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Abstract

The scaled total least square (STLS) problem, introduced by B.D. Rao in 1997, uni-
fies both the total least square (TLS) and the least square (LS) problems. The STLS
problems can be solved by the singular value decomposition (SVD). In this paper, we give
a rank-revealing two-sided orthogonal decomposition method for solving the STLS prob-
lem. An error analysis is presented. Our numerical experiments show that this algorithm
computes the STLS solution as good as the SVD method with less computation.

1 Introduction

Rao [8] unified the least squares (LS) and the total least squares (TLS) problems and intro-
duced the scaled total least square (STLS) problem: Given A ∈ Rm×n (m > n), b ∈ Rm,
and a scalar λ > 0, find E ∈ Rm×n and r ∈ Rm such that

min
(b−r)∈range(A+E)

‖[E,λr]‖F .

Paige and Strakoš [7] suggested a slightly different but equivalent formulation:

min
(λb−r)∈range(A+E)

‖[E, r]‖F . (1)

If [ESTLS, rSTLS] solves the above problem (1), then the solution xSTLS for x in (A +
ESTLS)λx = λb − rSTLS is called the scaled total least square solution.
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Council of Canada. The third author is supported by the National Natural Science Foundation of China and

Shanghai Education Committee.
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Obviously, when λ = 1, the STLS (1) reduces to the total least square (TLS) problem.
It is also shown in [11] that xSTLS approaches to xLS, the solution of the least square (LS)
problem minx ‖Ax − b‖2, as λ → 0. In the STLS literatures [6, 7, 8], A is assumed to be of
full rank. In this paper, we consider the case when A is rank-deficient.

The conditions for the existence of the STLS solution and explicit expressions of the
STLS solution are given in [11]. To state the results in [11], we denote the SVD of

C := [A λb] = UΣV T , (2)

where U ∈ Rm×(n+1) has orthonormal columns, V ∈ R(n+1)×(n+1) is orthogonal and Σ =
diag(σ1(C), · · · , σn+1(C)), σ1(C) ≥ σ2(C) ≥ · · · ≥ σk+1(C) > σk+2(C) = · · · = σn+1(C) =
0, σk(C) the k-th singular value of C, and k = rank(A). Then we partition U , Σ and V in
(2):

Σ =

[
Σ1 0
0 Σ2

]
, U =

[
U1 U2

]
, V =

[
V11 V12

vT
21 vT

22

]
, (3)

such that Σ1 = diag(σ1(C), · · · , σk(C)), Σ2 = diag(σk+1(C), 0, · · · , 0), U1 and U2 are respec-
tively the first k columns and last n + 1 − k columns of U , V11 ∈ Rn×k, V12 ∈ Rn×(n+1−k),
v21 ∈ Rk, and v22 ∈ Rn+1−k.

Accordingly, we denote the SVD of A as

A = UA

[
ΣA 0
0 0

]
V T

A , UA =
[

UA1 UA2

]

where UA ∈ Rm×m and VA ∈ Rn×n are orthogonal, ΣA = diag(σ1(A), · · · , σk(A)), σ1(A) ≥
· · · ≥ σk(A) > 0, and UA1 and UA2 are respectively the first k columns and the last m − k
columns of UA.

It is shown in [11] that (1) has a unique minimal norm solution if b /∈ range(A) and
UT

A1b 6= 0, which imply σk(A) > σk+1(C). Then, from [11], the STLS solution can be
explicitly expressed as

λxSTLS = −V12(v
T
22)

+ = (V T
11)

+v21 = (AT A − V12Σ
2
2V

T
12)

+(λAT b − V12Σ
2
2v22), (4)

where (vT
22)

+ denotes the pseudoinverse of vT
22.

For most STLS problems, the condition UT
A1b 6= 0 is satisfied. So, in this paper, we

assume UT
A1b 6= 0. It then remains to check the condition σk(A) > σk+1(C). As shown

above, the STLS problem can be solved by using the SVD. As we know, computing the SVD
is expensive. In this paper, we present an algorithm for solving the STLS problem using a
rank revealing decomposition. This algorithm is more efficient than the SVD method and
it is particularly efficient for the STLS problems with same coefficient matrix but multiple
right hand side vectors. In section 2, we first describe a complete orthogonal decomposition
(COD) [3] to illustrate the ideas behind our algorithm. Then we present a practical algorithm
for solving the STLS problem using the rank revealing ULV decomposition (RRULVD) [9].
The details of computing the RRULVD are described in Section 3. A perturbation analysis
of our STLS algorithm is given in Section 4 and numerical experiments are presented in
Section 5.
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2 Algorithm

The STLS solution expression (4) shows that to compute the solution, we need only V12 and
v22, which, from the partition of V in (3), form the null space and the right singular vector
corresponding to the smallest nonzero singular value of the augmented matrix C defined in
(2). It is unnecessary to compute all the individual singular values and singular vectors.

