

$$= \psi(\sigma).$$

Thus, we have

$$\det(N^{\mathrm{T}}N - \sigma^2 I) = (-1)^{n-k} \sigma^{2(n-k)} \psi(\sigma) \det(\widehat{\Sigma}^2 - \sigma^2 I_k).$$

From Theorem 2.1, when $\widehat{U}_k^{\mathrm{T}}\mathbf{b} \neq 0$ or $\psi(\widehat{\sigma}_k) < 0$, we have $\widehat{\sigma}_k > \sigma_{k+1}$. Consequently, $\widehat{\Sigma}^2 - \sigma_{k+1}^2 I_k$ is positive definite. Therefore, σ_{k+1} is the smallest positive solution for σ in the equation $\psi(\sigma) = 0$, because it the smallest positive solution for σ in the equation $\det(N^{\mathrm{T}}N - \sigma^2 I) = 0$.

Corollary 2.3 Under the condition that $\widehat{U}_k^{\mathrm{T}} \mathbf{b} \neq 0$ or $\psi(\widehat{\sigma}_k) < 0$, σ_{k+1} is a monotonically increasing function of λ .

Proof. From Corollary 2.2, under the given condition, $\psi(\sigma_{k+1}) = 0$. Differentiating

$$0 = \psi(\sigma_{k+1})/(\lambda^2 \sigma_{k+1}^2),$$

with respect to λ , we get

$$0 = -\frac{2\rho^2 \sigma'_{k+1}}{\sigma_{k+1}^3} + \frac{2}{\lambda^3} - \sum_{i=1}^j \frac{2\alpha_i^2 \sigma_{k+1} \sigma'_{k+1}}{(\widehat{\sigma}_j^2 - \sigma_{k+1}^2)^2}$$
$$= \frac{2}{\lambda^3} - 2\sigma'_{k+1} \left[\frac{\rho^2}{\sigma_{k+1}^3} + \sigma_{k+1} \sum_{i=1}^j \frac{\alpha_i^2}{(\widehat{\sigma}_j^2 - \sigma_{k+1}^2)^2} \right],$$

which impies $\sigma'_{k+1} > 0$, since $\lambda > 0$ and the value of the expression in the square bracket is positive.

3 Relating STLS to LS

The relation between STLS and TLS is obvious. The TLS problem is a special case of STLS when $\lambda=1$. In this section, we discuss the relation between STLS and LS. It is shown in [5] that \mathbf{x}_{STLS} approaches to \mathbf{x}_{LS} as λ tends to zero when A is of full column rank and $\widehat{U}_k^T \mathbf{b} \neq 0$. In this section, we extend their result to the case when A is rank-deficient.

Theorem 3.1 If $\widehat{U}_k \mathbf{b} \neq 0$ or $\psi(\widehat{\sigma}_k) < 0$, then

$$\lim_{\lambda \to 0} \mathbf{x}_{\scriptscriptstyle STLS} = \mathbf{x}_{\scriptscriptstyle LS} \quad and \quad \lim_{\lambda \to 0} \frac{\sigma_{k+1}}{\lambda} = \rho.$$

Proof. We first show that

$$\lim_{\lambda \to 0} \frac{\sigma_{k+1}^2}{\lambda} = 0.$$

Indeed, from Corollary 2.2, we have

$$\sigma_{k+1}^2 = \lambda^2 \left(\rho^2 - \sigma_{k+1}^2 \sum_{i=1}^j \frac{\alpha_i^2}{\widehat{\sigma}_j^2 - \sigma_{k+1}^2} \right). \tag{3.1}$$

It follows that $\lim_{\lambda\to 0}(\sigma_{k+1}^2/\lambda)=0$, which implies $\lim_{\lambda\to 0}\sigma_{k+1}^2=0$. Then, noting that $\Sigma_2=\operatorname{diag}(\sigma_{k+1},0,...,0)$ and $(A^{\mathrm{T}}A)^{\dagger}A^{\mathrm{T}}=A^{\dagger}$, from (2.5), we have

$$\lim_{\lambda \to 0} \mathbf{x}_{\text{STLS}} = \lim_{\lambda \to 0} (A^{\text{T}}A - V_{12}\Sigma_2^2 V_{12}^{\text{T}})^{\dagger} (A^{\text{T}}\mathbf{b} - \lambda^{-1}V_{12}\Sigma_2^2 \mathbf{v}_{22})$$

$$= (A^{\text{T}}A)^{\dagger}A^{\text{T}}\mathbf{b}$$

$$= \mathbf{x}_{\text{LS}}.$$

Also, from (3.1), we get

$$\lim_{\lambda \to 0} \frac{\sigma_{k+1}}{\lambda} = \lim_{\lambda \to 0} \sqrt{\rho^2 - \sigma_{k+1}^2 \sum_{i=1}^j \frac{\alpha_i^2}{\widehat{\sigma}_j^2 - \sigma_{k+1}^2}} = \rho.$$