Suppose that

C = P̄

[
L̄ 0
0 0

]
Q̄T

is the COD of C, where P̄ ∈ Rm×(n+1) has orthonormal columns, Q̄ ∈ R(n+1)×(n+1) is
orthogonal, and L̄ is a (k + 1)-by-(k + 1) nonsingular lower triangular matrix. Let w be the
right singular vector corresponding to the smallest nonzero singular value σk+1(L̄) of L̄ and

L̄ = UL̄ΣL̄[VL̄1 w]T

be the SVD of L̄, then

C = P̄

[
UL̄ 0
0 Im−k−1

] [
ΣL̄ 0
0 0

](
Q̄

[
VL̄1 w 0
0 0 In−k

])T

is the SVD of C. Comparing the above SVD and the SVD in (2) and using the partition of
V in (3), we have

[
V12

vT
22

]
= Q̄

[
w 0
0 In−k

]
.

Partitioning Q̄ = [Q̄1 Q̄2] such that Q̄1 and Q̄2 are respectively the first k + 1 and the last
n − k columns of Q̄, we get [

V12

vT
22

]
=
[
Q̄1w Q̄2

]
.

It is shown in [10] that when UT
A1b 6= 0, V11 is of full rank and v22 is a nonzero vector. Then

we can find an (n− k +1)-by-(n− k +1) Householder matrix H, such that Q̃ = [Q̄1w Q̄2]H
and Q̃(n + 1, 2 : n − k + 1) = 0. That is vT

22H = ‖v22‖2[1, 0, ..., 0]. Thus, from (4),

λxSTLS = −V12(v
T
22)

+ = −V12(v
T
22v22)

−1v22 = −‖v22‖
−2
2 (V12H)(vT

22H)T

= −‖v22‖
−1
2 V12H [1, 0, ..., 0]T

= −Q̃(1 : n, 1)/Q̃(n + 1, 1). (5)

Note that Q̃(n + 1, 1) = ‖v22‖2 6= 0, since v22 is a nonzero vector.
Now, we have described a COD method for computing the STLS solution. This method

has the following issues to be dealt with. First, the COD is sensitive to perturbations and
rounding errors when the matrix is rank deficient. Second, we still need to compute the
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right singular vector corresponding to the smallest nonzero singular value of C. Third, we
may want to check the solution existence condition σk(A) > σk+1(C), recalling that σk(A)
and σk+1(C) are the smallest nonzero singular values of A and C respectively. To alleviate
these problems, we propose a rank revealing ULV decomposition [9] (RRULVD) algorithm.
The RRULVD of A ∈ Rm×n is defined as

A = PA

[
LA

HA FA

]
QT

A, (6)

where LA and FA are lower triangular, LA is of order k, the numerical rank of A, ‖FA‖2 ≈
σk+1(A) and ‖HA‖2 is sufficiently small so that ‖FA‖2 + ‖HA‖2 ≈ σk+1(A). Thus RRULVD
reveals the numerical rank of A. When both ‖HA‖2 and ‖FA‖2 are small, the RRULVD can
be viewed as an approximation of the COD of a rank-deficient matrix. In addition, in the
next Section, we will show that in the computation of the decomposition of A, we get an
estimate for σk(A). Moreover, the RRULVD can be efficiently updated when a column λb
is appended to A. Also, in updating the decomposition, we can get estimates for σk+1(C)
and the corresponding right singular vector. All the information needed for computing the
STLS solution and checking the condition σk(A) > σk+1(C) can be obtained. Letting

C := [A λb] = PC

[
LC

HC FC

]
QT

C (7)

be the updated RRULVD after λb is appended to A, we present the following algorithm.
The details of computing the RRULVD, the crucial part of the algorithm, is given in the
next section.

Algorithm 1 ( STLS Algorithm based on RRULVD)
Given A, b, λ, this algorithm computes STLS solution xSTLS using the RRULVD.

1. Compute the RRULVD (6) and an estimate of σk(A);

2. Append λb to A, update the RRULVD, and compute the estimates for σk+1(C) and the
corresponding right singular vector w;

3. if (σk(A) = σk+1(C)) quit end;

4. Partition QC = [QC1 QC2] such that QC1 and QC2 contain the first k + 1 and the last
n − k columns of QC respectively;

5. Find a Householder matrix H such that Q̃ = [QC1w QC2]H and Q̃(n+1, 2 : n−k+1) =
0;

6. λxSTLS = −Q̃(1 : n, 1)/Q̃(n + 1, 1).
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3 Computing RRULVD

In [2] and [4], two RRULVD algorithms for a rank-deficient matrix A are presented. Both
of them first apply the QL decomposition to A, then some techniques are used to reveal
the rank. Although the QL decomposition can be applied in our case, it is inaccurate
and unstable due to the rank deficiency and the rounding errors. The RRULVD algorithm
presented in this section is based on Stewart’s method [9]. It is a column updating scheme
in that the RRULVD of A is efficiently updated when a column is added to A.

We assume that the RRULVD (6) of A is available and a column a is appended to A.
We will show how the RRULVD of A can be efficiently updated to the RRULVD of the
augmented matrix [A a] where a := λb.

Let

y = P T
A a =

[
y1

y2

]
,

then, from (6), we have

[A a] = PLQT := PA

[
LA 0 y1

HA FA y2

] [
QT

A 0
0 1

]
(8)

What we need to do next is to triangularize L and update P and Q correspondingly.
While there are several ways of eliminating y1 and y2, we want to choose one that keeps the
rank revealing structure as much as possible. If ‖y2‖2 is small, then rank(A) = rank([A a])
and the RRULVD can be updated by postmultiplying a sequence of rotations to eliminate
y1 and y2. If ‖y2‖2 is not too small, we premultiply a sequence of plane rotations Gi,j to
transform y2 into η e1, η = ‖y2‖2. Since each rotation Gi,j creates a bulge in the lower
triangular FA, we simultaneously postmultiply a sequence of rotations Ki,j to restore the
lower triangular structure. The following figure illustrates this process. For simplicity, we
only show the part [HA FA y2] that is modified.




h h h f y2

h h h f f y2

h h h f f f y2

h h h f f f f y2




G3,4
→




h h h f y2

h h h f f y2

h h h f f f f y2

h h h f f f f 0




K6,7
→




h h h f y2

h h h f f y2

h h h f f f y2

h h h f f f f 0




G2,3
→




h h h f y2

h h h f f f y2

h h h f f f 0
h h h f f f f 0




K5,6
→




h h h f y2

h h h f f y2

h h h f f f 0
h h h f f f f 0




G1,2
→




h h h f f η
h h h f f 0
h h h f f f 0
h h h f f f f 0




K4,5
→
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


h h h f η
h h h f f 0
h h h f f f 0
h h h f f f f 0


 .

The above figure also shows that the entries of the updated HA and FA stay small. The
procedure is given as follows.

Algorithm 2 (Triangularization 1.)
Given the decomposition (8), this algorithm transforms y2 into ηe1 and updates P and

Q while keeping HA and FA small and FA lower triangular.

1. for i = m : −1 : k + 2

2. Generate the rotation Gi−1,i to zero out the ith entry using the (i− 1)th entry in y;

3. Apply Gi−1,i to the rows i − 1 and i of L;

4. Update P by applying GT
i−1,i to the columns i and i − 1 of P ;

5. Generate the rotation Ki+n−m−1,i+n−m to restore the lower triangular structure of
FA;

6. Apply Ki+n−m−1,i+n−m to the columns of i + n − m − 1 and i + n − m of L;

7. Update Q by applying Ki+n−m−1,i+n−m to the columns i + n−m− 1 and i + n−m
of Q;

8. end

After the above procedure, the L matrix in the decomposition (8) of the augmented matrix
has the following structure:




l y
l l y
l l l y
h h h f η
h h h f f 0
h h h f f f 0




. (9)