In the following, we derive bounds for $\|\mathbf{x}_{\text{STLS}} - \mathbf{x}_{\text{LS}}\|_2$ and the residual norm $\|\mathbf{b} - A\mathbf{x}_{\text{STLS}}\|_2$.

Theorem 3.2 If $\widehat{U}_k \mathbf{b} \neq 0$ or $\psi(\widehat{\sigma}_k) < 0$, then

$$\|\mathbf{x}_{STLS} - \mathbf{x}_{LS}\|_{2} \leq \frac{\sigma_{k+1}^{2}}{\widehat{\sigma}_{k}^{2}} \|V_{12}^{T}\mathbf{x}_{STLS} - \lambda^{-1}\mathbf{v}_{22}\|_{2} + \beta \|\mathbf{x}_{STLS}\|_{2}$$

$$\leq \left(\frac{\sigma_{k+1}^{2}}{\widehat{\sigma}_{k}^{2}} + \beta\right) \frac{1}{\lambda \|\mathbf{v}_{22}\|_{2}},$$

where

$$\beta = \min\left(1, \frac{\sigma_{k+1}^2}{\widehat{\sigma}_k^2 - \sigma_{k+1}^2}\right). \tag{3.2}$$

Also, the residual norm

$$\|\mathbf{b} - A\mathbf{x}_{STLS}\|_2 \le \rho + \frac{\sigma_{k+1}^2}{\lambda \widehat{\sigma}_k \|\mathbf{v}_{22}\|_2}.$$

Proof. First, we show some equalities used in our derivation. Partitioning Σ , U, and V in the SVD (2.1) of C as $\check{\Sigma}$, \check{U} , and \check{V} in (1.5) and (1.6), we can verify

$$A^{\mathrm{T}}A = V_{11}\Sigma_{1}^{2}V_{11}^{\mathrm{T}} + V_{12}\Sigma_{2}^{2}V_{12}^{\mathrm{T}}, \quad \lambda A^{\mathrm{T}}\mathbf{b} = V_{11}\Sigma_{1}^{2}\mathbf{v}_{21} + V_{12}\Sigma_{2}^{2}\mathbf{v}_{22}.$$
(3.3)

and

$$V_{12}^{\mathrm{T}}V_{12} + \mathbf{v}_{22}\mathbf{v}_{22}^{\mathrm{T}} = I. \tag{3.4}$$

From the generalized inverse theory [9], we have

$$(A^{\mathrm{T}}A)^{\dagger}A^{\mathrm{T}} = A^{\dagger}, \qquad (I - A^{\dagger}A)A^{\mathrm{T}} = 0$$
 (3.5)

and

$$\mathbf{x}^{\dagger} = \mathbf{x}^{\mathrm{T}}/(\mathbf{x}^{\mathrm{T}}\mathbf{x}), \quad \mathbf{x} \neq 0.$$
 (3.6)

Then, using the first equation in (3.5), $\mathbf{x}_{LS} = A^{\dagger}\mathbf{b} = (A^{T}A)^{\dagger}A^{T}\mathbf{b}$ and the second equation in (3.3), we get