Now, we triangularize the matrix in (9) by postmultiplying plane rotations. At the same
time, we want to keep the rank revealing structure as much as possible. The following
example shows how it works:




l y
l l y
l l l y
h h h f η
h h h f f 0
h h h f f f 0




K1,7
→




l 0
l l y
l l l y
η h h f η
h h h f f h
h h h f f f h




K2,7
→
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


l 0
l l 0
l l l y
η η h f η
h h h f f h
h h h f f f h




K3,7
→




l 0
l l 0
l l l 0
η η η f η
h h h f f h
h h h f f f h




K4,7
→




l 0
l l 0
l l l 0
η η η η 0
h h h f f f
h h h f f f f




K5,7
→




l 0
l l 0
l l l 0
η η η η 0
h h h f f 0
h h h f f f f




K6,7
→




l 0
l l 0
l l l 0
η η η η 0
h h h f f 0
h h h f f f 0




As shown in the above figure, if η = ‖y2‖2 is not small, the row k + 1 of L is not small and
the numerical rank of the augmented matrix may be k + 1. The following is the algorithm.

Algorithm 3 (Triangularization 2.)
Given the matrix in (9), this algorithm restores the lower triangular structure.

1. for i = 1 : n

2. Generate the rotation Ki,n+1 to eliminate the ith entry in y using the ith diagonal
element;

3. Apply Ki,n+1 to the columns i and n + 1 to L;

4. Update Q by applying Ki,n+1 to the columns i and n + 1 of Q;

5. end

Applying these two processes, we can add a column to A and restore the triangular structure
of L while keeping its rank revealing structure as much as possible. The structure of the new
lower triangular matrix shows that the numerical rank of the augmented matrix is either
k + 1 or k. So, the remaining problem is to determine the numerical rank.

We use the deflation proposed in [9] to find the numerical rank. Assume that w is the
right singular vector corresponding to the smallest singular value, denoted by σk+1(L), of
the order k + 1 leading principal submatrix of L, or the large block. Then a product K of
plane rotations can be found such that

Kw = ‖w‖2




0
...
0
1




= ‖w‖2en.
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Consequently, we obtain

σk+1(L) = ‖Lw‖2 = ‖GLKT Kw‖2 = ‖(GLKT )en‖2,

where G is an orthogonal matrix such that GLKT is lower triangular. This equation shows
that the (k + 1, k + 1)-entry of L, equals σk+1(L).

Suppose that w is an approximation of the right singular vector corresponding to σk+1(L),
then the (k + 1, k + 1)-entry is an approximation of σk+1(L). Therefore, given a tolerance
for the numerical rank, if Ln,n is larger than the tolerance then the numerical rank of L is
k + 1, otherwise, the numerical rank is at most k.

The following figures depict the deflation procedure. We first find a sequence of planes
rotations Ki+1,i such that Kk+1,k · · ·K2,1w = ‖w‖2en:

w
w
w
w

K2,1
→

0
w
w
w

K3,2
→

0
0
w
w

K4,3
→

0
0
0

‖w‖2

.

Next, we postmultiply L with KT
i+1,i and simultaneously find Gi+1,i to restore its lower

triangularity:

l 0 0 0
l l 0 0
l l l 0
l l l l

KT
2,1
→

l l̃ 0 0
l l 0 0
l l l 0
l l l l

G2,1
→

l 0 0 0
l l 0 0
l l l 0
l l l l

KT
3,2
→

l 0 0 0

l l l̃ 0
l l l 0
l l l l

G3,2
→

l 0 0 0
l l 0 0
l l l 0
l l l l

KT
4,3
→

l 0 0 0
l l 0 0

l l l l̃
l l l l

G4,3
→

l 0 0 0
l l 0 0
l l l 0
l l l l

After this procedure, we determine the numerical rank of L by comparing its (k + 1, k + 1)-
entry with the tolerance.

In the following algorithm for the deflation, we use Van Loan’s 2-norm condition estimator
[5] to compute the approximations of the smallest singular value and its corresponding right
singular vector.

Algorithm 4 (Deflation)

1. Using Van Loan’s condition estimator to compute an approximation of the smallest
singular value, denoted by σk+1(L), of the order k +1 leading principal submatrix of L
and its corresponding right singular vector w;

2. if σk+1(L) > tol, return k+1 as the numerical rank of L, σk+1(L) as an approximation
of σk+1(C) end;
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3. for i = 1 : k

4. Generate Ki+1,i to eliminate wi using wi+1;

5. Apply KT
i+1,i to the columns i and i + 1 of L;

6. Update Q by apply Ki+1,i to the columns i and i + 1 of Q;

7. Generate Gi+1,i to eliminate the (i, i + 1)-entry of L using the (i + 1, i + 1)-entry;

8. Apply Gi+1,i to the rows i and i + 1 of L to restore the lower triangular structure of
L;

9. Update P by applying GT
i+1,i to the columns i and i + 1 of P ;

10. end

11. Do refinement (Algorithm 5, optional, described soon).

Since from (4) the STLS solution can be expressed by the null space and the right singular
vector corresponding to the smallest nonzero singular value of C, the accuracy of the STLS
solution computed by the above algorithm depends on the quality of the approximations of
σk+1(L) and w. It is shown in [1] that the quality of the subspaces obtained by the RRULVD
algorithm depends on the quality of the condition estimator on the lower triangular matrix
L. Thus we propose the following improvement on the approximations of σk+1(L) and w.

To simplify the discussion, let LC be the order k+1 leading principal submatrix of L. We
first use Van Loan’s method [5] to get an approximation of y, the right singular vector of LT

C .
Then we solve the linear system LCx = y. Now, ‖x‖2 is an approximation of σk+1(LC), the
smallest singular value of LC , and w = x/‖x‖ is its corresponding right singular vector. Since
LC is lower triangular, the linear systems can be solved cheaply. Furthermore, the accuracy
of the approximation of the smallest singular value and its right singular vector is improved
significantly, especially when σk+1(LC) is large. Table 1 compares the results before and after
the improvement. As shown in the first three columns in Table 1 we generate three random
matrices of different orders with specified smallest singular values and the relative gaps be-
tween the two smallest singular values, that is gap = (σk(LC) − σk+1(LC))/σk+1(LC). The
fourth column gives the approximations of the singular values, σvl, using Van Loan’s method
without improvement. The fifth column shows the approximations, σm, with improvement.
Also, the sixth and seventh columns of Table 1 are cosines of the angles between the exact
singular vectors and the vectors obtained from Van Loan’s method without and with im-
provement, that is cos θvl = ‖vT

k+1vvl‖2 and cos θm = ‖vT
k+1vm‖2 where vk+1, vvl, and vm

are right singular vectors corresponding to σk+1(LC), σvl, and σm, respectively. From Table
1, we see that it improves the singular value and singular vector estimates significantly. In
particular, when the singular value is large, for example, σk+1(LC) = 10, the relative error
in the approximated singular value is almost 30% for the original version while it is only 5%
after the improvement.

9



n gap σk+1(LC) σvl σm cos θvl cos θm

16 10 0.0280 0.0320 0.0280 1.0000 1.0000

16 2 0.0280 0.0435 0.0281 0.9655 0.9990

64 5 1.0000 1.8189 1.0135 0.8874 0.9962

128 1.5 10.0000 13.4835 10.5153 0.9051 0.9697

Table 1: Comparison of the smallest singular value and singular vector estimates computed
by Van Loan’s method with and without improvement.

The accuracy of the STLS solution depends not only on the quality of the computed
singular values and singular vectors, but also on the quality of the null space. Thus the
remaining problem is to improve the null space approximation by making the off diagonal
block HC in (7) small. To motivate the refinement technique [9], we assume that L has
numerical rank k + 1 and consider the order k + 2 leading principal submatrix:

Tk+2 =

[
LC 0
hT ξ

]
,

of L, where LC is a (k + 1) × (k + 1) lower triangular matrix, hT is a row vector of order
k + 1 and ξ is a scalar.

Now suppose we find an orthogonal matrix G partitioned according to the partition of
Tk+2 such that Tk+2 is transformed into a block upper triangular matrix:

[
G11 g12

gT
21 g22

] [
LC 0
hT ξ

]
=

[
L̃C h̃

0 ξ̃

]
. (10)

Specifically, G can be a product of a sequence of rotations which eliminate h using the rows
of LC from bottom to top. It then follows that

ξ g12 = h̃

and
gT
21LC + g22h

T = 0.