$$\begin{aligned} &\mathbf{x}_{\text{STLS}} - \mathbf{x}_{\text{LS}} \\ &= & (I - A^{\dagger} A) \mathbf{x}_{\text{STLS}} + (A^{\text{T}} A)^{\dagger} V_{12} \Sigma_{2}^{2} V_{12}^{\text{T}} \mathbf{x}_{\text{STLS}} + (A^{\text{T}} A)^{\dagger} (A^{\text{T}} A) \mathbf{x}_{\text{STLS}} \\ & - (A^{\text{T}} A)^{\dagger} V_{12} \Sigma_{2}^{2} V_{12}^{\text{T}} \mathbf{x}_{\text{STLS}} - (A^{\text{T}} A)^{\dagger} A^{\text{T}} \mathbf{b} \\ &= & (A^{\text{T}} A)^{\dagger} [(A^{\text{T}} A - V_{12} \Sigma_{2}^{2} V_{12}^{\text{T}}) \mathbf{x}_{\text{STLS}} - \lambda^{-1} V_{11} \Sigma_{1}^{2} \mathbf{v}_{21}] - \lambda^{-1} (A^{\text{T}} A)^{\dagger} V_{12} \Sigma_{2}^{2} \mathbf{v}_{22} \\ & + (I - A^{\dagger} A) \mathbf{x}_{\text{STLS}} + (A^{\text{T}} A)^{\dagger} V_{12} \Sigma_{2}^{2} V_{12}^{\text{T}} \mathbf{x}_{\text{STLS}}. \end{aligned}$$

From the first equation in (3.3) and $\lambda \mathbf{x}_{\text{STLS}} = (V_{11}^{\text{T}})^{\dagger} \mathbf{v}_{21}$ in (2.5), the expression in the square bracket in the above equation:

$$\begin{aligned} &(A^{\mathrm{T}}A - V_{12}\Sigma_{2}^{2}V_{12}^{\mathrm{T}})\mathbf{x}_{\mathrm{STLS}} - \lambda^{-1}V_{11}\Sigma_{1}^{2}\mathbf{v}_{21} \\ &= \lambda^{-1}V_{11}\Sigma_{1}^{2}V_{11}^{\mathrm{T}}(V_{11}^{\mathrm{T}})^{\dagger}\mathbf{v}_{21} - \lambda^{-1}V_{11}\Sigma_{1}^{2}\mathbf{v}_{21} \\ &= 0. \end{aligned}$$

since $V_{11}^{\rm T}(V_{11}^{\rm T})^{\dagger}=I$, because, applying Theorem 1.1, V_{11} is of full column rank. Thus

$$\mathbf{x}_{\text{STLS}} - \mathbf{x}_{\text{LS}} = (I - A^{\dagger} A) \mathbf{x}_{\text{STLS}} + (A^{T} A)^{\dagger} V_{12} \Sigma_{2}^{2} (V_{12}^{T} \mathbf{x}_{\text{STLS}} - \lambda^{-1} \mathbf{v}_{22}). \tag{3.7}$$

In the following, we show that the first term on the right side of (3.7) satisfies $||(I - A^{\dagger}A)\mathbf{x}_{\text{STLS}}||_2 \leq \beta ||\mathbf{x}_{\text{STLS}}||_2$, where β is defined in (3.2).

On the one hand, $\|(I-A^{\dagger}A)\mathbf{x}_{\text{STLS}}\|_{2} \leq \|\mathbf{x}_{\text{STLS}}\|_{2}$ since $I-A^{\dagger}A$ is an orthogonal projection. On the other hand, (2.5) and the symmetry of $A^{\text{T}}A - V_{12}\Sigma_{2}^{2}V_{12}^{\text{T}}$ imply that

$$\mathbf{x}_{\text{STLS}} = (A^{\text{T}}A - V_{12}\Sigma_{2}^{2}V_{12}^{\text{T}})^{\dagger}(A^{\text{T}}A - V_{12}\Sigma_{2}^{2}V_{12}^{\text{T}})\mathbf{x}_{\text{STLS}}$$
$$= (A^{\text{T}}A - V_{12}\Sigma_{2}^{2}V_{12}^{\text{T}})(A^{\text{T}}A - V_{12}\Sigma_{2}^{2}V_{12}^{\text{T}})^{\dagger}\mathbf{x}_{\text{STLS}}.$$