Let σk+1(LC) be the smallest singular value of LC , then

σk+1(LC)‖gT
21‖2 ≤ ‖gT

21LC‖2 = ‖g12h
T ‖2 ≤ ‖h‖2,

that is

‖gT
21‖2 ≤

‖h‖2

σk+1(LC)
.

Applying this inequality to ξ g12 = h̃, we obtain

‖h̃‖2 = ‖ξ g12‖2 ≤
|ξ|

σk+1(LC)
‖h‖2.
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In other words, ‖h̃‖2 is decreased by a factor of |ξ|/σk+1(LC), which is the ratio between the
smallest singular values of Tk+2 and LC . Next, we postmultiply an orthogonal matrix K to
restore the lower triangular structure:

[
L̃C h̃

0 ξ̃

]
K =

[
L̂C 0

ĥT ξ̂

]
.

Specifically, K can be a product of a sequence of rotations that eliminate h̃ using the columns
of L̃C from left to right. Now, we can conclude from the above analysis that ‖ĥ‖2 ≤
(|ξ|/σk+1(LC))2 ‖h‖2. When the ratio |ξ|/σk+1(LC) is small, ‖ĥ‖2 is much smaller than
‖h‖2. Hence if we apply this refinement to the last m − k − 1 rows of L, the off diagonal
elements in those rows become significantly small. Consequently, the quality of the null
space is improved. The refinement algorithm is as follows.

Algorithm 5 (Refinement)
Given the lower triangular matrix L produced by the first 10 steps in Algorithm 3, this

algorithm applies refinement on its last (m− k − 1) rows, where k + 1 is the numerical rank
of L.

1. while m > k + 1

2. for i = m − 1 : −1 : 1

3. Generate rotation Gi,m to eliminate the (m, i)-entry of L using its (i, i)-entry;

4. Apply Gi,m to the rows i and m of L;

5. Update P by applying GT
i,m to the columns i and m of P ;

6. end

7. for i = 1 : m − 1

8. Generate rotation Ki,m to eliminate the (i,m)-entry of L using its (i, i)-entry;

9. Apply Ki,m to the columns i and m of L;

10. Update Q by applying Ki,m to the columns i and m of Q;

11. end

12. m = m − 1;

13. end

In summary, to compute the RRULVD of A, starting with the RRULVD of the first
column of A, we append the columns of A, one column at a time, and update the RRULVD
using Algorithms 1, 2, and 3. Then, we append λ b to A and update the RRULVD. Re-
finement Algorithm 5 may be applied in updating to improve the quality of the null space.
Since only one right singular vector and the null space of C are required for solving the STLS
problems, updating P is unnecessary when we compute the RRULVD of C.
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4 Perturbation Analysis

Algorithm 1 first computes an RRULVD:

C := [A λb] = PC

[
LC 0
HC FC

]
QT

C , (11)

where the blocks HC and FC are introduced by rounding errors and approximations. Then
the algorithm computes the STLS solution using the truncated RRULVD as the COD:

PC

[
LC 0
0 0

]
QT

C =: [Â λb̂] = Ĉ. (12)

Since HC and FC are introduced by rounding errors, we assume that

E := C − Ĉ = −P

[
0 0

HC FC

]
QT ,

is small, specifically,
‖HC‖2 + ‖FC‖2 = c u ‖C‖2 =: η, (13)

where c is a moderate constant and u is the unit of roundoff. What is the difference between
the solution corresponding to C = [A λb] and that of Ĉ = [Â λb̂]? In this section, we derive
an upper bound for the error ‖xSTLS− x̂STLS‖2, where xSTLS and x̂STLS denote the solutions
corresponding to C and Ĉ respectively.

Before deriving the error bound, it is necessary to verify the existence condition. From
(13), it follows that

σk(Â) − σk+1(Ĉ)

= σk(A) − σk+1(C) + σk(Â) − σk(A) + σk+1(C) − σk+1(Ĉ)

≥ σk(A) − σk+1(C) − 2η.

Thus, if σk(A) − σk+1(C) > 2η, then the existence condition σk(Â) > σk+1(Ĉ) for the
perturbed STLS problem is satisfied.

Now, we derive the error bound. Using the SVD (2) of C and the partitions (3), we
define

EA := A − U2Σ2V
T
12 = U1Σ1V

T
11 and λ eb := λb − U2Σ2v22 = U1Σ1v21.

Then, from (4), it can be verified that

λxSTLS = (V T
11)

+v21 = λE+
Aeb. (14)

Note that when σk(A) > σk+1(C), V11 is of full column rank [10], implying that I = V +
11V11 =

V T
11(V

T
11)

+. Consequently,

EAxSTLS = U1Σ1V
T
11xSTLS = λ−1U1Σ1V

T
11(V

T
11)

+v21 = λ−1U1Σ1v21 = eb.

12



Similarly, letting Ĉ = Û Σ̂V̂ T be the SVD of Ĉ, partitioning Û , Σ̂, and V̂ according to
(3), and defining

E
Â

:= Â − Û2Σ̂2V̂
T
12 = Û1Σ̂1V̂

T
11 and λe

b̂
:= λb̂ − Û2Σ̂2v̂22 = Û1Σ̂1v̂21,

we have the solution
x̂STLS = E+

Â
e
b̂
. (15)

Comparing the two solutions (14) and (15), we get

xSTLS − x̂STLS = xSTLS − E+

Â
e
b̂

= xSTLS − E+

Â
E

Â
xSTLS + E+

Â
E

Â
xSTLS − E+

Â
eb − E+

Â
(e

b̂
− eb)

= xSTLS − E+

Â
E

Â
xSTLS + E+

Â
E

Â
xSTLS − E+

Â
EAxSTLS − E+

Â
(e

b̂
− eb)

= (I − E+

Â
E

Â
)xSTLS + E+

Â
(E

Â
− EA)xSTLS − E+

Â
(e

b̂
− eb).

Obviously, ‖(I − E+

Â
E

Â
)xSTLS‖2 ≤ ‖xSTLS‖2. From E

Â
= Â − Û2Σ̂2V̂

T
12, we have

σk(EÂ
) ≥ σk(Â) − ‖Û2Σ̂2V̂

T
12‖2 ≥ σk(Â) − σk+1(Ĉ) ≥ σk(A) − σk+1(C) − 2η,

which implies that

‖E+

Â
‖2 = (σk(EÂ

))−1 ≤
1

σk(A) − σk+1(C) − 2η
, (16)

since rank(E
Â
) = k. Furthermore, we have

‖E
Â
− EA‖2 = ‖Â − A − Û2Σ̂2V̂

T
12 + U2Σ2V

T
12‖2

≤ ‖Â − A‖2 + ‖Û2Σ̂2V̂
T
12‖2 + ‖U2Σ2V

T
12‖2

≤ ‖Ĉ − C‖2 + σk+1(Ĉ) + σk+1(C)

≤ η + σk+1(C) + σk+1(Ĉ) (17)

≤ 2η + 2σk+1(C) (18)

and

‖e
b̂
− eb‖2 = ‖b̂ − b − λ−1Û2Σ̂2v̂22 + λ−1U2Σ2v22‖2

≤ ‖b̂ − b‖2 + λ−1(σk+1(Ĉ) + σk+1(C)) (19)

= η + λ−1(2σk+1(C) + η). (20)

Putting the above three inequalities (16), (18), and (20) together, we get

‖xSTLS − x̂STLS‖ ≤ ‖xSTLS‖2 + ‖E+

Â
‖2‖EÂ

− EA‖2‖xSTLS‖2 + ‖E+

Â
‖2‖eb̂

− eb‖2

≤ ‖xSTLS‖2 +
2σk+1(C) + 2η

σk(A) − σk+1(C) − 2η
‖xSTLS‖2
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+
λ−1(2σk+1(C) + η) + η

σk(A) − σk+1(C) − 2η

=
σk(A) + σk+1(C)

σk(A) − σk+1(C) − 2η
‖xSTLS‖2 +

λ−1(2σk+1(C) + η) + η

σk(A) − σk+1(C) − 2η

=
σk(A)‖xSTLS‖2 + σk+1(C)(‖xSTLS‖2 + 2λ−1) + (λ−1 + 1)η

σk(A) − σk+1(C) − 2η

<
(σk(A) + σk+1(C))(‖xSTLS‖2 + λ−1) + η

σk(A) − σk+1(C) − 2η
,

since η < σk(A)−σk+1(C). The above argument is valid for any small perturbation E. Thus
we obtain the following theorem.