Hence, from the second equation in (3.5),

$$\begin{aligned} & \| (I - A^{\dagger} A) \mathbf{x}_{\text{STLS}} \|_{2} \\ &= \| (I - A^{\dagger} A) (A^{T} A - V_{12} \Sigma_{2}^{2} V_{12}^{T}) (A^{T} A - V_{12} \Sigma_{2}^{2} V_{12}^{T})^{\dagger} \mathbf{x}_{\text{STLS}} \|_{2} \\ &= \| (I - A^{\dagger} A) V_{12} \Sigma_{2}^{2} V_{12}^{T} (A^{T} A - V_{12} \Sigma_{2}^{2} V_{12}^{T})^{\dagger} \mathbf{x}_{\text{STLS}} \|_{2} \\ &\leq \| V_{12} \Sigma_{2}^{2} V_{12}^{T} \|_{2} \| (A^{T} A - V_{12} \Sigma_{2}^{2} V_{12}^{T})^{\dagger} \|_{2} \| \mathbf{x}_{\text{STLS}} \|_{2} \\ &\leq \sigma_{k+1}^{2} \| (A^{T} A - V_{12} \Sigma_{2}^{2} V_{12}^{T})^{\dagger} \|_{2} \| \mathbf{x}_{\text{STLS}} \|_{2}. \end{aligned}$$

Now, we claim that

$$\|(A^{\mathrm{T}}A - V_{12}\Sigma_{2}^{2}V_{12}^{\mathrm{T}})^{\dagger}\|_{2} \le \frac{1}{\widehat{\sigma}_{k}^{2} - \sigma_{k+1}^{2}},$$

then we have $\|(I-A^{\dagger}A)\mathbf{x}_{\text{STLS}}\|_2 \leq \beta \|\mathbf{x}_{\text{STLS}}\|_2$. Indeed, from the first equation in (3.3), $A^{\text{T}}A - V_{12}\Sigma_2^2V_{12}^{\text{T}}$ is of rank k, so

$$\|(A^{\mathrm{T}}A - V_{12}\Sigma_{2}^{2}V_{12}^{\mathrm{T}})^{\dagger}\|_{2} = \frac{1}{\sigma_{k}(A^{\mathrm{T}}A - V_{12}\Sigma_{2}^{2}V_{12}^{\mathrm{T}})}.$$

From Mirsky theorem [7, Page 204], we have

$$\sigma_k(A^{\mathrm{T}}A - V_{12}\Sigma_2^2V_{12}^{\mathrm{T}}) - \sigma_k(A^{\mathrm{T}}A) \ge -\|V_{12}\Sigma_2^2V_{12}^{\mathrm{T}}\|_2 \ge -\sigma_{k+1}^2$$

and consequently

$$\|(A^{\mathrm{T}}A - V_{12}\Sigma_{2}^{2}V_{12}^{\mathrm{T}})^{\dagger}\|_{2} = \frac{1}{\sigma_{k}(A^{\mathrm{T}}A - V_{12}\Sigma_{2}^{2}V_{12}^{\mathrm{T}})} \le \frac{1}{\widehat{\sigma}_{k}^{2} - \sigma_{k+1}^{2}}.$$

For the second term on the right side of (3.7), from $\lambda \mathbf{x}_{\text{STLS}} = -V_{12}(\mathbf{v}_{22}^{\text{T}})^{\dagger}$ in (2.5), (3.4), and (3.6), we have

$$\begin{split} & V_{12}^{\mathrm{T}}\mathbf{x}_{\mathrm{STLS}} - \lambda^{-1}\mathbf{v}_{22} \\ &= -\lambda^{-1}(V_{12}^{\mathrm{T}}V_{12}(\mathbf{v}_{22}^{\mathrm{T}})^{\dagger} + \mathbf{v}_{22}) \\ &= -\lambda^{-1}(V_{12}^{\mathrm{T}}V_{12} + \mathbf{v}_{22}\mathbf{v}_{22}^{\mathrm{T}})\mathbf{v}_{22}/(\mathbf{v}_{22}^{\mathrm{T}}\mathbf{v}_{22}) \\ &= -\lambda^{-1}(\mathbf{v}_{22}^{\mathrm{T}})^{\dagger}, \end{split}$$

which implies

$$\| (A^{T} A)^{\dagger} V_{12} \Sigma_{2}^{2} (V_{12}^{T} \mathbf{x}_{STLS} - \lambda^{-1} \mathbf{v}_{22}) \|_{2}$$

$$\leq \frac{\sigma_{k+1}^{2}}{\widehat{\sigma}_{k}^{2}} \| V_{12}^{T} \mathbf{x}_{STLS} - \lambda^{-1} \mathbf{v}_{22} \|_{2}$$