Theorem 4.1 Suppose that C = [A λb] and Ĉ = C+E =: [Â λb̂] and ‖E‖2 ≈ c u ‖C‖2 =: η,
where c is a moderate constant and u is the unit of roundoff. Let xSTLS and x̂STLS be the
STLS solutions corresponding to C and Ĉ respectively, then

‖xSTLS − x̂STLS‖2 ≤
(σk(A) + σk+1(C))(‖xSTLS‖2 + λ−1) + η

σk(A) − σk+1(C) − 2η
,

provided that σk(A) − σk+1(C) > 2η.

This theorem shows that if the perturbation η = ‖E‖2 is small, we can expect a small error
‖xSTLS − x̂STLS‖2 as long as σk(A) and σk+1(C) are not very close to each other. If σk(A)
is very close to σk+1(C), the computed solution x̂STLS may be very different from the exact
solution xSTLS. Moreover, as λ approaches to zero, both σk+1(C) and σk+1(Ĉ) approach to
zero as fast as λ does. Specifically, limλ→0 σk+1(C)/λ = ‖r‖2, where r is the residual of the
least square problem Ax ≈ b [11]. Thus, from (16), (17), and (19), the inequality in the
theorem reduces to

‖xSTLS − x̂STLS‖2 ≤ (1 +
η

σk(A)
)‖xSTLS‖2 +

η

σk(A)
(1 + ‖r̂‖2 + ‖r‖2).

It shows that the difference between xSTLS and x̂STLS is independent of the scalar λ, when
λ approaches to zero.

5 Numerical Experiments

In the STLS formulation (1), a scalar λ is introduced to the right side vector b. The residual
to be minimized is [E, r], same as the TLS problem. In this section, we compare STLS
with TLS. The STLS problem is solved by the RRULVD method presented in the previous
section, whereas the TLS problem is solved by the SVD method.

All of our numerical experiments were performed in MATLAB on a Sun SPARC work-
station Ultra 10 using double precision. The rank deficient matrices were generated as the
product

A = U

[
Σ 0
0 Z

]
V T ,
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where U ∈ Rm×n and V ∈ Rn×n, (m > n) are random matrices with orthonormal columns,
Σ diagonal of order k, whose diagonal elements are random variables uniformly distributed
over [0, 1], and Z a zero matrix of order n − k. The right-hand side vectors were generated
as random vectors uniformly distributed over [0, 1]. The random perturbations E and r on
A and b respectively were constructed by

E = ξ randn(m,n), r = ξ randn(m, 1),

where ξ is a parameter controlling the magnitude of the perturbations, and the entries of
E and r are random variables normally distributed with zero mean and variance one. In
all examples, we set ξ = 3 × 10−8 and the numerical rank tolerance to 2 × 10−5. Since the
perturbations are smaller than the numerical rank tolerance, all matrices are numerically
rank deficient.

To compare STLS and TLS, we denote θS and θT as the angles between b and AxSTLS

and between b and AxTLS, respectively, that is cos θS := ‖bT AxSTLS‖2/(‖AxSTLS‖2‖b‖2) and
cos θT := ‖bT AxTLS‖2/(‖AxTLS‖2‖b‖2). Also, we denote the residuals resS := ‖[ESTLS, rSTLS]‖F ,
which is equal to σk+1(C) [11], and resT := ‖[ETLS, rTLS]‖F = σk+1(C) [10]. Note that θT

and resT are independent of λ.
Tables 2, 3, and 4 show the results for three rank-deficient problems of various sizes.

From the results, we can see that

• For small values of λ, AxSTLS is closer to b than AxTLS is, and the STLS residual is
much smaller than the TLS residual;

• When λ is small, θS is insensitive to the change of λ;

• When λ > 1, cos θS may be smaller than cos θT . See, for example, λ = 5 in Tables 2
and 4.

We note that

• In theory, when λ = 1, xSTLS = xTLS. The differences in the tables when λ = 1 are
due to the different algorithms used to solve the STLS problem and the TLS problem.
However, we can see that the corresponding values are in the same magnitude order.

• For large values of λ, large vectors λb are appended to A to form C. Consequently,
the right singular vectors corresponding to σk+1(C) of the resulting matrices C vary
little. Recall that the STLS solution depends on the right singular vector and the null
space. Thus, the STLS solutions vary little for large values of λ.

Conclusion: Choose λ < 1.
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