$$= \frac{\sigma_{k+1}^{2}}{\lambda \widehat{\sigma}_{k}^{2}} \| \mathbf{v}_{22}^{\dagger} \|_{2} = \frac{\sigma_{k+1}^{2}}{\lambda \widehat{\sigma}_{k}^{2} \| \mathbf{v}_{22} \|_{2}}.$$

$$(3.8)$$

Putting things together, we get

$$\|\mathbf{x}_{\text{STLS}} - \mathbf{x}_{\text{LS}}\|_{2} \leq \frac{\sigma_{k+1}^{2}}{\lambda \widehat{\sigma}_{k}^{2} \|\mathbf{v}_{22}\|_{2}} + \beta \|\mathbf{x}_{\text{STLS}}\|_{2} \leq \left(\frac{\sigma_{k+1}^{2}}{\widehat{\sigma}_{k}^{2}} + \beta\right) \frac{1}{\lambda \|\mathbf{v}_{22}\|_{2}} \lambda,$$

since $\|\lambda \mathbf{x}_{\text{STLS}}\|_2 = \|V_{12}(\mathbf{v}_{22}^{\text{T}})^{\dagger}\|_2 \le \|\mathbf{v}_{22}^{\dagger}\|_2 = \|\mathbf{v}_{22}\|_2^{-1}$.

Finally, using (3.7) and (3.8), we get the residual norm

$$\begin{aligned} &\|\mathbf{b} - A\mathbf{x}_{\text{STLS}}\|_{2} \\ &\leq &\|\mathbf{b} - A\mathbf{x}_{\text{LS}}\|_{2} + \|A(A^{T}A)^{\dagger}V_{12}\Sigma_{2}^{2}(V_{12}^{T}\mathbf{x}_{\text{STLS}} - \lambda^{-1}\mathbf{v}_{22})\|_{2} \\ &\leq &\rho + \frac{\sigma_{k+1}^{2}}{\lambda\widehat{\sigma}_{k}}\|\mathbf{v}_{22}^{\dagger}\|_{2} = \rho + \frac{\sigma_{k+1}^{2}}{\lambda\widehat{\sigma}_{k}\|\mathbf{v}_{22}\|_{2}}. \end{aligned}$$

Conclusion

In this paper, we showed the conditions for the existence of the minimal norm solution for rank-deficient STLS. Our conditions involve only the SVD of the coefficient matrix A. Also, we gave explicit forms of the minimal norm solution for rank-deficient STLS. In Section 3 we showed the difference norm $\|\mathbf{x}_{\text{STLS}} - \mathbf{x}_{\text{LS}}\|$ between an STLS solution and its corresponding LS solution and the STLS residual norm $\|\mathbf{b} - A\mathbf{x}_{\text{STLS}}\|$.

References

- [1] G. H. Golub and C. F. Van Loan. An analysis of the total least squares problem. SIAM J. Numer. Anal. 17(1980), 883–893.
- [2] G. H. Golub and C. F. Van Loan, *Matrix Computations*, 3rd Ed., The Johns Hopkins University Press, Baltimore, MD, 1996.
- [3] Charles L. Lawson and Richard J. Hanson. Solving Least Squares Problems, Prentice-Hall, Inc., Englewood Cliffs, NJ, 1974.
- [4] Christopher C. Paige and Zdeněk Strakoš. Bounds for the least squares distance using scaled total least squares. *Numer. Math.* **91**(2002) 93–115.
- [5] Christopher C. Paige and Zdeněk Strakoš. Scaled total least squares fundamentals. *Numer. Math.* **91**(2002) 117–146.
- [6] B.D. Rao. Unified treatment of LS, TLS and Treuncated SVD methods using a weihted TLS framework. Recent Advances in Total Least Squaes Techniques and Errorsin-Variables Modelling, edited by S. Van Huffel. SIAM, Philadelpha PA, 1997, 11–20.
- [7] G.W. Stewart and Ji-guang Sun. *Matrix Perturbation Theory*. Academic Press, Inc., 1990.
- [8] S. Van Huffel and J. Vandewalle. *The Total Least Squares Problem*. SIAM, Philadelphia PA, 1991.
- [9] G. Wang, Y. Wei and S. Qiao. Generalized Inverses: Theory and Computations. Science Press, Beijing, to appear.
- [10] Musheng Wei. The analysis for the total least square problem with more than one solution. SIAM J. Matrix Anal. Appl. 13(1992) 746-763.